Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Systematic Review Article

Radioprotective Mechanisms of Arbutin: A Systematic Review

Author(s): Shima Sadeghinezhad, Ehsan Khodamoradi*, Loghman Diojan, Shahram Taeb and Masoud Najafi

Volume 14, Issue 2, 2022

Published on: 27 April, 2022

Page: [132 - 138] Pages: 7

DOI: 10.2174/2589977514666220321114415

Price: $65

Abstract

Purpose: Efforts to produce radioprotective agents of high potential are appropriate strategies for overcoming possible IR toxicity in organisms. The present research aims to evaluate the signaling pathways and mechanisms through which arbutin exerts radioprotective effects on organisms.

Methods: The databases of PubMed, Web of Sciences, Google Scholar, and Scopus were searched to find studies that reported radioprotective effects for arbutin. Besides, the data were searched within the time period from 2010 to 2020.

Results: Five research articles met our criteria, which were included in the analysis based on their relevance to the topic. The present systematic review provides conclusions about various mechanisms and pathways through which arbutin induces radioprotection.

Conclusions: Based on the relevant studies, various mechanisms can be proposed for inducing radioprotective effects by arbutin, including inhibition of oxidative stress, apoptosis, and inflammation.

Keywords: Arbutin, radioprotection, systematic review, ionizing radiation, oxidative stress, apoptosis.

Graphical Abstract

[1]
Musa AE, Omyan G, Esmaely F, Shabeeb D. Radioprotective effect of hesperidin: a systematic review. Medicina (Kaunas) 2019; 55(7): 370.
[http://dx.doi.org/10.3390/medicina55070370] [PMID: 31336963]
[2]
Johnke RM, Sattler JA, Allison RR. Radioprotective agents for radiation therapy: Future trends. Future Oncol 2014; 10(15): 2345-57.
[http://dx.doi.org/10.2217/fon.14.175] [PMID: 25525844]
[3]
Prasad KN, Cole WC, Hasse GM. Health risks of low dose ionizing radiation in humans: A review. Exp Biol Med (Maywood) 2004; 229(5): 378-82.
[http://dx.doi.org/10.1177/153537020422900505] [PMID: 15096649]
[4]
Bhattacharya S, Asaithamby A. Seminars in cell & developmental biology. Elsevier 2016; Vol. 58: pp. 14-25.
[5]
Wang H, Mu X, He H, Zhang X-D. Cancer radiosensitizers. Trends Pharmacol Sci 2018; 39(1): 24-48.
[http://dx.doi.org/10.1016/j.tips.2017.11.003] [PMID: 29224916]
[6]
Rosen EM, Day R, Singh VK. New approaches to radiation protection. Front Oncol 2015; 4: 381.
[http://dx.doi.org/10.3389/fonc.2014.00381] [PMID: 25653923]
[7]
Hosseinimehr SJ, Nemati A. Radioprotective effects of hesperidin against gamma irradiation in mouse bone marrow cells. Br J Radiol 2006; 79(941): 415-8.
[http://dx.doi.org/10.1259/bjr/40692384] [PMID: 16632622]
[8]
Shaban NZ, Ahmed Zahran AM, El-Rashidy FH, Abdo Kodous AS. Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis. J Biol Res (Thessalon) 2017; 24(1): 5.
[http://dx.doi.org/10.1186/s40709-017-0059-x] [PMID: 28265554]
[9]
Li J, Feng L, Xing Y, et al. Radioprotective and antioxidant effect of resveratrol in hippocampus by activating Sirt1. Int J Mol Sci 2014; 15(4): 5928-39.
[http://dx.doi.org/10.3390/ijms15045928] [PMID: 24722566]
[10]
Song L, Ma L, Cong F, et al. Radioprotective effects of genistein on HL-7702 cells via the inhibition of apoptosis and DNA damage. Cancer Lett 2015; 366(1): 100-11.
[http://dx.doi.org/10.1016/j.canlet.2015.06.008] [PMID: 26095601]
[11]
Kolivand S, Amini P, Saffar H, et al. Evaluating the radioprotective effect of curcumin on rat’s heart tissues. Curr Radiopharm 2019; 12(1): 23-8.
[http://dx.doi.org/10.2174/1874471011666180831101459] [PMID: 30173659]
[12]
Patil SL, Mallaiah SH, Patil RK. Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation. J Med Phys 2013; 38(2): 87-92.
[http://dx.doi.org/10.4103/0971-6203.111321] [PMID: 23776312]
[13]
Bansal P, Paul P, Kunwar A, et al. Radioprotection by quercetin-3-O-rutinoside, a flavonoid glycoside-A cellular and mechanistic ap-proach. J Funct Foods 2012; 4(4): 924-32.
[http://dx.doi.org/10.1016/j.jff.2012.06.010]
[14]
Karpiński TM, Adamczak A, Ożarowski M. Radioprotective effects of plants from the lamiaceae family. Anticancer Agents Med Chem 2020; 20.
[http://dx.doi.org/10.2174/1871520620666201029120147] [PMID: 33121420]
[15]
Braga VCC, Pianetti GA, César IC. Comparative stability of arbutin in Arctostaphylos uva-ursi by a new comprehensive stability-indicating HPLC method. Phytochem Anal 2020; 31(6): 884-91.
[http://dx.doi.org/10.1002/pca.2953] [PMID: 32495959]
[16]
Hu Z-M, Zhou Q, Lei T-C, Ding S-F, Xu S-Z. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: Biosafety as skin whitening agents. J Dermatol Sci 2009; 55(3): 179-84.
[http://dx.doi.org/10.1016/j.jdermsci.2009.06.003] [PMID: 19574027]
[17]
Lin Y-H, Yang Y-H, Wu S-M. Experimental design and capillary electrophoresis for simultaneous analysis of arbutin, kojic acid and hy-droquinone in cosmetics. J Pharm Biomed Anal 2007; 44(1): 279-82.
[http://dx.doi.org/10.1016/j.jpba.2007.02.004] [PMID: 17367975]
[18]
Lim Y-J, Lee EH, Kang TH, et al. Inhibitory effects of arbutin on melanin biosynthesis of α-melanocyte stimulating hormone-induced hyperpigmentation in cultured brownish guinea pig skin tissues. Arch Pharm Res 2009; 32(3): 367-73.
[http://dx.doi.org/10.1007/s12272-009-1309-8] [PMID: 19387580]
[19]
Farzanegi P. The effects of aerobic training and arbutin on GLP1 and GLP1R in diabetes Rats. Indian J Fundam Appl Life Sci 2014; 4: 2231-6345.
[20]
Li H, Jeong Y-M, Kim SY, Kim M-K, Kim D-S. Arbutin inhibits TCCSUP human bladder cancer cell proliferation via up-regulation of p21. Pharmazie 2011; 66(4): 306-9.
[PMID: 21612160]
[21]
Nalban N, Sangaraju R, Alavala S, Mir SM, Jerald MK, Sistla R. Arbutin attenuates isoproterenol-induced cardiac hypertrophy by inhibit-ing TLR-4/NF-κB pathway in mice. Cardiovasc Toxicol 2019; 20(2): 1-14.
[22]
Dadgar M, Pouramir M, Dastan Z, et al. Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease. Avicenna J Phytomed 2018; 8(6): 533-42.
[PMID: 30456201]
[23]
Takebayashi J, Ishii R, Chen J, Matsumoto T, Ishimi Y, Tai A. Reassessment of antioxidant activity of arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radic Res 2010; 44(4): 473-8.
[http://dx.doi.org/10.3109/10715761003610760] [PMID: 20166881]
[24]
Lee H-J, Kim K-W. Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflamm Res 2012; 61(8): 817-25.
[http://dx.doi.org/10.1007/s00011-012-0474-2] [PMID: 22487852]
[25]
Wu L-H, Li P, Zhao Q-L, et al. Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lym-phoma U937 cells. Apoptosis 2014; 19(11): 1654-63.
[http://dx.doi.org/10.1007/s10495-014-1032-x] [PMID: 25187044]
[26]
Jahanbani S, Rezaeyan A, Ghaffari H, et al. Investigation of the radioprotective effect of arbutin on radiation-induced lung injury in rats: A histopathological study. International Journal of Radiation Research 2020; 18(3): 413-20.
[27]
Migas P, Krauze-Baranowska M. The significance of arbutin and its derivatives in therapy and cosmetics. Phytochem Lett 2015; 13: 35-40.
[http://dx.doi.org/10.1016/j.phytol.2015.05.015]
[28]
Hosseinimehr SJ. Trends in the development of radioprotective agents. Drug Discov Today 2007; 12(19-20): 794-805.
[http://dx.doi.org/10.1016/j.drudis.2007.07.017] [PMID: 17933679]
[29]
Nadi S, Elahi M, Moradi S, Banaei A. Ataei Gh, Abedi-Firouzjah R. Radioprotective effect of arbutin in megavoltage therapeutic X-irradiated mice using liver enzymes assessment. J Biomed Phys Eng 2019; 9(5): 533-40.
[PMID: 31750267]
[30]
Nadi S, Monfared AS, Mozdarani H, Mahmodzade A, Pouramir M. Effects of arbutin on radiation-induced micronuclei in mice bone mar-row cells and its definite dose reduction factor. Iran J Med Sci 2016; 41(3): 180-5.
[PMID: 27217601]
[31]
Nadi S, Banaei A, Mozdarani H, Monfared AS, Ataei G, Abedi-Firouzjah R. Evaluating the radioprotective effect of arbutin on mice ex-posed to megavoltage X-rays based on hematological parameters and lymphocytes micronucleus assay. International Journal of Radiation Research 2020; 18(2): 275-82.
[PMID: 32052042]
[32]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxidative medicine and cellular longevity 2017; 2017.
[http://dx.doi.org/10.1155/2017/8416763]
[33]
Mazat J-P, Devin A, Ransac S. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 2020; 77(3): 455-65.
[http://dx.doi.org/10.1007/s00018-019-03381-1] [PMID: 31748915]
[34]
Yue Z, Zhang X, Yu Q, Liu L, Zhou X. Cytochrome P450-dependent reactive oxygen species (ROS) production contributes to Mn3O4 nanoparticle-caused liver injury. RSC Advances 2018; 8(65): 37307-14.
[http://dx.doi.org/10.1039/C8RA05633A]
[35]
Wei J, Wang B, Wang H, et al. Radiation-induced normal tissue damage: oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/3010342]
[36]
Leach JK, Van Tuyle G, Lin P-S, Schmidt-Ullrich R, Mikkelsen RB. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 2001; 61(10): 3894-901.
[PMID: 11358802]
[37]
Nuszkiewicz J. Woźniak A, Szewczyk-Golec K. Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D. Int J Mol Sci 2020; 21(16): 5804.
[http://dx.doi.org/10.3390/ijms21165804] [PMID: 32823530]
[38]
Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012; 2012: 1-12.
[http://dx.doi.org/10.1155/2012/217037]
[39]
Sage E, Shikazono N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic Biol Med 2017; 107: 125-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.008] [PMID: 27939934]
[40]
Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-induced cardiovascular disease: mechanisms and importance of linear energy transfer. Front Cardiovasc Med 2018; 5: 5.
[http://dx.doi.org/10.3389/fcvm.2018.00005] [PMID: 29445728]
[41]
Azmoonfar R, Amini P, Saffar H, et al. Celecoxib a selective Cox-2 inhibitor mitigates fibrosis but not pneumonitis following lung irradia-tion: A histopathological study. Curr Drug Ther 2020; 15(4): 351-7.
[http://dx.doi.org/10.2174/1574885514666191119124739]
[42]
Azmoonfar R, Amini P, Saffar H, et al. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv Pharm Bull 2018; 8(4): 697-704.
[http://dx.doi.org/10.15171/apb.2018.078] [PMID: 30607342]
[43]
Farhood B, Hassanzadeh G, Amini P, et al. Mitigation of radiation-induced gastrointestinal system injury using resveratrol or alpha-lipoic acid: A pilot histopathological study. Antiinflamm Antiallergy Agents Med Chem 2020; 19(4): 413-24.
[http://dx.doi.org/10.2174/1871523018666191111124028] [PMID: 31713500]
[44]
Azmoonfar R, Amini P, Yahyapour R, et al. Mitigation of radiation-induced pneumonitis and lung fibrosis using alpha-lipoic acid and resveratrol. Antiinflamm Antiallergy Agents Med Chem 2020; 19(2): 149-57.
[http://dx.doi.org/10.2174/1871523018666190319144020] [PMID: 30892165]
[45]
Sueishi Y, Fujii T, Nii R. Free-radical scavenging activity of radioprotectors: comparison between clinically used radioprotectors and natu-ral antioxidants. J Radioanal Nucl Chem 2020; 325(2): 695-700.
[http://dx.doi.org/10.1007/s10967-020-07258-7]
[46]
Cao X, Wen P, Fu Y, et al. Radiation induces apoptosis primarily through the intrinsic pathway in mammalian cells. Cell Signal 2019; 62109337.
[http://dx.doi.org/10.1016/j.cellsig.2019.06.002] [PMID: 31173879]
[47]
Eum K-H, Lee M. Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol Cell Biochem 2011; 348(1-2): 61-8.
[http://dx.doi.org/10.1007/s11010-010-0638-8] [PMID: 21069434]
[48]
Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, et al. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res 2020; 155104745.
[http://dx.doi.org/10.1016/j.phrs.2020.104745] [PMID: 32145401]
[49]
Green DR. Apoptotic pathways: The roads to ruin. Cell 1998; 94(6): 695-8.
[http://dx.doi.org/10.1016/S0092-8674(00)81728-6] [PMID: 9753316]
[50]
Hajnóczky G, Csordás G, Das S, et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006; 40(5-6): 553-60.
[http://dx.doi.org/10.1016/j.ceca.2006.08.016] [PMID: 17074387]
[51]
McBride HM, Neuspiel M, Wasiak S. Mitochondria: More than just a powerhouse. Curr Biol 2006; 16(14): R551-60.
[http://dx.doi.org/10.1016/j.cub.2006.06.054] [PMID: 16860735]
[52]
Ho S-Y, Wu W-J, Chiu H-W, et al. Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS genera-tion and regulation of JNK and p38 MAPK signaling pathways. Chem Biol Interact 2011; 193(2): 162-71.
[http://dx.doi.org/10.1016/j.cbi.2011.06.007] [PMID: 21741957]
[53]
Braicu C, Buse M, Busuioc C, et al. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers (Basel) 2019; 11(10): 1618.
[http://dx.doi.org/10.3390/cancers11101618] [PMID: 31652660]
[54]
Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004; 23(16): 2838-49.
[http://dx.doi.org/10.1038/sj.onc.1207556] [PMID: 15077147]
[55]
Maroni P, Bendinelli P, Tiberio L, Rovetta F, Piccoletti R, Schiaffonati L. In vivo heat-shock response in the brain: signalling pathway and transcription factor activation. Brain Res Mol Brain Res 2003; 119(1): 90-9.
[http://dx.doi.org/10.1016/j.molbrainres.2003.08.018] [PMID: 14597233]
[56]
Zuo G, Ren X, Qian X, et al. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. J Cell Physiol 2019; 234(2): 1925-36.
[http://dx.doi.org/10.1002/jcp.27070] [PMID: 30067872]
[57]
Farhood B, Ashrafizadeh M, Khodamoradi E, et al. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci 2020; 250117570.
[http://dx.doi.org/10.1016/j.lfs.2020.117570] [PMID: 32205088]
[58]
Mazière C, Conte M-A, Leborgne L, et al. UVA radiation stimulates ceramide production: relationship to oxidative stress and potential role in ERK, JNK, and p38 activation. Biochem Biophys Res Commun 2001; 281(2): 289-94.
[http://dx.doi.org/10.1006/bbrc.2001.4348] [PMID: 11181043]
[59]
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, et al. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77(16): 3129-59.
[http://dx.doi.org/10.1007/s00018-020-03479-x] [PMID: 32072238]
[60]
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-51.
[http://dx.doi.org/10.1038/onc.2008.301] [PMID: 18931691]
[61]
Fleming Y, Armstrong CG, Morrice N, Paterson A, Goedert M, Cohen P. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochem J 2000; 352(Pt 1): 145-54.
[http://dx.doi.org/10.1042/bj3520145] [PMID: 11062067]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy