Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Solid Lipid Nanoparticles: Peculiar Strategy to Deliver Bio-Proactive Molecules

Author(s): Neha Minocha, Nidhi Sharma, Ravinder Verma, Deepak Kaushik and Parijat Pandey*

Volume 17, Issue 3, 2023

Published on: 14 June, 2022

Page: [228 - 242] Pages: 15

DOI: 10.2174/1872210516666220317143351

Price: $65

Abstract

Background: Novel Drug Delivery Systems (NDDS) provide numerous benefits compared to conventional dosage forms. Poor aqueous solubility, low bioavailability, frequent dosing, and particular hydrophilic lipophilic character of the drug are the biological factors associated with the traditional systems leading to the development of SLNs.

Objective: For improving the solubility profile, enhancing the bioavailability, and attaining the best possible therapeutic effect of lipid inclined or aqueous inclined drug, formulating solid lipid nanoparticles is the best choice.

Methods: Solid Lipid Nanoparticles (SLNs) have been projected as a colloidal carrier system with a size of 50–1,000 nm, collectively combining the benefits of other colloidal systems like liposomes, emulsions, etc., for delivering the drug at the target site. High absorption, high stability, and efficient drug packing enhance the pharmacokinetic and pharmacodynamic properties of the packed drug.

Result: Solid Lipid Nanoparticles can be developed in different dosage forms and administered via routes such as nasal, rectal, oral, topical, vaginal, ocular, and parenteral. They have higher physicochemical stability and the batch size can be easily scaled up at a low cost. Lipophilic as well as hydrophilic drugs can be easily incorporated into solid lipid nanoparticles.

Conclusion: In this manuscript, the authors have reviewed different aspects of solid lipid nanoparticles, major principles behind mechanism methods, recent patents, applications, and therapeutic potentials of solid lipid nanoparticles.

Keywords: Solid lipid nanoparticles, patents, nanotechnology, nanocarriers, drug targeting, drug carriers, nanoformulations.

[1]
Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 2009; 29(1): 196-212.
[http://dx.doi.org/10.1002/med.20140] [PMID: 18958847]
[2]
Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int J Nanomedicine 2014; 9: 1-15.
[PMID: 24363556]
[3]
Thassu D, Deleers M, Pathak Y. Nanoparticulate drug-delivery systems: An overview. Drug Dev Ind Pharm 2008; 34(1): 1-31.
[4]
Siwach R, Pandey P, Chawla V, Dureja H. Role of nanotechnology in diabetic management. Recent Pat Nanotechnol 2019; 13(1): 28-37.
[http://dx.doi.org/10.2174/1872210513666190104122032] [PMID: 30608045]
[5]
Santos FK, Oyafuso MH, Kiill CP, et al. Nanotechnology-based drug delivery systems for treatment of hyperproliferative skin diseases – a review. Curr Nanosci 2013; 9(1): 159-67.
[6]
Purohit D, Manchanda D, Makhija M, et al. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Pat Nanotechnol 2021; 15(1): 15-34.
[http://dx.doi.org/10.2174/1872210514666200909154409] [PMID: 32912128]
[7]
Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci 2010; 99(6): 2557-75.
[http://dx.doi.org/10.1002/jps.22054] [PMID: 20049941]
[8]
Bandawane A, Saudagar R. A review on novel drug delivery system: A recent trend. J Drug Deliv Ther 2019; 9(3): 517-21.
[9]
Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 2019: 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[10]
Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol 2019; 47(1): 524-39.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[11]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[12]
Pandey P, Purohit D, Dureja H. Nanosponges -A promising novel drug delivery system. Recent Pat Nanotechnol 2018; 12(3): 180-91.
[http://dx.doi.org/10.2174/1872210512666180925102842] [PMID: 30251614]
[13]
Lipinski CA. Avoiding investment in doomed drugs. Curr Drug Discov 2001; 1: 17-9.
[14]
Lipinski CA. Poor aqueous solubility-An industry wide problem in ADME screening. Am Pharm Rev 2002; 5(3): 82-5.
[15]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[16]
Ravichandran R. Nanotechnology-based drug delivery systems. NanoBiotechnology 2009; 5(1-4): 17-23.
[http://dx.doi.org/10.1007/s12030-009-9028-2]
[17]
Xiaohui P, Jin S, Zhonggui H. Formulation of nanosuspensions as a new approach for the delivery of poorly soluble drugs. Curr Nanosci 2009; 5(4): 417-25.
[http://dx.doi.org/10.2174/157341309789378177]
[18]
Sri KV, Kondaiah A, Ratna JV, Annapurna A. Preparation and characterization of quercetin and rutin cyclodextrin inclusion complexes. Drug Dev Ind Pharm 2007; 33(3): 245-53.
[http://dx.doi.org/10.1080/03639040601150195] [PMID: 17454057]
[19]
Karavas E, Georgarakis E, Sigalas MP, Avgoustakis K, Bikiaris D. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions. Eur J Pharm Biopharm 2007; 66(3): 334-47.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.020] [PMID: 17267194]
[20]
Pehlivan SB. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm Res 2013; 30(10): 2499-511.
[http://dx.doi.org/10.1007/s11095-013-1156-7] [PMID: 23959851]
[21]
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2(1): 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[22]
Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci 2017; 7(1-2): 47-57.
[http://dx.doi.org/10.1007/s13204-017-0547-1]
[23]
Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 2017; 68: 1-11.
[http://dx.doi.org/10.1016/j.plipres.2017.07.001] [PMID: 28778472]
[24]
Martins S, Costa-Lima S, Carneiro T, Cordeiro-da-Silva A, Souto EB, Ferreira DC. Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway. Int J Pharm 2012; 430(1-2): 216-27.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.032] [PMID: 22465548]
[25]
Zorzi GK, Carvalho ELS, Poser GLV, et al. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev Bras Farmacogn 2015; 25(4): 426-36.
[http://dx.doi.org/10.1016/j.bjp.2015.07.015]
[26]
Nayak SN, Zhu H, Varghese N, et al. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 2010; 120(7): 1415-41.
[http://dx.doi.org/10.1007/s00122-010-1265-1] [PMID: 20098978]
[27]
Abdel-Mottaleb MM, Neumann D, Lamprecht A. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm 2011; 79(1): 36-42.
[http://dx.doi.org/10.1016/j.ejpb.2011.04.009] [PMID: 21558002]
[28]
Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300.
[PMID: 18019829]
[29]
Cassano R, Trombino S. Solid lipid nanoparticles based on L-cysteine for progesterone intravaginal delivery. Int J Polym Sci 2019; 1: 1-10.
[http://dx.doi.org/10.1155/2019/8690145]
[30]
Bucolo C, Drago F, Salomone S. Ocular drug delivery: A clue from nanotechnology. Front Pharmacol 2012; 3: 188-203.
[http://dx.doi.org/10.3389/fphar.2012.00188] [PMID: 23125835]
[31]
Battaglia L, Ugazio E. Lipid nano- and microparticles: An overview of patent-related research. J Nanomater 2019; 2019: 1-22.
[http://dx.doi.org/10.1155/2019/2834941]
[32]
Kamble MS, Vaidya KK, Bhosale AV, et al. Solid lipid nanoparticles and nanostructured lipid carriers–an overview. Int J Pharm Chem Biol Sci 2012; 2(4): 681-961.
[33]
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2013; 166(2): 182-94.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[34]
Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009; 366(1-2): 170-84.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[35]
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021; 11(4): 871-85.
[http://dx.doi.org/10.1016/j.apsb.2021.02.013] [PMID: 33996404]
[36]
Chakraborty S, Shukla D, Mishra B, Singh S. Lipid--an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 2009; 73(1): 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2009.06.001] [PMID: 19505572]
[37]
Qushawy M, Nasr A. Solid lipid nanoparticles (SLNs) as nano drug delivery carriers: Preparation, characterization and application. Int J Appl Pharm 2020; 12(1): 1-9.
[38]
Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 2005; 27(2): 127-44.
[http://dx.doi.org/10.1358/mf.2005.27.2.876286] [PMID: 15834465]
[39]
Vijayanand P, Jyothi V, Aditya N, Mounika A. Development and characterization of solid lipid nanoparticles containing herbal extract: In vivo antidepressant activity. J Drug Deliv 2018; 20182908626
[http://dx.doi.org/10.1155/2018/2908626] [PMID: 29973993]
[40]
Anantaworasakul P, Chaiyana W, Michniak-Kohn BB, Rungseevijitprapa W, Ampasavate C. Enhanced transdermal delivery of concentrated capsaicin from chili extract-loaded lipid nanoparticles with reduced skin irritation. Pharmaceutics 2020; 12(5): 463-82.
[http://dx.doi.org/10.3390/pharmaceutics12050463] [PMID: 32438539]
[41]
Dhiman N, Awasthi R, Sharma B, et al. Lipid nanoparticles as carriers for bioactive delivery. Front Chem 2021; 9: 1-15.
[http://dx.doi.org/10.3389/fchem.2021.580118]
[42]
Baek JS, Cho CW. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur J Pharm Biopharm 2017; 117: 132-40.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.013] [PMID: 28412471]
[43]
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264: 306-32.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[44]
Christophersen PC, Zhang L, Müllertz A, Nielsen HM, Yang M, Mu H. Solid lipid particles for oral delivery of peptide and protein drugs II--the digestion of trilaurin protects desmopressin from proteolytic degradation. Pharm Res 2014; 31(9): 2420-8.
[http://dx.doi.org/10.1007/s11095-014-1337-z] [PMID: 24623481]
[45]
Gamboa CK, Samir R, Wu C, Mu H. Solid lipid particles as drug carriers - effects of particle preparation methods and lipid excipients on particle characteristics. Pharm Nanotechnol 2018; 6(2): 124-32.
[http://dx.doi.org/10.2174/2211738506666180420165547] [PMID: 29683102]
[46]
Doktorovová S. Kovačević AB, Garcia ML, Souto EB. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm 2016; 108: 235-52.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.001] [PMID: 27519829]
[47]
Radwan A, El-Lakkany NM, William S, et al. A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasit Vectors 2019; 12(1): 304-16.
[http://dx.doi.org/10.1186/s13071-019-3563-z] [PMID: 31208446]
[48]
Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater Sci Eng C 2016; 68: 982-94.
[http://dx.doi.org/10.1016/j.msec.2016.05.119] [PMID: 27524099]
[49]
Tomiotto-Pellissier F, Miranda-Sapla MM, Machado LF, et al. Nanotechnology as a potential therapeutic alternative for schistosomiasis. Acta Trop 2017; 174: 64-71.
[http://dx.doi.org/10.1016/j.actatropica.2017.06.025] [PMID: 28668252]
[50]
Sachan AK, Gupta AA. Review on nanotized herbal drugs. Int J Pharm Sci Res 2015; 6(3): 961-70.
[51]
Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics 2019; 11(8): 397-418.
[http://dx.doi.org/10.3390/pharmaceutics11080397] [PMID: 31398820]
[52]
Awasthi R, Pant I, Kulkarni GT, et al. Opportunities and challenges in nano-structure mediated drug delivery: Where do we stand? Curr Nanomed 2016; 6(2): 78-104.
[http://dx.doi.org/10.2174/2468187306666160808160330]
[53]
Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery system. Pharmaceutics 2018; 10(4): 191-205.
[http://dx.doi.org/10.3390/pharmaceutics10040191]
[54]
Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7587997
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[55]
Surender V, Deepika M. Solid lipid nanoparticles: A comprehensive review. J Chem Pharm Res 2016; 8: 102-14.
[56]
Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles: A review. Sci Rev Chem Commun 2012; 2: 80-102.
[57]
Sarangi MK, Padhi S. Solid lipid nanoparticles: A review. J Crit Rev 2016; 3: 5-12.
[58]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[59]
Pandey P, Gulati N, Makhija M, Purohit D, Dureja H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat Nanotechnol 2020; 14(4): 276-93.
[http://dx.doi.org/10.2174/1872210514666200604145755] [PMID: 32496999]
[60]
Duong VA, Nguyen TTL, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules 2020; 25(20): 4781.
[http://dx.doi.org/10.3390/molecules25204781] [PMID: 33081021]
[61]
Rabinarayan P, Suresh P. Production of SLNs- drug loading and release mechanism. J Chem Pharm Res 2010; 2: 211-7.
[62]
Mahajan A, Kaur S, Grewal NK, et al. Solid lipid nanoparticles (SLNs) – As novel lipid based nanocarriers for drugs. Int J Adv Res (Indore) 2014; 2: 433-41.
[63]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[64]
Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm 2003; 257(1-2): 153-60.
[http://dx.doi.org/10.1016/S0378-5173(03)00135-2] [PMID: 12711170]
[65]
El-Say KM, Hosny KM. Optimization of carvedilol solid lipid nanoparticles: An approach to control the release and enhance the oral bioavailability on rabbits. PLoS One 2018; 13(8)e0203405
[http://dx.doi.org/10.1371/journal.pone.0203405] [PMID: 30161251]
[66]
Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12(1): 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[67]
Üner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie 2006; 61(5): 375-86.
[PMID: 16724531]
[68]
Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[69]
Obeidat WM, Schwabe K, Müller RH, Keck CM. Preservation of nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 2010; 76(1): 56-67.
[http://dx.doi.org/10.1016/j.ejpb.2010.05.001] [PMID: 20452422]
[70]
Montenegro L, Castelli F, Sarpietro MG. Differential scanning calorimetry analyses of idebenone-loaded solid lipid nanoparticles interactions with a model of bio-membrane: A comparison with in vitro skin permeation data. Pharmaceuticals (Basel) 2018; 11(4): 138-51.
[http://dx.doi.org/10.3390/ph11040138] [PMID: 30558360]
[71]
Saroha A, Pandey P, Kaushik D. Development of timolol maleate loaded chitosan nanoparticles for improved ocular delivery. Pharm Nanotechnol 2017; 5(4): 310-6.
[PMID: 28847270]
[72]
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133: 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[73]
Satapathy MK, Yen TL, Jan JS, et al. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics 2021; 13(8): 1183-219.
[http://dx.doi.org/10.3390/pharmaceutics13081183] [PMID: 34452143]
[74]
Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 2013; 19: 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[75]
ASTM International, E2865-12 (2015). Standard guide for measurement of electrophoretic mobility and zeta potential of nanosized biological materials. ASTM, 1-7. 2015; pp.
[76]
Kovacevic A, Savic S, Vuleta G, Müller RH, Keck CM. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure. Int J Pharm 2011; 406(1-2): 163-72.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.036] [PMID: 21219990]
[77]
Shah R, Eldridge D, Palombo E, et al. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J Physiol Sci 2014; 25: 59-75.
[78]
Daneshmand S, Golmohammadzadeh S, Jaafari MR, et al. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J Cell Biochem 2018; 119(6): 4251-64.
[http://dx.doi.org/10.1002/jcb.26617] [PMID: 29243841]
[79]
Awasthi R, Bhushan B, Kulkarni GT. Concepts of nanotechnology in nanomedicine: From discovery to applications. Targeting Chronic Inflammatory Lung Dis Using Adv Drug Delivery Syst 2020; pp. 171-209.
[http://dx.doi.org/10.1016/B978-0-12-820658-4.00009-1]
[80]
Attama AA, Reichl S, Müller-Goymann CC. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 2008; 355(1-2): 307-13.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.007] [PMID: 18242022]
[81]
Selvamuthukumar S, Velmurugan R. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis 2012; 11(1): 159.
[http://dx.doi.org/10.1186/1476-511X-11-159] [PMID: 23167765]
[82]
Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103: 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[83]
Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulations - opportunities and limitations. Drug Discov Today Technol 2012; 9(2): e71-e174.
[http://dx.doi.org/10.1016/j.ddtec.2011.12.001] [PMID: 24064268]
[84]
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25(2): 219-34.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[85]
Zhou X, Zhang X, Ye Y, et al. Nanostructured lipid carriers used for oral delivery of oridonin: An effect of ligand modification on absorption. Int J Pharm 2015; 479(2): 391-8.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.068] [PMID: 25556104]
[86]
Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm 2017; 110: 58-69.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.013] [PMID: 27789359]
[87]
Raut ID, Doijad RC, Mohite SK. Solid lipid nanoparticles: A promising drug delivery system. Int J Pharm Sci Res 2018; 9(3): 862-71.
[88]
Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 2002; 238(1-2): 241-5.
[http://dx.doi.org/10.1016/S0378-5173(02)00080-7] [PMID: 11996827]
[89]
Sznitowska M, Gajewska M, Janicki S, Radwanska A, Lukowski G. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur J Pharm Biopharm 2001; 52(2): 159-63.
[http://dx.doi.org/10.1016/S0939-6411(01)00157-6] [PMID: 11522481]
[90]
Firdaus S, Hassan N, Mirza MA, et al. FbD directed fabrication and investigation of luliconazole based SLN gel for the amelioration of candidal vulvovaginitis: A 2 T (thermosensitive & transvaginal) approach. Saudi J Biol Sci 2021; 28(1): 317-26.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.005] [PMID: 33424312]
[91]
Mirza MA, Panda AK, Asif S, et al. A vaginal drug delivery model. Drug Deliv 2016; 23(8): 3123-34.
[http://dx.doi.org/10.3109/10717544.2016.1153749] [PMID: 26971617]
[92]
Souto EB, Baldim I, Oliveira WP, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv 2020; 17(3): 357-77.
[http://dx.doi.org/10.1080/17425247.2020.1727883] [PMID: 32064958]
[93]
Bikkad ML, Nathani AH, Mandlik SK, Shrotriya SN, Ranpise NS. Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery. J Liposome Res 2014; 24(2): 113-23.
[http://dx.doi.org/10.3109/08982104.2013.843192] [PMID: 24131382]
[94]
Souto EB, Zielinska A, Souto SB, et al. (+)-Limonene 1,2-epoxideloaded SLN: Evaluation of drug release, antioxidant activity and cytotoxicity in HaCaT cell line. Int J Mol Sci 2020; 21(4): 1449-65.
[http://dx.doi.org/10.3390/ijms21041449] [PMID: 32093358]
[95]
Topal GR, Mészáros M, Porkoláb G, et al. ApoE-targeting increases the transfer of solid lipid nanoparticles with Donepezil Cargo across a culture model of the blood-brain barrier. Pharmaceutics 2020; 13(1): 38-52.
[http://dx.doi.org/10.3390/pharmaceutics13010038] [PMID: 33383743]
[96]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[97]
Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020; 12(3): 288-303.
[http://dx.doi.org/10.3390/pharmaceutics12030288] [PMID: 32210127]
[98]
Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U. Role of Nanotechnology in cosmeceuticals: A review of recent advances. J Pharm (Cairo) 2018; 20183420204
[http://dx.doi.org/10.1155/2018/3420204] [PMID: 29785318]
[99]
Gonçalez ML, Rigon RB, Pereira-da-Silva MA, Chorilli M. Curcumin-loaded cationic solid lipid nanoparticles as a potential platform for the treatment of skin disorders. Pharmazie 2017; 72(12): 721-7.
[PMID: 29441956]
[100]
Avilés-Castrillo JI, Quintanar-Guerrero D, Aguilar-Pérez KM, Medina DI. Biotriborheology of shea butter solid lipid nanoparticles in a topical cream. Tribol Int 2021; 156106836
[http://dx.doi.org/10.1016/j.triboint.2020.106836]
[101]
Patel D, Patel M, Soni T, Suhagia B. Topical arginine solid lipid nanoparticles: Development and characterization by QbD approach. J Drug Deliv Sci Technol 2021; 61102329
[http://dx.doi.org/10.1016/j.jddst.2021.102329]
[102]
Dolatabadi S, Karimi M, Nasirizadeh S, Hatamipour M, Golmohammadzadeh S, Jaafari MR. Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). J Drug Deliv Sci Technol 2021; 62102352
[http://dx.doi.org/10.1016/j.jddst.2021.102352]
[103]
Vicente-Pascual M, Albano A, Solinís MA, et al. Gene delivery in the cornea: In vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors. Nanomedicine (Lond) 2018; 13(15): 1847-54.
[http://dx.doi.org/10.2217/nnm-2018-0112] [PMID: 29792369]
[104]
Gomes FLT, Maranhão RC, Tavares ER, et al. Regression of atherosclerotic plaques of cholesterol-fed rabbits by combined chemotherapy with Paclitaxel and Methotrexate carried in lipid core nanoparticles. J Cardiovasc Pharmacol Ther 2018; 23(6): 561-9.
[http://dx.doi.org/10.1177/1074248418778836] [PMID: 29779420]
[105]
Abbas H, Refai H, El Sayed N. Superparamagnetic iron oxide-loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. J Pharm Sci 2018; 107(8): 2119-27.
[http://dx.doi.org/10.1016/j.xphs.2018.04.007] [PMID: 29665379]
[106]
Lakkadwala S, Nguyen S, Lawrence J, Nauli SM, Nesamony J. Physico-chemical characterisation, cytotoxic activity, and biocompatibility studies of tamoxifen-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification method. J Microencapsul 2014; 31(6): 590-9.
[http://dx.doi.org/10.3109/02652048.2014.898707] [PMID: 24697190]
[107]
Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 2006; 28(1-2): 86-95.
[http://dx.doi.org/10.1016/j.ejps.2006.01.001] [PMID: 16472996]
[108]
Chirio D, Peira E, Battaglia L, et al. Lipophilic prodrug of floxuridine loaded into solid lipid nanoparticles: in vitro cytotoxicity studies on different human cancer cell lines. J Nanosci Nanotechnol 2018; 18(1): 556-63.
[http://dx.doi.org/10.1166/jnn.2018.13964] [PMID: 29768881]
[109]
Dawoud M. Chitosan coated solid lipid nanoparticles as promising carriers for docetaxel. J Drug Deliv Sci Technol 2021; 62102409
[http://dx.doi.org/10.1016/j.jddst.2021.102409]
[110]
Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed Pharmacother 2018; 99: 735-45.
[http://dx.doi.org/10.1016/j.biopha.2018.01.115] [PMID: 29710471]
[111]
Castellani S, Trapani A, Spagnoletta A, et al. Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation. J Transl Med 2018; 16(1): 140-55.
[http://dx.doi.org/10.1186/s12967-018-1509-4] [PMID: 29792199]
[112]
Thorn CR, Thomas N, Boyd BJ, Prestidge CA. Nano-fats for bugs: The benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv Transl Res 2021; 11(4): 1598-624.
[http://dx.doi.org/10.1007/s13346-021-00921-w] [PMID: 33675007]
[113]
Sailor GU, Ramani VD, Shah N, et al. Design of experiment approach based formulation optimization of berberine loaded solid lipid nanoparticle for antihyperlipidemic activity. Indian J Pharm Sci 2021; 83(2): 204-18.
[114]
Guo D, Dou D, Li X, Zhang Q, Bhutto ZA, Wang L. Ivermection-loaded solid lipid nanoparticles: Preparation, characterisation, stability and transdermal behaviour. Artif Cells Nanomed Biotechnol 2018; 46(2): 255-62.
[http://dx.doi.org/10.1080/21691401.2017.1307207] [PMID: 28368657]
[115]
Lee MH, Shin GH, Park HJ. Solid lipid nanoparticles loaded thermoresponsive pluronic–xanthan gum hydrogel as a transdermal delivery system. J Appl Polym Sci 2018; 135(11): 46004.
[http://dx.doi.org/10.1002/app.46004]
[116]
Aldayel AM, O’Mary HL, Valdes SA, et al. Lipid nanoparticles with minimum burst release of TNF-α siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate. J Control Release 2018; 283: 280-9.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.035] [PMID: 29859232]
[117]
Jain AK, Jain A, Garg NK, et al. Adapalene loaded solid lipid nanoparticles gel: An effective approach for acne treatment. Colloids Surf B Biointerfaces 2014; 121: 222-9.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.041] [PMID: 25016424]
[118]
Chaoying Q, Guoyan L, Yong W. Preparation method of water-in-oil emulsion gel based on diglyceride solid lipid nanoparticles Chinese Patent CN112868816A 2021.
[119]
Bandgar SA, Rajendra C, Dipak SG, et al. Codelivery of verapamil with cisplatin and paclitaxel nanoparticulate drug delivery system for ovarian cancer Australia Patent AU 2021101145 A4 2021.
[120]
Li Z, Liu M, Luo L, et al. Traditional Chinese medicine hair growing cream for treating alopecia and preparation method thereof Chinese Patent CN112826875A 2021.
[121]
Li N, Li X, Liu H, et al. Flower-shaped lactose-loaded curcumin nano dry powder inhalant and preparation method thereof Chinese Patent CN111956631A 2020.
[122]
Xia X, Zhou S, Min LW. Glycyrrhetinic acid and/or folic acid ligand modified cantharidin solid lipid nanoparticle and preparation method thereof. Chinese Patent CN111265482A 2020.
[123]
Ma N, Peng Y. Madecassic acid solid lipid nanoparticle gel Chinese Patent CN111920760A 2020.
[124]
Zou L, Li W, Chen L, et al. Preparation method and application of cationic solid lipid nanoparticles co-loaded with quercetin and MicroRNA-150 Chinese Patent CN112089846A 2020.
[125]
Jinmei R, Ning X, Yi S, Shenyong G, Kouming T. Compound curcumin nanoparticle and preparation method and application thereof Chinese Patent CN111568882A 2020.
[126]
Xiaodong C, Xiaohong Y, Bayberry R. Solid lipid particle embedded with feruloyl oligosaccharide, preparation method thereof and application of solid lipid particle as food additive Chinese Patent CN112120228A 2020.
[127]
The pH sensitive lipid nanoparticles for encapsulation of anti-cancer drugs and microma and use thereof. US Patent US202000114019A1, 2020.
[128]
Majumdar S, Patil A, Lakhani P. Amphotericin loaded pegylated lipid nanoparticles and method of use WIPO Patent WO2020028916A1 2020.
[129]
Tzachev CT. Mucoadhesive dispersion nanoparticle system and method of production the same WIPO Patent WO2020053609A1 2020.
[130]
Cheon-Woong P, Dong-Wook K. Solid lipid nanoparticles for skin permeation and composition for drug delivery comprising the same Korean Patent KR20200085529A 2020.
[131]
Lakshmi KS, Varthan VJV. Dispersion of formononetin solid lipid nanoparticles and process for its preparation. US Patent US20200197360A1, 2020.
[132]
Tian Y, Andrews G, Jones D. Solvent and water free lipid based nanoparticles and their methods of manufacturing WIPO Patent WO2020144377A1, 2020.
[133]
Kaur IP, Kakkar V, Sandhu SK, Gupta V. Solid lipid nanoparticles of Curcumin WIPO Patent WO2020109989A1 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy