Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Marine Benzophenones and Xanthones: Isolation, Synthesis, and Biosynthesis

Author(s): Bing Liu, Ning Chen*, Weiyang Zhang, Yi Wu, Zhijuan Tang, Zhenni Wang and Yubin Ji*

Volume 19, Issue 7, 2022

Published on: 02 June, 2022

Page: [877 - 892] Pages: 16

DOI: 10.2174/1570193X19666220322161822

Price: $65

Abstract

Marine microorganisms are an important source of active natural products and drugs, which have become a research hotspot in recent decades. Due to the special marine ecological environment, the metabolic pathways of marine organisms have certain characteristics, and their metabolites are novel in structures and unique in activities. Xanthones and benzophenones are widely distributed in nature, and most of them are found in fungi and higher plants. They are described as "dominant structures" in the field of modern medicine because of their obvious pharmacological activities, including antibacterial and antifungal activities. This paper reviews the research progress of isolated microbial xanthone and benzophenone compounds from marine sources at home and abroad in recent years, including their chemical synthesis and biosynthesis, which lays a foundation for future utilization and development.

Keywords: Xanthone, benzophenone, bioactivities, isolation, chemical synthesis, biosynthesis, natural products.

« Previous
Graphical Abstract

[1]
Zhou, S.H.; Yang, Y.; Wang, Z.L. Speed up the promotion of LNG vehicles and promote the green and low-carbon development of the transportation industry; International Petroleum Economy, , 2012; p. 06.
[2]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2015, 32(2), 116-211.
[http://dx.doi.org/10.1039/C4NP00144C] [PMID: 25620233]
[3]
Blunt, J.W.; Copp, B.R.; Munro, M.H.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2011, 28(2), 196-268.
[http://dx.doi.org/10.1039/C005001F] [PMID: 21152619]
[4]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2017, 34(3), 235-294.
[http://dx.doi.org/10.1039/C6NP00124F] [PMID: 28290569]
[5]
Chen, Q.; Mao, Q.; Bao, M.; Mou, Y.; Fang, C.; Zhao, M.; Jiang, W.; Yu, X.; Wang, C.; Dai, L.; He, W.; Dong, J.; Wu, J.; Yan, P. Spongian diterpenes including one with a rearranged skeleton from the marine sponge Spongia officinalis. J. Nat. Prod., 2019, 82(6), 1714-1718.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00270] [PMID: 31095383]
[6]
Bramhachari, P.V.; Anju, S.; Sheela, G.M. Correction to: Secondary metabolites from marine endophytic fungi: Emphasis on recent advances in natural product research. Timbre: Acoustics; Perception, and Cognition, 2019, pp. C1-C1.
[http://dx.doi.org/10.1007/978-3-030-03589-1_16]
[7]
Zhang, C.; Zhang, C.S.; Tian, X.P.; Wang, F.Z. Research on China’s marine microbial diversity. Bull. Chinese Acad. Sci., 2010, 25(6), 651-658.
[8]
Zhan, T.X.; Zhang, C.G.; Si, M. Research progress of marine microbial active substances. Chinese J. Marine Drugs, 2002, (2), 44-52.
[9]
Raper, K.B.; Thom, C.A. A manual of the Penicillia. Bull. Torrey Bot. Club, 1950, 26(299), 513-a.
[10]
Jiang, B.; Lü, M.X.; Jiang, D.H. Active metabolites of Aspergillus fungi and their application in agricultural production. J. Microbiol., 2019, 39(2), 103-110.
[11]
Zhong, W.M.; Zeng, Q.; Xiang, Y. Study on the secondary metabolites of the fungus Aspergillus sp.SCSIOF063 from the deep-sea sedimentary environment of the South China Sea. Chinese Journal of Marine Drugs, 2018, 37(5), 29-35.
[12]
An, C.L.; Kong, F.D.; Ma, Q.Y.; Xie, Y.Q.; Ge, Y.Z.; Dai, H.F.; Yu, Z.F.; Zhao, Y.X. Study on the secondary metabolites of marine fungus Aspergillus sp. SCS-KFD66. Chin. Herb. Med., 2019, 50(13), 3001-3007.
[13]
Zhang, Y.; Kong, F.D.; Ma, Q.Y.; Xie, Y.Q.; Huang, S.Z.; Zhou, L.M.; Dai, H.F.; Deng, S.M.; Zhao, Y.X. Chemical composition analysis of marine fungus Aspergillus sp. SCS-KFD03. Chinese Journal of Marine Drugs, 2017, 36(2), 15-21.
[14]
Day, D.R.; Jabaiah, S.; Jacobs, R.S.; Little, R.D. Cyclodextrin formulation of the marine natural product pseudopterosin A uncovers optimal pharmacodynamics in proliferation studies of human umbilical vein endothelial cells. Mar. Drugs, 2013, 11(9), 3258-3271.
[http://dx.doi.org/10.3390/md11093258] [PMID: 24065164]
[15]
Bergmann, W. Contributions to the study of marine products. J. Biol. Chem., 1934, 104(2), 317-328.
[http://dx.doi.org/10.1016/S0021-9258(18)75768-2]
[16]
Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs, 2014, 12(2), 1066-1101.
[http://dx.doi.org/10.3390/md12021066] [PMID: 24549205]
[17]
Gomes, N.G.; Lefranc, F.; Kijjoa, A.; Kiss, R. Can some marine-derived fungal metabolites become actual anticancer agents? Mar. Drugs, 2015, 13(6), 3950-3991.
[http://dx.doi.org/10.3390/md13063950] [PMID: 26090846]
[18]
Tang, W.; Xu, X.; Ye, B.C.; Cao, P.; Ali, A. Decolorization and degradation analysis of Disperse Red 3B by a consortium of the fungus Aspergillus sp. XJ-2 and the microalgae Chlorella sorokiniana XJK. RSC Adv., 2019, 9(25), 14558-14566.
[http://dx.doi.org/10.1039/C9RA01169B]
[19]
Ma, X.; Liang, X.; Huang, Z.H.; Qi, S.H. New alkaloids and isocoumarins from the marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501. Nat. Prod. Res., 2020, 34(14), 1992-2000.
[http://dx.doi.org/10.1080/14786419.2019.1569660] [PMID: 30761921]
[20]
Shang, Z.; Wang, B.G. Methods and advances in studies on antimicrobial substances of marine-derived fungi. Chinese Bull. Life Sci., 2012, 24(9), 997-1011.
[21]
Burman, R.P.; Gupta, S.; Bhatti, J.; Verma, K.; Rajak, D.; Gill, M.S. Convergent synthesis of Carpatamide-A: Cytotoxic arylamine derivative from marine derived Streptomyces sp. Nat. Prod. Res., 2019, 33(8), 1147-1157.
[http://dx.doi.org/10.1080/14786419.2018.1460837] [PMID: 29770710]
[22]
Nikapitiya, C. Bioactive secondary metabolites from marine microbes for drug discovery. Adv. Food Nutr. Res., 2012, 65(1), 363-387.
[http://dx.doi.org/10.1016/B978-0-12-416003-3.00024-X] [PMID: 22361200]
[23]
You, J.Y. Research progress of marine microbial drug development; China High-tech, 2019.
[24]
Numata, A.; Takahashi, C.; Matsushita, T.; Miyamoto, T.; Kawai, K.; Usami, K.; Matsumura, E.; Inoue, M.; Ohishi, H.; Shingu, T. Fumiquinazolines, novel metabolites of a fungus isolated from a saltfish. Tetrahedron Lett., 1992, 33(12), 1621-1624.
[http://dx.doi.org/10.1016/S0040-4039(00)91690-3]
[25]
Yang, X.W.; Qin, Z.W. A brief introduction to antimicrobial agents based on microbial natural product sources. World Notes on Antibiotics, 2017, 38(6), 248-252.
[26]
Chen, N.; Wang, X.; Liu, B.; Zheng, W.; Zhao, D.; Zhang, Z.C.; Yu, S.K.; Ji, Y.B. Research progress on the chemical constituents of sea stars. J. Chinese J. Marine Drugs, 2019, 38(2), 39-53.
[27]
Greenblatt, M.S.; Bennett, W.P.; Hollstein, M.; Harris, C.C. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res., 1994, 54(18), 4855-4878.
[PMID: 8069852]
[28]
Dabiri, M.; Baghbanzadeh, M.; Arzroomchilar, E. 1-Methylimidazolium triflouroacetate ([Hmim]TFA): An efficient reusable acidic ionic liquid for the synthesis of 1, 8 dioxo octahydroxanthenes and 1, 8-dioxo-decahydroacridines. Catal. Commun., 2008, 9(5), 939-942.
[http://dx.doi.org/10.1016/j.catcom.2007.09.023]
[29]
Mahabusarakam, W.; Kuaha, K.; Wilairat, P.; Taylor, W.C. Prenylated xanthones as potential antiplasmodial substances. Planta Med., 2006, 72(10), 912-916.
[http://dx.doi.org/10.1055/s-2006-947190] [PMID: 16902859]
[30]
Fu, P.; Zhang, C. Advances in research on phar-macological activity of xanthones. J. Pharm. Pract., 2005, 23(1), 6-11.
[31]
Shankaranarayan, D.; Gopalakrishnan, C.; Kameswaran, L. Pharmacological profile of mangostin and its derivatives. Arch. Int. Pharmacodyn. Ther., 1979, 239(2), 257-269.
[PMID: 314790]
[32]
Abdel-Lateff, A.; Klemke, C.; König, G.M.; Wright, A.D. Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J. Nat. Prod., 2003, 66(5), 706-708.
[http://dx.doi.org/10.1021/np020518b] [PMID: 12762814]
[33]
Hay, A.E.; Aumond, M.C.; Mallet, S.; Dumontet, V.; Litaudon, M.; Rondeau, D.; Richomme, P. Antioxidant xanthones from Garcinia vieillardii. J. Nat. Prod., 2004, 67(4), 707-709.
[http://dx.doi.org/10.1021/np0304971] [PMID: 15104511]
[34]
Trisuwan, K.; Rukachaisirikul, V.; Kaewpet, M.; Phongpaichit, S.; Hutadilok-Towatana, N.; Preedanon, S.; Sakayaroj, J. Sesquiterpene and xanthone derivatives from the sea fan-derived fungus Aspergillus sydowii PSU-F154. J. Nat. Prod., 2011, 74(7), 1663-1667.
[http://dx.doi.org/10.1021/np200374j] [PMID: 21718031]
[35]
Li, H.L.; Li, X.M.; Liu, H.; Meng, L.H.; Wang, B.G. Two new diphenylketones and a new xanthone from Talaromyces islandicus EN-501, an endophytic fungus derived from the marine red alga Laurencia okamurai. Mar. Drugs, 2016, 14(12), 223.
[http://dx.doi.org/10.3390/md14120223] [PMID: 27941601]
[36]
Li, C.; Zhang, J.; Shao, C.; Ding, W.; She, Z.; Lin, Y. A new xanthone derivative from the coculture broth of two marine fungi (strain No. E33 and K38). Chem. Nat. Compd., 2011, 47(3), 382-384.
[http://dx.doi.org/10.1007/s10600-011-9939-8]
[37]
Xin, W.B.; Mao, Z.J.; Jin, G.L.; Qin, L.P. Two new xanthones from Hypericum sampsonii and biological activity of the isolated compounds. Phytother. Res., 2011, 25(4), 536-539.
[http://dx.doi.org/10.1002/ptr.3291] [PMID: 20839213]
[38]
Sun, R.R.; Miao, F.P.; Zhang, J.; Wang, G.; Yin, X.L.; Ji, N.Y. Three new xanthone derivatives from an algicolous isolate of Aspergillus wentii. Magn. Reson. Chem., 2013, 51(1), 65-68.
[http://dx.doi.org/10.1002/mrc.3903] [PMID: 23172582]
[39]
Eltamany, E.E.; Abdelmohsen, U.R.; Ibrahim, A.K.; Hassanean, H.A.; Hentschel, U.; Ahmed, S.A. New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorg. Med. Chem. Lett., 2014, 24(21), 4939-4942.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.040] [PMID: 25283555]
[40]
Loureiro, D.R.P.; Magalhães, Á.F.; Soares, J.X.; Pinto, J.; Azevedo, C.M.G.; Vieira, S.; Henriques, A.; Ferreira, H.; Neves, N.; Bousbaa, H.; Reis, S.; Afonso, C.M.M.; Pinto, M.M.M. Yicathins B and C and analogues: Total synthesis, lipophilicity and biological activities. ChemMedChem, 2020, 15(9), 749-755.
[http://dx.doi.org/10.1002/cmdc.201900735] [PMID: 32162478]
[41]
Wei, Y.H.; Yao, C.G.; Xi, C.L.; Hu, K.H. Progress in research on anticancer drugs derived from microorganisms. Zhongguo Shengwuzhipinxue Zazhi, 2017, 30(3), 329-334.
[42]
Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget, 2017, 8(9), 15996-16016.
[http://dx.doi.org/10.18632/oncotarget.13723] [PMID: 27911871]
[43]
Li, J.X.; Li, Y.R.; Luo, J.; Kong, L.Y. Highlights of China’s natural products research in 2018. Acta Pharma. Sci., 2019, 54(8), 1333-1347.
[44]
Yang, J.X.; Qiu, S.X.; She, Z.; Lin, Y. A new xanthone derivative from the marine fungus Phomopsis sp. Chem. Nat. Compd., 2013, 1(49), 246-248.
[http://dx.doi.org/10.1007/s10600-013-0572-6]
[45]
Yang, H.Y.; Gao, Y.H.; Niu, D.Y.; Yang, L.Y.; Gao, X.M.; Du, G.; Hu, Q.F. Xanthone derivatives from the fermentation products of an endophytic fungus Phomopsis sp. Fitoterapia, 2013, 91(1), 189-193.
[http://dx.doi.org/10.1016/j.fitote.2013.09.004] [PMID: 24042071]
[46]
Wen, L.; Lin, Y.C.; She, Z.G.; Du, D.S.; Chan, W.L.; Zheng, Z.H. Paeciloxanthone, a new cytotoxic xanthone from the marine mangrove fungus Paecilomyces sp. (Tree1-7). J. Asian Nat. Prod. Res., 2008, 10(1-2), 133-137.
[http://dx.doi.org/10.1080/10286020701273783] [PMID: 18253881]
[47]
Elnaggar, M.S.; Ebada, S.S.; Ashour, M.L.; Ebrahim, W.; Müller, W.E.G.; Mándi, A.; Kurtán, T.; Singab, A.; Ln, W. Xanthones and sesquiterpene derivatives from a marine-derived fungus Scopulariopsis sp. Tetrahedron, 2016, 72(19), 2411-2419.
[http://dx.doi.org/10.1016/j.tet.2016.03.073]
[48]
Zhu, F.; Lin, Y. Three xanthones from a marine-derived mangrove endophytic fungus. Chem. Nat. Compd., 2007, 43(2), 132-135.
[http://dx.doi.org/10.1007/s10600-007-0062-9]
[49]
Shao, C.; She, Z.; Guo, Z.; Peng, H.; Cai, X.; Zhou, S.; Gu, Y.; Lin, Y. 1H and 13C NMR assignments for two anthraquinones and two xanthones from the mangrove fungus (ZSUH-36). Magn. Reson. Chem., 2007, 45(5), 434-438.
[http://dx.doi.org/10.1002/mrc.1974] [PMID: 17372958]
[50]
Cai, S.; Zhu, T.; Du, L.; Zhao, B.; Li, D.; Gu, Q. Sterigmatocystins from the deep-sea-derived fungus Aspergillus versicolor. J. Antibiot. (Tokyo), 2011, 64(2), 193-196.
[http://dx.doi.org/10.1038/ja.2010.154] [PMID: 21119680]
[51]
Pontius, A.; Krick, A.; Kehraus, S.; Brun, R.; König, G.M. Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J. Nat. Prod., 2008, 71(9), 1579-1584.
[http://dx.doi.org/10.1021/np800294q] [PMID: 18683985]
[52]
Pontius, A.; Krick, A.; Mesry, R.; Kehraus, S.; Foegen, S.E.; Müller, M.; Klimo, K.; Gerhäuser, C.; König, G.M. Monodictyochromes A and B, dimeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J. Nat. Prod., 2008, 71(11), 1793-1799.
[http://dx.doi.org/10.1021/np800392w] [PMID: 18939864]
[53]
Wu, G.; Yu, G.; Kurtán, T.; Mándi, A.; Peng, J.; Mo, X.; Liu, M.; Li, H.; Sun, X.; Li, J.; Zhu, T.; Gu, Q.; Li, D. Versixanthones A-F, cytotoxic xanthone-chromanone dimers from the marine-derived fungus Aspergillus versicolor HDN1009. J. Nat. Prod., 2015, 78(11), 2691-2698.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00636] [PMID: 26506221]
[54]
Wu, Z.H.; Liu, D.; Xu, Y.; Chen, J.L.; Lin, W.H. Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin. J. Nat. Med., 2018, 16(3), 219-224.
[http://dx.doi.org/10.1016/S1875-5364(18)30050-5] [PMID: 29576058]
[55]
Gao, H.; Zhou, L.; Li, D.; Gu, Q.; Zhu, T.J. New Cytotoxic metabolites from the marine-derived fungus Penicillium sp. ZLN29. Helv. Chim. Acta, 2013, 96(3), 514-519.
[http://dx.doi.org/10.1002/hlca.201200596]
[56]
Wu, Y.P.; Zhao, W.; Xia, Z.Y.; Kong, G.H.; Lu, X.P.; Hu, Q.F.; Gao, X.M. Three new xanthones from the stems of Garcinia oligantha and their anti-TMV activity. Phytochem. Lett., 2013, 6(4), 629-632.
[http://dx.doi.org/10.1016/j.phytol.2013.08.006]
[57]
Wu, Z.J.; Ouyang, M.A.; Tan, Q.W. New asperxanthone and asperbiphenyl from the marine fungus Aspergillus sp. Pest Manag. Sci., 2009, 65(1), 60-65.
[http://dx.doi.org/10.1002/ps.1645] [PMID: 18823067]
[58]
Cueto, M.; Jensen, P.R.; Kauffman, C.; Fenical, W.; Lobkovsky, E.; Clardy, J. Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J. Nat. Prod., 2001, 64(11), 1444-1446.
[http://dx.doi.org/10.1021/np0102713] [PMID: 11720529]
[59]
Li, E.; Jiang, L.; Guo, L.; Zhang, H.; Che, Y. Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg. Med. Chem., 2008, 16(17), 7894-7899.
[http://dx.doi.org/10.1016/j.bmc.2008.07.075] [PMID: 18694644]
[60]
Harper, J.K.; Arif, A.M.; Ford, E.J.; Strobel, G.A.; Porco, J.A. Jr.; Tomer, D.P.; Oneill, K.L.; Heider, E.M.; Grant, D.M.; Strobel, G.A.; Porco, G.A.Jr.; DavidP, D.P.; Oneill, K.L.; Heider, E.N.; Granta, D.M.; Pestacin, A. 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 2003, 59(14), 2471-2476.
[http://dx.doi.org/10.1016/S0040-4020(03)00255-2]
[61]
Hussain, S.F.; Minard, R.D.; Freyer, A.J.; Shamma, M. New alkaloids from Fumaria parviflora. J. Nat. Prod., 1981, 44(2), 169-178.
[http://dx.doi.org/10.1021/np50014a005]
[62]
Achenbach, H.; Muhlenfeld, A.; Kohl, W. Metabolic products of microorganisms. XXXL. Duricaulic acid, a new natural product of the phthalimidine type from Aspergillus duricaulis. Z. Naturforsch. C, 1985, 40, 1219-1225.
[http://dx.doi.org/10.1515/znb-1985-0919]
[63]
Kawahara, N.; Nozawa, K.; Nakajima, S.; Udagawa, S.; Kawai, K. Studies on fungal products. XVI. New metabolites related to 3-methylorsellinate from Aspergillus silvaticus. Chem. Pharm. Bull. (Tokyo), 1988, 36(1), 398-400.
[http://dx.doi.org/10.1248/cpb.36.398] [PMID: 3378300]
[64]
Hinkley, S.F.; Fettinger, J.C.; Dudley, K.; Jarvis, B.B. Memnobotrins and memnoconols: Novel metabolites from Memnoniella echinata. J. Antibiot. (Tokyo), 1999, 52(11), 988-997.
[http://dx.doi.org/10.7164/antibiotics.52.988] [PMID: 10656571]
[65]
Wei, M.Y.; Li, D.; Shao, C.L.; Deng, D.S.; Wang, C.Y. (±)-Pestalachloride D, an antibacterial racemate of chlorinated benzophenone derivative from a soft coral-derived fungus Pestalotiopsis sp. Mar. Drugs, 2013, 11(4), 1050-1060.
[http://dx.doi.org/10.3390/md11041050] [PMID: 23538869]
[66]
Zheng, C.J.; Liao, H.X.; Mei, R.Q.; Huang, G.L.; Yang, L.J.; Zhou, X.M.; Shao, T.M.; Chen, G.Y.; Wang, C.Y. Two new benzophenones and one new natural amide alkaloid isolated from a mangrove-derived Fungus Penicillium citrinum. Nat. Prod. Res., 2019, 33(8), 1127-1134.
[http://dx.doi.org/10.1080/14786419.2018.1460832] [PMID: 29658359]
[67]
Ji, Y.B.; Chen, W.J.; Shan, T.Z.; Sun, B.Y.; Yan, P.C.; Jiang, W. Antibacterial Diphenyl ether, benzophenone and xanthone derivates from Aspergillus flavipes. Chem. Biodivers., 2020, 17(2), e1900640.
[http://dx.doi.org/10.1002/cbdv.201900640] [PMID: 31805214]
[68]
Maciel-Rezende, C.M.; de Almeida, L.; Costa, É.D.; Pires, F.R.; Alves, K.F.; Viegas, C., Jr; Dias, D.F.; Doriguetto, A.C.; Marques, M.J.; dos Santos, M.H. Synthesis and biological evaluation against Leishmania amazonensis of a series of alkyl-substituted benzophenones. Bioorg. Med. Chem., 2013, 21(11), 3114-3119.
[http://dx.doi.org/10.1016/j.bmc.2013.03.045] [PMID: 23623672]
[69]
Bandgar, B.P.; Chavan, H.V.; Adsul, L.K.; Thakare, V.N.; Shringare, S.N.; Shaikh, R.; Gacche, R.N. Design, synthesis, characterization and biological evaluation of novel pyrazole integrated benzophenones. Bioorg. Med. Chem. Lett., 2013, 23(3), 912-916.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.031] [PMID: 23290048]
[70]
Liao, L.; Bae, S.Y.; Won, T.H.; You, M.; Kim, S.H.; Oh, D.C.; Lee, S.K.; Oh, K.B.; Shin, J. Asperphenins A and B, Lipopeptidyl Benzophenones from a Marine-Derived Aspergillus sp. Fungus. Org. Lett., 2017, 19(8), 2066-2069.
[http://dx.doi.org/10.1021/acs.orglett.7b00661] [PMID: 28387122]
[71]
Wang, W.; Park, C.; Oh, E.; Sung, Y.; Lee, J.; Park, K.H.; Kang, H. Benzophenone Compounds, from a Marine-Derived Strain of the Fungus Pestalotiopsis neglecta, Inhibit Proliferation of Pancreatic Cancer Cells by Targeting the MEK/ERK Pathway. J. Nat. Prod., 2019, 82(12), 3357-3365.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00646] [PMID: 31829592]
[72]
Bae, S.Y.; Liao, L.; Park, S.H.; Kim, W.K.; Shin, J.; Lee, S.K. Antitumor activity of asperphenin a, a lipopeptidyl benzophenone from marine-derived Aspergillus sp. fungus, by inhibiting tubulin polymerization in colon cancer cells. Mar. Drugs, 2020, 18(2), 110.
[http://dx.doi.org/10.3390/md18020110] [PMID: 32069904]
[73]
Lei, H.; Lin, X.; Han, L.; Ma, J.; Ma, Q.; Zhong, J.; Liu, Y.; Sun, T.; Wang, J.; Huang, X. New metabolites and bioactive chlorinated benzophenone derivatives produced by a marine-derived fungus Pestalotiopsis heterocornis. Mar. Drugs, 2017, 15(3), 69.
[http://dx.doi.org/10.3390/md15030069] [PMID: 28335391]
[74]
Zhao, D.L.; Yuan, X.L.; Du, Y.M.; Zhang, Z.F.; Zhang, P. Benzophenone derivatives from an algal-endophytic isolate of Penicillium chrysogenum and their cytotoxicity. Molecules, 2018, 23(12), 3378.
[http://dx.doi.org/10.3390/molecules23123378] [PMID: 30572672]
[75]
Xu, J.L.; Liu, H.X.; Chen, Y.C.; Tan, H.B.; Guo, H.; Xu, L.Q.; Li, S.N.; Huang, Z.L.; Li, H.H.; Gao, X.X.; Zhang, W.M. Highly substituted benzophenone aldehydes and eremophilane derivatives from the deep-sea derived fungus Phomopsis lithocarpus FS508. Mar. Drugs, 2018, 16(9), 329.
[http://dx.doi.org/10.3390/md16090329] [PMID: 30208615]
[76]
Liu, H.; Chen, S.; Liu, W.; Liu, Y.; Huang, X.; She, Z. Polyketides with Immunosuppressive Activities from Mangrove Endophytic Fungus Penicillium sp. ZJ-SY2. Mar. Drugs, 2016, 14(12), 217.
[http://dx.doi.org/10.3390/md14120217] [PMID: 27897975]
[77]
Krick, A.; Kehraus, S.; Gerhäuser, C.; Klimo, K.; Nieger, M.; Maier, A.; Fiebig, H.H.; Atodiresei, I.; Raabe, G.; Fleischhauer, J.; König, G.M. Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J. Nat. Prod., 2007, 70(3), 353-360.
[http://dx.doi.org/10.1021/np060505o] [PMID: 17291041]
[78]
Sun, L.; Wu, J.; Luo, M.; Wang, X.; Pan, M.; Gou, Z.; Sun, D. Diversity oriented design of various benzophenone derivatives and their in vitro antifungal and antibacterial activities. Molecules, 2011, 16(11), 9739-9754.
[http://dx.doi.org/10.3390/molecules16119739] [PMID: 22113582]
[79]
Wang, G.L.; Yin, X.N.; Zhang, C.; Pan, H.Y.; Mao, R.Z.; Fan, X.S. A novel and efficient synthesis of pyran derivatives under MWI. Henan Shifan Daxue Xuebao. Ziran Kexue Ban, 2011, 39(2), 80-82.
[80]
Evangelista, E.A.; Couri, M.R.C.; Alves, R.B.; Raslan, D.S.; Gil, R.P.F. Microwave-assisted xanthone synthesis. Synth. Commun., 2006, 36(16), 2275-2280.
[http://dx.doi.org/10.1080/00397910600639653]
[81]
Merchant, J.R.; Fernandes, N.V.; Waghulde, V.C. Reaction of phenols with cyelic α, β -unsaturated acids: An efficient one-pot synthesis of hexahydroxanthones. J. Chem. Sci., 1996, 108(4), 379-398.
[http://dx.doi.org/10.1007/BF02871248]
[82]
Zhao, J.; Yue, D.; Campo, M.A.; Larock, R.C. An aryl to imidoyl palladium migration process involving intramolecular C-H activation. J. Am. Chem. Soc., 2007, 129(16), 5288-5295.
[http://dx.doi.org/10.1021/ja070657l] [PMID: 17397167]
[83]
Gerbino, D.C.; Augner, D.; Slavov, N.; Schmalz, H.G. Nucleophile- or light-induced synthesis of 3-substituted phthalides from 2-formylarylketones. Org. Lett., 2012, 14(9), 2338-2341.
[http://dx.doi.org/10.1021/ol300757m] [PMID: 22519905]
[84]
Wu, J. Synthesis of benzophenone series products. Fine and Specialty Chemicals, 2000, 9, 15.
[85]
Kenyon, J.; Davies, A.G. Part XiV 4-methyldiphenyl methy and 2, 4, 6-trimethyldiphenyl methyl compound. Chem. Soc., 1954, 3474.
[86]
Ayyangar, N.R.; Lahoti, R.J.; Srinivasan, K.V.; Daniel, T. (Trichloromethyl) benzene: Aversatile reagent for the preparation of subsitituted benzophenones. Synthesis, 1991, 1991(4), 322-324.
[http://dx.doi.org/10.1055/s-1991-26457]
[87]
Wang, Q.; Zhang, Z.X. Study on the synthesis process of UV-0. Fine Specialty Chem., 2001, 5, 22.
[88]
Sato, F. Preparation of ketones by directed reaction of Grignand reagents with acid chlororide in THF. Tetrahedron Lett., 1979, (44), 4303-4306.
[http://dx.doi.org/10.1016/S0040-4039(01)86573-4]
[89]
Schmidt, W.; Beerhues, L. Alternative pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L. FEBS Lett., 1997, 420(2-3), 143-146.
[http://dx.doi.org/10.1016/S0014-5793(97)01507-X] [PMID: 9459298]
[90]
Schmidt, W.; Peters, S.; Beerhues, L. Xanthone 6-hydroxylase from cell cultures of Centaurium erythraea RAFN and Hypericum androsaemium L. Phytochemistry, 2000, 53(4), 427-431.
[http://dx.doi.org/10.1016/S0031-9422(99)00566-X] [PMID: 10731018]
[91]
Nualkaew, N.; Morita, H.; Shimokawa, Y.; Kinjo, K.; Kushiro, T.; De-Eknamkul, W.; Ebizuka, Y.; Abe, I. Benzophenone synthase from Garcinia mangostana L. pericarps. Phytochemistry, 2012, 77, 60-69.
[http://dx.doi.org/10.1016/j.phytochem.2012.02.002] [PMID: 22390826]
[92]
Gaid, M.M.; Sircar, D.; Müller, A.; Beuerle, T.; Liu, B.; Ernst, L.; Hänsch, R.; Beerhues, L. Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures. Plant Physiol., 2012, 160(3), 1267-1280.
[http://dx.doi.org/10.1104/pp.112.204180] [PMID: 22992510]
[93]
Peters, S.; Schmidt, W.; Beerhues, L. Regioselective oxidative phenol couplings of 2, 3′ 4, 6-tetrahydroxybenzophenone in cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L. Planta, 1997, 204(1), 64-69.
[http://dx.doi.org/10.1007/s004250050230]
[94]
Barillas, W.; Beerhues, L. 3-Hydroxybenzoate: Coenzyme A ligase and 4-coumarate: Coenzyme A ligase from cultured cells of Centaurium erythraea. Planta, 1997, 202(1), 112-116.
[http://dx.doi.org/10.1007/s004250050109] [PMID: 9177055]
[95]
Tocci, N.; Gaid, M.; Kaftan, F.; Belkheir, A.K.; Belhadj, I.; Liu, B.; Svatoš, A.; Hänsch, R.; Pasqua, G.; Beerhues, L. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytol., 2018, 217(3), 1099-1112.
[http://dx.doi.org/10.1111/nph.14929] [PMID: 29210088]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy