Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Recent Progress in the Research on Benzimidazole PARP-1 Inhibitors

Author(s): Kaiyue Wu, Miaojia Chen, Xiaoyu Peng, Yang Li, Guotao Tang, Junmei Peng and Xuan Cao*

Volume 22, Issue 19, 2022

Published on: 20 May, 2022

Page: [2438 - 2462] Pages: 25

DOI: 10.2174/1389557522666220321150700

Price: $65

Abstract

Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that plays an important role in DNA repair and genome integrity. PARP-1 inhibitors can be used as effective drugs not only to treat BRCA-1/2 deficient cancers because of the synthetic lethality effect but also to treat non- BRCA1/2 deficient tumours because of the effect of PARP capture. Therefore, PARP inhibitors have become a focus of compelling research. Among these inhibitors, substituted benzimidazole derivatives were mainly concerned as lead compounds. However, the commercially available benzimidazole PARP-1 inhibitors have some shortcomings, such as serious toxicity in combination with chemotherapy drugs and in vivo cardiovascular side effects such as anemia. Therefore it is crucial for scientists to explore more structure-activity relationships of the benzimidazole PARP-1 inhibitors and access safer and more effective PARP inhibitors. As the binding regions of PARP-1 and the substrates are usually characterized by NI site and AD site, the modification of benzimidazoles mainly occurs on the benzimidazole skeleton (NI site) and the side chain of benzimidazole in the 2-C position (AD site). Herein, the recent progress in the research on benzamides PARP inhibitors was introduced. We noticed that even though many efforts were made to the modification of NI sites, there was still a lack of optimistic and impressive results. However, the structure-activity relationships of the modification of AD sites have not been thoroughly discovered yet. We hope that enlightened by the previous research, more research on AD sites should be carried out, and more effective benzimidazole PARP-1 inhibitors could be designed, synthesized, and applied to clinics.

Keywords: Benzimidazole, PARP-1 inhibitors, NI site, AD site, structure-activity relationship, enzyme activity.

Graphical Abstract

[1]
Vyas, S.; Chang, P. New PARP targets for cancer therapy. Nat. Rev. Cancer, 2014, 14(7), 502-509.
[http://dx.doi.org/10.1038/nrc3748] [PMID: 24898058]
[2]
Sukhanova, M.V.; Abrakhi, S.; Joshi, V.; Pastre, D.; Kutuzov, M.M.; Anarbaev, R.O.; Curmi, P.A.; Hamon, L.; Lavrik, O.I. Single molecu-le detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM ima-ging. Nucleic Acids Res., 2016, 44(6), e60.
[http://dx.doi.org/10.1093/nar/gkv1476] [PMID: 26673720]
[3]
Rouleau, M.; Patel, A.; Hendzel, M.J.; Kaufmann, S.H.; Poirier, G.G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer, 2010, 10(4), 293-301.
[http://dx.doi.org/10.1038/nrc2812] [PMID: 20200537]
[4]
Gibson, B.A.; Kraus, W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol., 2012, 13(7), 411-424.
[http://dx.doi.org/10.1038/nrm3376] [PMID: 22713970]
[5]
Son, D.I.; Hong, S.; Shin, K.S.; Kang, S.J. PARP-1 regulates mouse embryonic neural stem cell proliferation by regulating PDGFRα ex-pression. Biochem. Biophys. Res. Commun., 2020, 526(4), 986-992.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.166] [PMID: 32295715]
[6]
Wengner, A.M.; Scholz, A.; Haendler, B. Targeting DNA damage response in prostate and breast cancer. Int. J. Mol. Sci., 2020, 21(21), 8273.
[http://dx.doi.org/10.3390/ijms21218273] [PMID: 33158305]
[7]
Ménissier de Murcia, J.; Ricoul, M.; Tartier, L.; Niedergang, C.; Huber, A.; Dantzer, F.; Schreiber, V.; Amé, J.C.; Dierich, A.; LeMeur, M.; Sabatier, L.; Chambon, P.; de Murcia, G. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic de-velopment in mouse. EMBO J., 2003, 22(9), 2255-2263.
[http://dx.doi.org/10.1093/emboj/cdg206] [PMID: 12727891]
[8]
Haince, J.F.; McDonald, D.; Rodrigue, A.; Déry, U.; Masson, J.Y.; Hendzel, M.J.; Poirier, G.G. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem., 2008, 283(2), 1197-1208.
[http://dx.doi.org/10.1074/jbc.M706734200] [PMID: 18025084]
[9]
Langelier, M.F.; Planck, J.L.; Roy, S.; Pascal, J.M. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J. Biol. Chem., 2011, 286(12), 10690-10701.
[http://dx.doi.org/10.1074/jbc.M110.202507] [PMID: 21233213]
[10]
Lord, C.J.; Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. Science, 2017, 355(6330), 1152-1158.
[http://dx.doi.org/10.1126/science.aam7344] [PMID: 28302823]
[11]
Chiarugi, A. A snapshot of chemoresistance to PARP inhibitors. Trends Pharmacol. Sci., 2012, 33(1), 42-48.
[http://dx.doi.org/10.1016/j.tips.2011.10.001] [PMID: 22055391]
[12]
Turk, A.A.; Wisinski, K.B. PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside. Cancer, 2018, 124(12), 2498-2506.
[http://dx.doi.org/10.1002/cncr.31307] [PMID: 29660759]
[13]
Swindall, A.F.; Stanley, J.A.; Yang, E.S. PARP-1: Friend or foe of DNA damage and repair in tumorigenesis? Cancers (Basel), 2013, 5(3), 943-958.
[http://dx.doi.org/10.3390/cancers5030943] [PMID: 24202328]
[14]
Rose, M.; Burgess, J.T.; O’Byrne, K.; Richard, D.J.; Bolderson, E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front. Cell Dev. Biol., 2020, 8, 564601.
[http://dx.doi.org/10.3389/fcell.2020.564601] [PMID: 33015058]
[15]
Hopkins, T.A.; Shi, Y.; Rodriguez, L.E.; Solomon, L.R.; Donawho, C.K.; DiGiammarino, E.L.; Panchal, S.C.; Wilsbacher, J.L.; Gao, W.; Olson, A.M.; Stolarik, D.F.; Osterling, D.J.; Johnson, E.F.; Maag, D. Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors. MCR, 2015, 13(11), 1465-1477.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0191-T] [PMID: 26217019]
[16]
Zandarashvili, L.; Langelier, M.F.; Velagapudi, U.K.; Hancock, M.A.; Steffen, J.D.; Billur, R.; Hannan, Z.M.; Wicks, A.J.; Krastev, D.B.; Pettitt, S.J.; Lord, C.J.; Talele, T.T.; Pascal, J.M.; Black, B.E. Structural basis for allosteric PARP-1 retention on DNA breaks. Science, 2020, 368(6486), eaax6367.
[http://dx.doi.org/10.1126/science.aax6367] [PMID: 32241924]
[17]
Hanzlikova, H.; Kalasova, I.; Demin, A.A.; Pennicott, L.E.; Cihlarova, Z.; Caldecott, K.W. The importance of poly(ADP-Ribose) polyme-rase as a sensor of unligated okazaki fragments during DNA replication. Mol. Cell, 2018, 71(2), 319-331.e3.
[http://dx.doi.org/10.1016/j.molcel.2018.06.004] [PMID: 29983321]
[18]
Wang, Y.; Luo, W.; Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair (Amst.), 2019, 81, 102651.
[http://dx.doi.org/10.1016/j.dnarep.2019.102651] [PMID: 31302005]
[19]
Hu, Y.; Guo, M. Synthetic lethality strategies: Beyond BRCA1/2 mutations in pancreatic cancer. Cancer Sci., 2020, 111(9), 3111-3121.
[http://dx.doi.org/10.1111/cas.14565] [PMID: 32639661]
[20]
Lee, J.M.; Ledermann, J.A.; Kohn, E.C. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann. Oncol., 2014, 25(1), 32-40.
[http://dx.doi.org/10.1093/annonc/mdt384] [PMID: 24225019]
[21]
Poon, C.; Hyde, S.; Grant, P.; Newman, M.; Ireland Jenkin, K. Incidence and characteristics of unsuspected neoplasia discovered in high-risk women undergoing risk reductive bilateral salpingooophorectomy. Intl. J. Gynecol. Cancer Soc., 2016, 26(8), 1415-1420.
[22]
Olopade, O.I.; Artioli, G. Efficacy of risk-reducing salpingo-oophorectomy in women with BRCA-1 and BRCA-2 mutations. Breast J., 2004, 10(s1)(Suppl. 1), S5-S9.
[http://dx.doi.org/10.1111/j.1524-4741.2004.101S3.x] [PMID: 14984481]
[23]
Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.; Jackson, S.P.; Smith, G.C.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434(7035), 917-921.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[24]
Perini, V.; Schacke, M.; Liddle, P.; Vilchez-Larrea, S.; Keszenman, D.J.; Lafon-Hughes, L. PARP inhibitor olaparib causes no potentiation of the bleomycin effect in VERO cells, even in the presence of pooled ATM, DNA-PK, and LigIV inhibitors. Int. J. Mol. Sci., 2020, 21(21), E8288.
[http://dx.doi.org/10.3390/ijms21218288] [PMID: 33167404]
[25]
Turner, N.; Tutt, A.; Ashworth, A. Targeting the DNA repair defect of BRCA tumours. Curr. Opin. Pharmacol., 2005, 5(4), 388-393.
[http://dx.doi.org/10.1016/j.coph.2005.03.006] [PMID: 15955736]
[26]
Yang, Y.; Du, N.; Xie, L.; Jiang, J.; Mo, J.; Hong, J.; Mao, D.; Ng, D.M.; Shi, H. The efficacy and safety of the addition of poly ADP-ribose polymerase (PARP) inhibitors to therapy for ovarian cancer: A systematic review and meta-analysis. World J. Surg. Oncol., 2020, 18(1), 151.
[http://dx.doi.org/10.1186/s12957-020-01931-7] [PMID: 32622363]
[27]
Caruso, D.; Papa, A.; Tomao, S.; Vici, P.; Panici, P.B.; Tomao, F. Niraparib in ovarian cancer: Results to date and clinical potential. Ther. Adv. Med. Oncol., 2017, 9(9), 579-588.
[http://dx.doi.org/10.1177/1758834017718775] [PMID: 29081841]
[28]
Noordermeer, S.M.; van Attikum, H. PARP inhibitor resistance: A tug-of-war in BRCA-mutated cells. Trends Cell Biol., 2019, 29(10), 820-834.
[http://dx.doi.org/10.1016/j.tcb.2019.07.008] [PMID: 31421928]
[29]
Murai, J.; Huang, S.Y.; Das, B.B.; Renaud, A.; Zhang, Y.; Doroshow, J.H.; Ji, J.; Takeda, S.; Pommier, Y. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res., 2012, 72(21), 5588-5599.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2753] [PMID: 23118055]
[30]
Pommier, Y.; O’Connor, M.J.; de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med., 2016, 8(362), 362ps17.
[http://dx.doi.org/10.1126/scitranslmed.aaf9246] [PMID: 27797957]
[31]
O’Sullivan, C.C.; Moon, D.H.; Kohn, E.C.; Lee, J.M. Beyond breast and ovarian cancers: PARP inhibitors for BRCA mutation-associated and BRCA-like solid tumors. Front. Oncol., 2014, 4, 42.
[http://dx.doi.org/10.3389/fonc.2014.00042] [PMID: 24616882]
[32]
Pilié, P.G.; Gay, C.M.; Byers, L.A.; O’Connor, M.J.; Yap, T.A. PARP inhibitors: Extending benefit beyond BRCA-mutant cancers. Clin. Cancer Res., 2019, 25(13), 3759-3771.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0968] [PMID: 30760478]
[33]
Amé, J.C.; Spenlehauer, C.; de Murcia, G. The PARP superfamily. BioEssays, 2004, 26(8), 882-893.
[http://dx.doi.org/10.1002/bies.20085] [PMID: 15273990]
[34]
Huang, D.; Kim, D.S.; Kraus, W.L. Specific binding of snoRNAs to PARP-1 promotes NAD+-dependent catalytic activation. Biochemistry, 2020, 59(16), 1559-1564.
[http://dx.doi.org/10.1021/acs.biochem.0c00100] [PMID: 32293172]
[35]
Ruscetti, T.; Newman, J.; Peat, T.S.; Francis, J.; Nolan, R.; Terwilliger, T.C.; Peterson, S.R.; Lehnert, B.E. A nondenaturing purification scheme for the DNA-binding domain of poly(ADP-ribose) polymerase, a structure-specific DNA-binding protein. Protein Expr. Purif., 1998, 14(1), 79-86.
[http://dx.doi.org/10.1006/prep.1998.0919] [PMID: 9758754]
[36]
Thomas, C.; Ji, Y.; Wu, C.; Datz, H.; Boyle, C.; MacLeod, B.; Patel, S.; Ampofo, M.; Currie, M.; Harbin, J.; Pechenkina, K.; Lodhi, N.; Johnson, S.J.; Tulin, A.V. Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Proc. Natl. Acad. Sci. USA, 2019, 116(20), 9941-9946.
[http://dx.doi.org/10.1073/pnas.1901183116] [PMID: 31028139]
[37]
Zhou, J.; Ji, M.; Zhu, Z.; Cao, R.; Chen, X.; Xu, B. Discovery of 2-substituted 1H-benzo[d]immidazole-4-carboxamide derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors with in vivo anti-tumor activity. Eur. J. Med. Chem., 2017, 132, 26-41.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.013] [PMID: 28340412]
[38]
Hattori, K.; Kido, Y.; Yamamoto, H.; Ishida, J.; Kamijo, K.; Murano, K.; Ohkubo, M.; Kinoshita, T.; Iwashita, A.; Mihara, K.; Yamazaki, S.; Matsuoka, N.; Teramura, Y.; Miyake, H. Rational approaches to discovery of orally active and brain-penetrable quinazolinone inhibi-tors of poly(ADP-ribose)polymerase. J. Med. Chem., 2004, 47(17), 4151-4154.
[http://dx.doi.org/10.1021/jm0499256] [PMID: 15293985]
[39]
Chen, H.; Zeng, X.; Gao, C.; Ming, P.; Zhang, J.; Guo, C.; Zhou, L.; Lu, Y.; Wang, L.; Huang, L.; He, X.; Mei, L. A new arylbenzofuran derivative functions as an anti-tumour agent by inducing DNA damage and inhibiting PARP activity. Sci. Rep., 2015, 5(1), 10893.
[http://dx.doi.org/10.1038/srep10893] [PMID: 26041102]
[40]
Peralta-Leal, A.; Rodríguez-Vargas, J.M.; Aguilar-Quesada, R.; Rodríguez, M.I.; Linares, J.L.; de Almodóvar, M.R.; Oliver, F.J. PARP inhi-bitors: New partners in the therapy of cancer and inflammatory diseases. Free Radic. Biol. Med., 2009, 47(1), 13-26.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.04.008] [PMID: 19362586]
[41]
Damia, G.; D’Incalci, M. Targeting DNA repair as a promising approach in cancer therapy. Eur. J. Cancer, 2007, 43(12), 1791-1801.
[42]
Cepeda, V.; Fuertes, M.A.; Castilla, J.; Alonso, C.; Quevedo, C.; Soto, M.; Pérez, J.M. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibi-tors in cancer chemotherapy. Recent Patents Anticancer Drug Discov., 2006, 1(1), 39-53.
[http://dx.doi.org/10.2174/157489206775246430] [PMID: 18221025]
[43]
Nakagawa, K.; Utsunomiya, J.; Ishikawa, T. Inhibition of methylazoxymethanol acetate initiation of colon carcinogenesis in rats by treat-ment with the poly(ADP-ribose)polymerase inhibitor 3-aminobenzamide. Carcinogenesis, 1988, 9(7), 1167-1171.
[http://dx.doi.org/10.1093/carcin/9.7.1167] [PMID: 3133126]
[44]
Jagtap, P.G.; Southan, G.J.; Baloglu, E.; Ram, S.; Mabley, J.G.; Marton, A.; Salzman, A.; Szabó, C. The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1H-isoindol-1-ones: Potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett., 2004, 14(1), 81-85.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.007] [PMID: 14684303]
[45]
Li, J.H.; Zhang, J. PARP inhibitors. IDrugs, 2001, 4(7), 804-812.
[46]
Gandhi, V.B.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Park, C.; Giranda, V.L.; Penning, T.D.; Zhu, G.D. Discovery and SAR of substituted 3-oxoisoindoline-4-carboxamides as potent inhibitors of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg. Med. Chem. Lett., 2010, 20(3), 1023-1026.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.042] [PMID: 20045315]
[47]
Semionov, A.; Cournoyer, D.; Chow, T.Y. 1,5-Isoquinolinediol increases the frequency of gene targeting by homologous recombination in mouse fibroblasts. Biochem. Cell Biol., 2003, 81(1), 17-24.
[48]
Zeng, H.; Zhang, H.; Jang, F.; Zhao, L.; Zhang, J. Molecular modeling studies on benzimidazole carboxamide derivatives as PARP-1 inhi-bitors using 3D-QSAR and docking. Chem. Biol. Drug Des., 2011, 78(3), 333-352.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01139.x] [PMID: 21585709]
[49]
Almahli, H.; Hadchity, E.; Jaballah, M.Y.; Daher, R.; Ghabbour, H.A.; Kabil, M.M.; Al-Shakliah, N.S.; Eldehna, W.M. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer. Bioorg. Chem., 2018, 77, 443-456.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.034] [PMID: 29453076]
[50]
Zhou, J.; Ji, M.; Yao, H.; Cao, R.; Zhao, H.; Wang, X.; Chen, X.; Xu, B. Discovery of quinazoline-2,4(1H,3H)-dione derivatives as novel PARP-1/2 inhibitors: Design, synthesis and their antitumor activity. Org. Biomol. Chem., 2018, 16(17), 3189-3202.
[http://dx.doi.org/10.1039/C8OB00286J] [PMID: 29648554]
[51]
Calabrese, C.R.; Batey, M.A.; Thomas, H.D.; Durkacz, B.W.; Wang, L.Z.; Kyle, S.; Skalitzky, D.; Li, J.; Zhang, C.; Boritzki, T.; Maegley, K.; Calvert, A.H.; Hostomsky, Z.; Newell, D.R.; Curtin, N.J. Identification of potent nontoxic poly(ADP-Ribose) polymerase-1 inhibitors: Chemopotentiation and pharmacological studies. Clin. Cancer Res., 2003, 9(7), 2711-2718.
[PMID: 12855651]
[52]
Sonnenblick, A.; de Azambuja, E.; Azim, H.A., Jr; Piccart, M. An update on PARP inhibitors--moving to the adjuvant setting. Nat. Rev. Clin. Oncol., 2015, 12(1), 27-41.
[http://dx.doi.org/10.1038/nrclinonc.2014.163] [PMID: 25286972]
[53]
White, A.W.; Almassy, R.; Calvert, A.H.; Curtin, N.J.; Griffin, R.J.; Hostomsky, Z.; Maegley, K.; Newell, D.R.; Srinivasan, S.; Golding, B.T. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J. Med. Chem., 2000, 43(22), 4084-4097.
[http://dx.doi.org/10.1021/jm000950v] [PMID: 11063605]
[54]
Węsierska-Gądek, J.; Mauritz, M.; Mitulovic, G.; Cupo, M. Differential potential of pharmacological PARP inhibitors for inhibiting cell proliferation and inducing apoptosis in human breast cancer cells. J. Cell. Biochem., 2015, 116(12), 2824-2839.
[http://dx.doi.org/10.1002/jcb.25229] [PMID: 25981734]
[55]
Elmasry, G.F.; Aly, E.E.; Awadallah, F.M.; El-Moghazy, S.M. Design and synthesis of novel PARP-1 inhibitors based on pyridopyridazi-none scaffold. Bioorg. Chem., 2019, 87, 655-666.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.068] [PMID: 30952061]
[56]
Mittica, G.; Ghisoni, E.; Giannone, G.; Genta, S.; Aglietta, M.; Sapino, A.; Valabrega, G. PARP inhibitors in ovarian cancer. Recent Patents Anticancer Drug Discov., 2018, 13(4), 392-410.
[http://dx.doi.org/10.2174/1574892813666180305165256] [PMID: 29512470]
[57]
Mirza, M.R.; Coleman, R.L.; González-Martín, A.; Moore, K.N.; Colombo, N.; Ray-Coquard, I.; Pignata, S. The forefront of ovarian cancer therapy: Update on PARP inhibitors. Ann. Oncol., 2020, 31(9), 1148-1159.
[http://dx.doi.org/10.1016/j.annonc.2020.06.004] [PMID: 32569725]
[58]
Claussen, C.; Rody, A.; Hanker, L. Treatment of recurrent epithelial ovarian cancer. Geburtshilfe Frauenheilkd., 2020, 80(12), 1195-1204.
[http://dx.doi.org/10.1055/a-1128-0280] [PMID: 33293727]
[59]
Basu, B.; Sandhu, S.K.; de Bono, J.S. PARP inhibitors: Mechanism of action and their potential role in the prevention and treatment of cancer. Drugs, 2012, 72(12), 1579-1590.
[http://dx.doi.org/10.2165/11635510-000000000-00000] [PMID: 22834679]
[60]
Nur Husna, S.M.; Tan, H.T.; Mohamud, R.; Dyhl-Polk, A.; Wong, K.K. Inhibitors targeting CDK4/6, PARP and PI3K in breast cancer: A review. Ther. Adv. Med. Oncol., 2018, 10, 1758835918808509.
[http://dx.doi.org/10.1177/1758835918808509] [PMID: 30542378]
[61]
Schram, A.M.; Aghajanian, C.A.; Hyman, D.M. Niraparib in recurrent ovarian cancer. N. Engl. J. Med., 2017, 376(8), 801-802.
[http://dx.doi.org/10.1056/NEJMc1616633] [PMID: 28229583]
[62]
Kerliu, L.; Myruski, S.; Bhatti, A.; Soni, P.; Petrosius, P.; Pervanas, H.C.; Horton, E.R. Niraparib for the treatment of recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer. Ann. Pharmacother., 2020, 54(10), 1010-1015.
[http://dx.doi.org/10.1177/1060028020912749] [PMID: 32172572]
[63]
Moore, K.; Chan, J.K.; Secord, A.A.; Patel, M.R.; Callahan, T.; Guo, W.; Zhang, Z.Y. Effect of niraparib on cardiac repolarization in pa-tients with platinum-sensitive, recurrent epithelial ovarian, fallopian tube, and primary peritoneal cancer. Cancer Chemother. Pharmacol., 2019, 83(4), 717-726.
[http://dx.doi.org/10.1007/s00280-019-03774-w] [PMID: 30680521]
[64]
Jones, P.; Wilcoxen, K.; Rowley, M.; Toniatti, C. Niraparib: A poly(ADP-ribose) polymerase (PARP) inhibitor for the treatment of tumors with defective homologous recombination. J. Med. Chem., 2015, 58(8), 3302-3314.
[http://dx.doi.org/10.1021/jm5018237] [PMID: 25761096]
[65]
Boussios, S.; Karihtala, P.; Moschetta, M.; Abson, C.; Karathanasi, A.; Zakynthinakis-Kyriakou, N.; Ryan, J.E.; Sheriff, M.; Rassy, E.; Pavlidis, N. Veliparib in ovarian cancer: A new synthetically lethal therapeutic approach. Invest. New Drugs, 2020, 38(1), 181-193.
[http://dx.doi.org/10.1007/s10637-019-00867-4] [PMID: 31650446]
[66]
O’Reilly, E.M.; Lee, J.W.; Lowery, M.A.; Capanu, M.; Stadler, Z.K.; Moore, M.J.; Dhani, N.; Kindler, H.L.; Estrella, H.; Maynard, H.; Golan, T.; Segal, A.; Salo-Mullen, E.E.; Yu, K.H.; Epstein, A.S.; Segal, M.; Brenner, R.; Do, R.K.; Chen, A.P.; Tang, L.H.; Kelsen, D.P. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer, 2018, 124(7), 1374-1382.
[http://dx.doi.org/10.1002/cncr.31218] [PMID: 29338080]
[67]
Loibl, S.; O’Shaughnessy, J.; Untch, M.; Sikov, W.M.; Rugo, H.S.; McKee, M.D.; Huober, J.; Golshan, M.; von Minckwitz, G.; Maag, D.; Sullivan, D.; Wolmark, N.; McIntyre, K.; Ponce Lorenzo, J.J.; Metzger Filho, O.; Rastogi, P.; Symmans, W.F.; Liu, X.; Geyer, C.E., Jr Ad-dition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): A randomised, phase 3 trial. Lancet Oncol., 2018, 19(4), 497-509.
[http://dx.doi.org/10.1016/S1470-2045(18)30111-6] [PMID: 29501363]
[68]
Gray, H.J.; Bell-McGuinn, K.; Fleming, G.F.; Cristea, M.; Xiong, H.; Sullivan, D.; Luo, Y.; McKee, M.D.; Munasinghe, W.; Martin, L.P. Phase I combination study of the PARP inhibitor veliparib plus carboplatin and gemcitabine in patients with advanced ovarian cancer and other solid malignancies. Gynecol. Oncol., 2018, 148(3), 507-514.
[http://dx.doi.org/10.1016/j.ygyno.2017.12.029] [PMID: 29352572]
[69]
Mizugaki, H.; Yamamoto, N.; Nokihara, H.; Fujiwara, Y.; Horinouchi, H.; Kanda, S.; Kitazono, S.; Yagishita, S.; Xiong, H.; Qian, J.; Hashiba, H.; Shepherd, S.P.; Giranda, V.; Tamura, T. A phase 1 study evaluating the pharmacokinetics and preliminary efficacy of velipa-rib (ABT-888) in combination with carboplatin/paclitaxel in Japanese subjects with non-small cell lung cancer (NSCLC). Cancer Chemother. Pharmacol., 2015, 76(5), 1063-1072.
[http://dx.doi.org/10.1007/s00280-015-2876-7] [PMID: 26433581]
[70]
Penning, T.D.; Zhu, G.D.; Gandhi, V.B.; Gong, J.; Thomas, S.; Lubisch, W.; Grandel, R.; Wernet, W.; Park, C.H.; Fry, E.H.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Donawho, C.K.; Frost, D.J.; Bontcheva-Diaz, V.; Bouska, J.J.; Olson, A.M.; Marsh, K.C.; Luo, Y.; Ro-senberg, S.H.; Giranda, V.L. Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: A potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg. Med. Chem., 2008, 16(14), 6965-6975.
[http://dx.doi.org/10.1016/j.bmc.2008.05.044] [PMID: 18541433]
[71]
Wang, J.; Wang, X.; Li, H.; Ji, D.; Li, Y.; Xu, Y.; Zhu, Q. Design, synthesis and biological evaluation of novel 5-fluoro-1H-benzimidazole-4-carboxamide derivatives as potent PARP-1 inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(16), 4127-4132.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.045] [PMID: 27353531]
[72]
Li, X.; Delzer, J.; Voorman, R.; de Morais, S.M.; Lao, Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab. Dispos., 2011, 39(7), 1161-1169.
[http://dx.doi.org/10.1124/dmd.110.037820] [PMID: 21436403]
[73]
Penning, T.D.; Zhu, G.D.; Gandhi, V.B.; Gong, J.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Donawho, C.K.; Frost, D.J.; Bontcheva-Diaz, V.; Bouska, J.J.; Osterling, D.J.; Olson, A.M.; Marsh, K.C.; Luo, Y.; Giranda, V.L. Discovery of the Poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J. Med. Chem., 2009, 52(2), 514-523.
[http://dx.doi.org/10.1021/jm801171j] [PMID: 19143569]
[74]
Penning, T.D.; Zhu, G.D.; Gong, J.; Thomas, S.; Gandhi, V.B.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Park, C.H.; Fry, E.H.; Do-nawho, C.K.; Frost, D.J.; Buchanan, F.G.; Bukofzer, G.T.; Rodriguez, L.E.; Bontcheva-Diaz, V.; Bouska, J.J.; Osterling, D.J.; Olson, A.M.; Marsh, K.C.; Luo, Y.; Giranda, V.L. Optimization of phenyl-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase inhibi-tors: identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a highly potent and effi-cacious inhibitor. J. Med. Chem., 2010, 53(8), 3142-3153.
[http://dx.doi.org/10.1021/jm901775y] [PMID: 20337371]
[75]
Chen, X.; Huan, X.; Liu, Q.; Wang, Y.; He, Q.; Tan, C.; Chen, Y.; Ding, J.; Xu, Y.; Miao, Z.; Yang, C. Design and synthesis of 2-(4,5,6,7-tetrahydrothienopyridin-2-yl)-benzoimidazole carboxamides as novel orally efficacious Poly(ADP-ribose)polymerase (PARP) inhibitors. Eur. J. Med. Chem., 2018, 145, 389-403.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.018] [PMID: 29335205]
[76]
Tong, Y.; Bouska, J.J.; Ellis, P.A.; Johnson, E.F.; Leverson, J.; Liu, X.; Marcotte, P.A.; Olson, A.M.; Osterling, D.J.; Przytulinska, M.; Rodriguez, L.E.; Shi, Y.; Soni, N.; Stavropoulos, J.; Thomas, S.; Donawho, C.K.; Frost, D.J.; Luo, Y.; Giranda, V.L.; Penning, T.D. Synt-hesis and evaluation of a new generation of orally efficacious benzimidazole-based poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors as anticancer agents. J. Med. Chem., 2009, 52(21), 6803-6813.
[http://dx.doi.org/10.1021/jm900697r] [PMID: 19888760]
[77]
Zhou, D.; Chu, W.; Xu, J.; Jones, L.A.; Peng, X.; Li, S.; Chen, D.L.; Mach, R.H. Synthesis, [18F] radiolabeling, and evaluation of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors for in vivo imaging of PARP-1 using positron emission tomography. Bioorg. Med. Chem., 2014, 22(5), 1700-1707.
[http://dx.doi.org/10.1016/j.bmc.2014.01.019] [PMID: 24503274]
[78]
Zhong, Y.; Meng, Y.; Xu, X.; Zhao, L.; Li, Z.; You, Q.; Bian, J. Design, synthesis and evaluation of phthalazinone thiohydantoin-based derivative as potent PARP-1 inhibitors. Bioorg. Chem., 2019, 91, 103181.
[http://dx.doi.org/10.1016/j.bioorg.2019.103181] [PMID: 31404795]
[79]
Min, R.; Wu, W.; Wang, M.; Tang, L.; Chen, D.; Zhao, H.; Zhang, C.; Jiang, Y. Discovery of 2-(1-(3-(4-chloroxyphenyl)-3-oxo- pro-pyl)pyrrolidine-3-yl)-1H-benzo[d]imidazole-4-carboxamide: A potent poly(ADP-ribose) polymerase (PARP) inhibitor for treatment of cancer. Molecules, 2019, 24(10), E1901.
[http://dx.doi.org/10.3390/molecules24101901] [PMID: 31108884]
[80]
Gurkan-Alp, A.S.; Alp, M.; Karabay, A.Z.; Koc, A.; Buyukbingol, E. Synthesis of some benzimidazole-derived molecules and their effects on PARP-1 activity and MDA-MB-231, MDA-MB-436, MDA-MB-468 breast cancer cell viability. Anticancer. Agents Med. Chem., 2020, 20(14), 1728-1738.
[http://dx.doi.org/10.2174/1871520620666200502001953] [PMID: 32357823]
[81]
Chen, M.; Huang, H.; Wu, K.; Liu, Y.; Jiang, L.; Li, Y.; Tang, G.; Peng, J.; Cao, X. Synthesis and evaluation of 2-(4-[4-acetylpiperazine-1-carbonyl] phenyl)-1H-benzo[d]imidazole-4-carboxamide derivatives as potential PARP-1 inhibitors and preliminary study on structure-activity relationship. Drug Dev. Res., 2021, 72(6), 1-9.
[http://dx.doi.org/10.1002/ddr.21843] [PMID: 34151456]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy