Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Contribution to Pharmacological Valorisation of Algerian Arctium minus (Hill) Bernh. Subsp. Atlanticum (Pomel) Maire; Antioxidant an d Acetylcholinesterase Inhibitory Activities

Author(s): Sofiane Guettaf*, Abdelmoumen Benmerzoug, Bensouici Chawki, Yavuz Selim Çakmak, Saliha Dahamna, Abderrahmane Baghiani and Daoud Harzallah

Volume 18, Issue 2, 2022

Published on: 17 May, 2022

Page: [135 - 144] Pages: 10

DOI: 10.2174/1573408018666220324101521

Price: $65

Abstract

Background: The traditional pharmacopoeia is full of potential resources for molecules with therapeutic effects involving the inhibition of enzymes linked to some diseases.

Objective: This work aimed to test in vitro neuroprotective activity against Alzheimer's disease (AD) combined with the antioxidant effect of root extracts obtained by water, water/methanol, and ethyl acetate of the endemic Arctium minus. subsp. Atlanticum, a native of Algeria.

Methods: The different extracts of the root of the studied plant were obtained by decoction or maceration. The inhibitory effect of acetyl/butyrylcholinesterase (AChE/BChE) was achieved by a colorimetric method. Similarly, the antioxidant activity was measured based on several mechanisms: 1, 1- diphenyl-2-picryl-hydrazyl (DPPH) and galvinoxyl (GOR) radicals free scavenging assays, β-carotene bleaching inhibition activity, and cupric ion reducing antioxidant capacity (CUPRAC).

Results: In the various tests carried out, the ethyl acetate extract (EAE) possessed the most powerful antioxidant and anticholinesterase activities compared to the other samples. The IC50 and A0.5 values of DPPH, GOR, β-carotene, CUPRAC, anti-AChE, and anti-BChE assays were 69.45±5.49, 28.87±0.18, 121.58±16.76, 37.41±1.59, 265±21, and 240±6.3 μg / mL, respectively. Likewise, a correlation could be deduced between the type of extract and the potent antioxidant/anticholinesterase potential.

Conclusion: This work examines for the first time the anticholinesterase potential combined with the antioxidant effect of Algerian Arctium minus. subsp. atlanticum. This association between the two effects could be effective in the fight against AD, and therefore, the use of this natural resource may be possible in combating this aspect of neurodegeneration.

Keywords: Alzheimer’s disease, anticholinesterase, antioxidant, Arctium minus, subsp. Atlanticum, enzyme inhibition, pharmacological valorisation, acetylcholinesterase inhibitory activities.

Graphical Abstract

[1]
Ferri CP, Sousa R, Albanese E, Ribeiro WS, Honyashiki M. World Alzheimer Report 2009 – Executive Summary London 2009 1-22.
[2]
Budimir A. Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm 2011; 61(1): 1-14.
[http://dx.doi.org/10.2478/v10007-011-0006-6] [PMID: 21406339]
[3]
LaFerla FM, Oddo S. Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 2005; 11(4): 170-6.
[http://dx.doi.org/10.1016/j.molmed.2005.02.009] [PMID: 15823755]
[4]
Hoogenraad TU. Paradigm shift in treatment of Alzheimer’s disease: Zinc therapy now a conscientious choice for care of individual patients. Int J Alzheimers Dis 2011; 2011492686
[http://dx.doi.org/10.4061/2011/492686] [PMID: 21949909]
[5]
Tetu D. Facteurs génétiques et stress oxydatif impliqués dans la maladie d’Alzheimer. Grenoble: PhD Thesis, pharmacy Faculty 2005.
[6]
Alzheimer’s Association. 2008 Alzheimer’s disease facts and figures. Alzheimers Dement 2008; 4(2): 110-33.
[http://dx.doi.org/10.1016/j.jalz.2008.02.005] [PMID: 18631956]
[7]
Cummings JL. Alzheimer’s disease. N Engl J Med 2004; 351(1): 56-67.
[http://dx.doi.org/10.1056/NEJMra040223] [PMID: 15229308]
[8]
Chattipakorn S, Pongpanparadorn A, Pratchayasakul W, Pongchaidacha A, Ingkaninan K, Chattipakorn N. Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats. J Ethnopharmacol 2007; 110(1): 61-8.
[http://dx.doi.org/10.1016/j.jep.2006.09.007] [PMID: 17023131]
[9]
Gholamhoseinian A, Moradi MN, Sharifi-Far F. Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity. Res Pharm Sci 2009; 4(2): 105-12.
[PMID: 21589805]
[10]
Ali M, Muhammad S, Shah MR, et al. Neurologically potent molecules from Crataegus oxyacantha; isolation, anticholinesterase inhibition, and molecular docking. Front Pharmacol 2017; 8: 327.
[http://dx.doi.org/10.3389/fphar.2017.00327] [PMID: 28638340]
[11]
Wang D, Bădărau AS, Swamy MK, et al. Arctium species secondary metabolites chemodiversity and bioactivities. Front Plant Sci 2019; 10: 834.
[http://dx.doi.org/10.3389/fpls.2019.00834] [PMID: 31338098]
[12]
Chan Y-S, Cheng L-N, Wu J-H, et al. A review of the pharmacological effects of Arctium lappa (Burdock). Inflammopharmacology 2011; 19(5): 245-54.
[http://dx.doi.org/10.1007/s10787-010-0062-4] [PMID: 20981575]
[13]
Mekinić IG, Burcul F, Blazević I, Skroza D, Kerum D, Katalinić V. Antioxidative/acetylcholinesterase inhibitory activity of some asteraceae plants. Nat Prod Commun 2013; 8(4): 471-4.
[http://dx.doi.org/10.1177/1934578X1300800416] [PMID: 23738456]
[14]
Lee IA, Joh EH, Kim DH. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice. Planta Med 2011; 77(13): 1525-7.
[http://dx.doi.org/10.1055/s-0030-1270746] [PMID: 21308615]
[15]
Kwon YK, Choi SJ, Kim CR, et al. Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in Aβ1-42-induced mouse model. Appl Biol Chem 2016; 59(4): 553-65.
[http://dx.doi.org/10.1007/s13765-016-0195-2]
[16]
Tian X, Sui S, Huang J, Bai J-P, Ren T-S, Zhao Q-C. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells. Environ Toxicol Pharmacol 2014; 38(1): 189-98.
[http://dx.doi.org/10.1016/j.etap.2014.05.017] [PMID: 24956398]
[17]
Hajimehdipoor H, Ara L, Moazzeni H, Esmaeili S. Evaluating the antioxidant and acetylcholinesterase inhibitory activities of some plants from Kohgiluyeh va Boyerahmad province, Iran. Res J Pharm 2016; 3(4): 1-7.
[18]
Zemouri M. Etude Cytogénétique de Quelques Espèces Végétales de La Flore de Kéfrida (Wilaya de Bejaia) Avec Un Accent Sur Les Endémiques PhD Thesis, University of Bouira, Algeria 2017.
[19]
Ferreira LE, Castro PMN, Chagas ACS, França SC, Beleboni RO. In vitro anthelmintic activity of aqueous leaf extract of Annona muricata L. (Annonaceae) against Haemonchus contortus from sheep. Exp Parasitol 2013; 134(3): 327-32.
[http://dx.doi.org/10.1016/j.exppara.2013.03.032] [PMID: 23583362]
[20]
Bekhaoua A, Khacheba I, Boussoussa H, Yousfi M. A-Glucosidase and α-amylase inhibitory effect and antioxidant activity of aerial part from Linaria Aegyptiaca L. Curr Enzym Inhib 2019; 15(1): 22-7.
[http://dx.doi.org/10.2174/1573408014666181022115524]
[21]
Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181(4617): 1199-200.
[http://dx.doi.org/10.1038/1811199a0]
[22]
Gülçin I. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids 2007; 32(3): 431-8.
[http://dx.doi.org/10.1007/s00726-006-0379-x] [PMID: 16932840]
[23]
Guettaf S, Abidli N, Kariche S, Bellebcir L, Bouriche H. Evaluation of antioxidant potential and phytochemical studies of Ononis angustissima L. (fabaceae). World J Pharm Res 2016; 5: 1793-815.
[24]
Shi H, Noguchi N, Niki E. Galvinoxyl method for standardizing electron and proton donation activity. Methods Enzymol 2001; 335: 157-66.
[http://dx.doi.org/10.1016/S0076-6879(01)35240-0] [PMID: 11400365]
[25]
Papadimitriou V, Sotiroudis TG, Xenakis A, Sofikiti N, Stavyiannoudaki V, Chaniotakis NA. Oxidative stability and radical scavenging activity of extra virgin olive oils: An electron paramagnetic resonance spectroscopy study. Anal Chim Acta 2006; 573-574: 453-8.
[http://dx.doi.org/10.1016/j.aca.2006.02.007] [PMID: 17723560]
[26]
Amrani A, Mecheri A, Bensouici C, et al. Evaluation of antidiabetic, dermatoprotective, neuroprotective and antioxidant activities of Chrysanthemum fontanesii flowers and leaves extracts. Biocatal Agric Biotechnol 2019; 20(101209)101209
[http://dx.doi.org/10.1016/j.bcab.2019.101209]
[27]
Marco GJ. A rapid method for evaluation of antioxidants. J Am Oil Chem Soc 1968; 45(9): 594-8.
[http://dx.doi.org/10.1007/BF02668958]
[28]
Ismail A Jr, Tan S. Antioxidant activity of selected commercial seaweeds. Malays J Nutr 2002; 8(2): 167-77.
[PMID: 22692475]
[29]
Ioannou I, Chaaban H, Slimane M, Ghoul M. Origin of the variability of the antioxidant activity determination of food material. In: Biotechnology InTech: London. 2015.
[30]
Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 2004; 52(26): 7970-81.
[http://dx.doi.org/10.1021/jf048741x] [PMID: 15612784]
[31]
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7(2): 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[32]
Elufioye TO, Unachukwu CC, Oyedeji AO. Anticholinesterase and antioxidant activities of Spilanthes filicaulis whole plant extracts for the management of Alzheimer’s disease. Curr Enzym Inhib 2019; 15(2): 103-13.
[http://dx.doi.org/10.2174/1573408015666190730113405]
[33]
Scalzo J, Politi A, Pellegrini N, Mezzetti B, Battino M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005; 21(2): 207-13.
[http://dx.doi.org/10.1016/j.nut.2004.03.025] [PMID: 15723750]
[34]
Kallithraka S, Garcia-Viguera C, Bridle P, Bakker J. Survey of solvents for the extraction of grape seed phenolics. Phytochem Anal 1995; 6(5): 265-7.
[http://dx.doi.org/10.1002/pca.2800060509]
[35]
Reilly PM, Schiller HJ, Bulkley GB. Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am J Surg 1991; 161(4): 488-503.
[http://dx.doi.org/10.1016/0002-9610(91)91120-8] [PMID: 2035771]
[36]
Erdemoglu N, Turan NN, Akkol EK, Sener B, Abacioglu N. Estimation of anti-inflammatory, antinociceptive and antioxidant activities of Arctium minus (hill) Bernh. ssp. minus. J Ethnopharmacol 2009; 121(2): 318-23.
[http://dx.doi.org/10.1016/j.jep.2008.11.009] [PMID: 19061945]
[37]
Ahmet Başaran A, Ceritoğlu I, Ündeğer Ü, Başaran N. Immunomodulatory activities of some Turkish medicinal plants. Phytother Res 1997; 11(8): 609-11.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199712)11:8<609:AID-PTR165>3.0.CO;2-0]
[38]
Kenny O, Smyth TJ, Walsh D, Kelleher CT, Hewage CM, Brunton NP. Investigating the potential of under-utilised plants from the Asteraceae family as a source of natural antimicrobial and antioxidant extracts. Food Chem 2014; 161: 79-86.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.126] [PMID: 24837924]
[39]
Predes F, Ruiz A, Carvalho J, Foglio M, Dolder H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. In: Recent Advances in Plant-Based, Traditional, and Natural Medicines. Apple Academic Press: Florida 2014; pp. 27-37.
[http://dx.doi.org/10.1201/b16611-4]
[40]
Guettaf S, Abidli N, Kariche S, Bellebcir L, Bouriche H. Phytochemical screening and antioxidant activity of aqueous extract of Genista saharae (Coss. & Dur.). Pharm Lett 2016; 8(1): 50-60.
[41]
Duh PD. Antioxidant activity of Burdock (Arctium lappa Linne): Its scavenging effect on free‐radical and active oxygen. J Am Oil Chem Soc 1998; 75(4): 455-61.
[http://dx.doi.org/10.1007/s11746-998-0248-8]
[42]
Local Food-Nutraceuticals Consortium. Understanding local Mediterranean diets: A multidisciplinary pharmacological and ethnobotanical approach. Pharmacol Res 2005; 52(4): 353-66.
[http://dx.doi.org/10.1016/j.phrs.2005.06.005] [PMID: 16051496]
[43]
Lou Z, Wang H, Li J, et al. Antioxidant activity and chemical composition of the fractions from Burdock leaves. J Food Sci 2010; 75(5): C413-9.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01616.x] [PMID: 20629861]
[44]
Kulkarni AP, Aradhya SM, Divakar S. Isolation and identification of a radical scavenging antioxidant–punicalagin from pith and carpellary membrane of pomegranate fruit. Food Chem 2004; 87(4): 551-7.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.006]
[45]
Özyürek M, Güçlü K, Tütem E, et al. A comprehensive review of CUPRAC methodology. Anal Methods 2011; 3(11): 2439.
[http://dx.doi.org/10.1039/c1ay05320e]
[46]
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 53(10): 4290-302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[47]
Nakagawa Y, Matsugo S. Antioxidant activity of flavonoids in Burdock leaf extracts and their preventive effect on soybean oil oxidization. NewTechnologies Medicine 2004; 5: 487-91.
[48]
Maruta Y, Kawabata J, Niki R. Antioxidative caffeoylquinic acid derivatives in the roots of burdock (Arctium Lappa L.). J Agric Food Chem 1995; 43(10): 2592-5.
[http://dx.doi.org/10.1021/jf00058a007]
[49]
Chen FA, Wu AB, Chen CY. The influence of different treatments on the free radical scavenging activity of burdock and variations of its active components. Food Chem 2004; 86(4): 479-84.
[http://dx.doi.org/10.1016/j.foodchem.2003.09.020]
[50]
Saleh NA, Bohm BA. Flavonoids of Arctium minus (compositae). Experientia 1971; 27(12): 1494.
[http://dx.doi.org/10.1007/BF02154314] [PMID: 5144881]
[51]
Park SY, Hong SS, Han XH, et al. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production. Chem Pharm Bull (Tokyo) 2007; 55(1): 150-2.
[http://dx.doi.org/10.1248/cpb.55.150] [PMID: 17202721]
[52]
Suchy M, Herout V, Sorm F. The nature of arctiopicrin, an unsaturated lactone from Arctium minus. Chem Listy Vedu Prum 1956; 50: 1827-33.
[53]
Lindner MW. Burdock fruit. Pharm Zentralhalle Deutsch 1948; 87: 65-73.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy