Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Synthesis and Evaluation of Polyethylene Glycol-4000-Co-Poly (AMPS) Based Hydrogel Membranes for Controlled Release of Mupirocin for Efficient Wound Healing

Author(s): Muhammad Usman Minhas*, Sarfaraz Ahmad, Kifayat Ullah Khan, Muhammad Sohail, Orva Abdullah, Ikrima Khalid and Nadia Shamshad Malik

Volume 19, Issue 10, 2022

Published on: 22 April, 2022

Page: [1102 - 1115] Pages: 14

DOI: 10.2174/1567201819666220317112649

Price: $65

Abstract

Background: Chronic wound healing is a major challenge for the health care system around the globe. The current study was conducted to develop and characterize chemically cross-linked polyethylene glycol-co-poly (AMPS) hydrogel membranes to enhance the wound healing efficiency of antibiotic mupirocin (MP).

Methods: Free radical polymerization technique was used to develop hydrogel membranes. In an aqueous medium, polymer PEG-4000 was cross-linked with the monomer 2-acrylamido-2-methylpropane sulfonic acid (AMPS) in the presence of initiators ammonium peroxide sulfate (APS) and sodium hydrogen sulfite (SHS). N, N-Methylene-bis-acrylamide (MBA) was used as a cross-linker in preparing hydrogel membranes. Developed membranes were spherical, transparent, and had elasticity. FTIR, TGA/DSC, and SEM were used to characterize the polymeric system. Swelling behavior, drug loading, and release pattern at pH of 5.5 and 7.4, irritation study, ex vivo drug permeation, and deposition study were also evaluated.

Results: Formed membranes were spherical, transparent, and had elasticity. The formation of a stable polymeric network was confirmed by structural and thermal analysis. Evaluation of the drug permeability in the skin showed good permeation and retention capabilities. No irritancy to the skin was observed.

Conclusion: Based on the results obtained, the present study concluded that the formulated stable network might be an ideal network for the delivery of mupirocin in skin infections.

Keywords: Hydrogel membrane, Mupirocin, PEG-4000, AMPS, wound healing, in-vitro and ex-vivo analysis.

Graphical Abstract

[1]
Wathoni, N.; Rusdiana, T.; Hasanah, A.N.; Pratama, A.R.; Okajima, M.; Kaneko, T.; Mohammed, A.F.A.; Putera, B.W.; Arima, H. Epidermal growth factor in sacran hydrogel film accelerates fibroblast migration. J. Adv. Pharm. Technol. Res., 2020, 11(2), 74-80.
[http://dx.doi.org/10.4103/japtr.JAPTR_147_19] [PMID: 32587820]
[2]
Chi, J.; Zhang, X.; Chen, C.; Shao, C.; Zhao, Y.; Wang, Y. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact. Mater., 2020, 5(2), 253-259.
[http://dx.doi.org/10.1016/j.bioactmat.2020.02.004] [PMID: 32128464]
[3]
Venkataprasanna, K.S.; Prakash, J.; Vignesh, S.; Bharath, G.; Venkatesan, M.; Banat, F.; Sahabudeen, S.; Ramachandran, S.; Devanand Venkatasubbu, G. Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. Int. J. Biol. Macromol., 2020, 143, 744-762.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.029] [PMID: 31622704]
[4]
Li, L. Fabrication of guanidinylated chitosan nanoparticles loaded with bioactive factors for facilitating wound healing. Int. J. Polym. Mater., 2020, 1-7.
[5]
Abbasi, A.R.; Sohail, M.; Minhas, M.U.; Khaliq, T.; Kousar, M.; Khan, S.; Hussain, Z.; Munir, A. Bioinspired sodium alginate based thermo-sensitive hydrogel membranes for accelerated wound healing. Int. J. Biol. Macromol., 2020, 155, 751-765.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.248] [PMID: 32246960]
[6]
Pathan, I.B. Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex-vivo and in-vivo evaluation. Intl. J. Polym. Mat Polymeric Biomat., 2019, 68(4), 165-174.
[http://dx.doi.org/10.1080/00914037.2018.1429437]
[7]
Kalantari, K. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur. Polym. J., 2020, 134, 109853.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109853]
[8]
Basha, S.I.; Ghosh, S.; Vinothkumar, K.; Ramesh, B.; Kumari, P.H.P.; Mohan, K.V.M.; Sukumar, E. Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing. Mater. Sci. Eng. C, 2020, 111, 110743.
[http://dx.doi.org/10.1016/j.msec.2020.110743] [PMID: 32279739]
[9]
Baquerizo Nole, K.L.; Yim, E.; Van Driessche, F.; Davidson, J.M.; Martins-Green, M.; Sen, C.K.; Tomic-Canic, M.; Kirsner, R.S. Wound research funding from alternative sources of federal funds in 2012. Wound Repair Regen., 2014, 22(3), 295-300.
[http://dx.doi.org/10.1111/wrr.12175] [PMID: 24844328]
[10]
Wang, L.; Song, Z.; Race, P.R.; Spencer, J.; Simpson, T.J.; Crump, M.P.; Willis, C.L. Mixing and matching genes of marine and terrestrial origin in the biosynthesis of the mupirocin antibiotics. Chem. Sci. (Camb.), 2020, 11(20), 5221-5226.
[http://dx.doi.org/10.1039/C9SC06192D] [PMID: 34122978]
[11]
Dadashi, M.; Hajikhani, B.; Darban-Sarokhalil, D.; van Belkum, A.; Goudarzi, M. Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist., 2020, 20, 238-247.
[http://dx.doi.org/10.1016/j.jgar.2019.07.032] [PMID: 31442624]
[12]
Walker, P.D.; Rowe, M.T.; Winter, A.J.; Weir, A.N.M.; Akter, N.; Wang, L.; Race, P.R.; Williams, C.; Song, Z.; Simpson, T.J.; Willis, C.L.; Crump, M.P. A priming cassette generates hydroxylated acyl starter units in mupirocin and thiomarinol biosynthesis. ACS Chem. Biol., 2020, 15(2), 494-503.
[http://dx.doi.org/10.1021/acschembio.9b00969] [PMID: 31977176]
[13]
Goldmann, O.; Cern, A.; Müsken, M.; Rohde, M.; Weiss, W.; Barenholz, Y.; Medina, E. Liposomal mupirocin holds promise for systemic treatment of invasive Staphylococcus aureus infections. J. Control. Release, 2019, 316, 292-301.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.007] [PMID: 31715276]
[14]
Ooi, M.L. Efficacy of anti-biofilm gel, chitogel-mupirocin-budesonide in a sheep sinusitis model. Aust. J. Otolaryngol., 2020, 3, 16.
[http://dx.doi.org/10.21037/ajo-18-97]
[15]
Üstündağ Okur, N.; Hökenek, N.; Okur, M.E.; Ayla, Ş.; Yoltaş, A.; Siafaka, P.I.; Cevher, E. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm. J., 2019, 27(5), 738-752.
[http://dx.doi.org/10.1016/j.jsps.2019.04.010] [PMID: 31297030]
[16]
Perumal, S.; Ramadass, Sk.; Madhan, B. Sol-gel processed mupirocin silica microspheres loaded collagen scaffold: A synergistic bio-composite for wound healing. Eur. J. Pharm. Sci., 2014, 52, 26-33.
[http://dx.doi.org/10.1016/j.ejps.2013.10.006] [PMID: 24514452]
[17]
Sritharadol, R.; Nakpheng, T.; Wan Sia Heng, P.; Srichana, T. Development of a topical mupirocin spray for antibacterial and wound-healing applications. Drug Dev. Ind. Pharm., 2017, 43(10), 1715-1728.
[http://dx.doi.org/10.1080/03639045.2017.1339077] [PMID: 28581830]
[18]
Golmohammadi, R.; Najar-Peerayeh, S.; Tohidi Moghadam, T.; Hosseini, S.M.J. Synergistic antibacterial activity and wound healing proper-ties of selenium-chitosan-mupirocin nanohybrid system: An in vivo study on rat diabetic Staphylococcus aureus wound infection model. Sci. Rep., 2020, 10(1), 2854.
[http://dx.doi.org/10.1038/s41598-020-59510-5] [PMID: 32071320]
[19]
Tang, Y.; Cai, X.; Xiang, Y.; Zhao, Y.; Zhang, X.; Wu, Z. Cross-linked antifouling polysaccharide hydrogel coating as extracellular matrix mimics for wound healing. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(16), 2989-2999.
[http://dx.doi.org/10.1039/C6TB03222B] [PMID: 32263991]
[20]
Ma, M.; Zhong, Y.; Jiang, X. Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr. Polym., 2020, 236, 116096.
[http://dx.doi.org/10.1016/j.carbpol.2020.116096] [PMID: 32172898]
[21]
Li, Y.; Yang, H.Y.; Lee, D.S. Advances in biodegradable and injectable hydrogels for biomedical applications. J. Control. Release, 2021, 330, 151-160.
[PMID: 33309972]
[22]
Bhowmick, S.; Koul, V. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation. Mater. Sci. Eng. C, 2016, 59, 109-119.
[http://dx.doi.org/10.1016/j.msec.2015.10.003] [PMID: 26652355]
[23]
Bozoğlan, B.K.; Duman, O.; Tunç, S. Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. Int. J. Biol. Macromol., 2020, 162, 781-797.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.087] [PMID: 32553980]
[24]
Sisso, A.M.; Boit, M.O.; DeForest, C.A. Self-healing injectable gelatin hydrogels for localized therapeutic cell delivery. J. Biomed. Mater. Res. A, 2020, 108(5), 1112-1121.
[http://dx.doi.org/10.1002/jbm.a.36886] [PMID: 31971330]
[25]
Yasasvini, S.; Anusa, R.S.; VedhaHari, B.N.; Prabhu, P.C.; Ramya-Devi, D. Topical hydrogel matrix loaded with Simvastatin microparticles for enhanced wound healing activity. Mater. Sci. Eng. C, 2017, 72, 160-167.
[http://dx.doi.org/10.1016/j.msec.2016.11.038] [PMID: 28024572]
[26]
Vrana, N.E.; O’Grady, A.; Kay, E.; Cahill, P.A.; McGuinness, G.B. Cell encapsulation within PVA-based hydrogels via freeze-thawing: A one-step scaffold formation and cell storage technique. J. Tissue Eng. Regen. Med., 2009, 3(7), 567-572.
[http://dx.doi.org/10.1002/term.193] [PMID: 19598204]
[27]
Deng, X.; Gould, M.; Ali, M.A. Fabrication and characterisation of melt-extruded chitosan/keratin/PCL/PEG drug-eluting sutures designed for wound healing. Mater. Sci. Eng. C, 2021, 120, 111696.
[http://dx.doi.org/10.1016/j.msec.2020.111696] [PMID: 33545855]
[28]
Wang, S.; Wang, Z.; Xu, C.; Cui, L.; Meng, G.; Yang, S.; Wu, J.; Liu, Z.; Guo, X. PEG-α-CD/AM/liposome @amoxicillin double network hydrogel wound dressing-Multiple barriers for long-term drug release. J. Biomater. Appl., 2021, 35(9), 1085-1095.
[http://dx.doi.org/10.1177/0885328221991948] [PMID: 33611960]
[29]
Farghaly Aly, U.; Abou-Taleb, H.A.; Abdellatif, A.A.; Sameh Tolba, N. Formulation and evaluation of simvastatin polymeric nanoparticles loaded in hydrogel for optimum wound healing purpose. Drug Des. Devel. Ther., 2019, 13, 1567-1580.
[http://dx.doi.org/10.2147/DDDT.S198413] [PMID: 31190737]
[30]
Miotke, M. Transport of paracetamol in swellable and relaxing polyurethane nanocomposite hydrogels. Polym. Bull., 2020, 77(1), 483-499.
[http://dx.doi.org/10.1007/s00289-019-02755-6]
[31]
Lee, J. In vitro and in vivo evaluation of a novel nitric oxide-releasing ointment for the treatment of methicillin-resistant Staphylococcus aureus-infected wounds. J. Pharm. Investig., 2020, 1-8.
[http://dx.doi.org/10.1007/s40005-020-00472-1]
[32]
Ahmad, S.; Minhas, M.U.; Ahmad, M.; Sohail, M.; Abdullah, O.; Badshah, S.F. Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes. AAPS PharmSciTech, 2018, 19(7), 3199-3209.
[http://dx.doi.org/10.1208/s12249-018-1131-z] [PMID: 30171450]
[33]
Ahmad, S. Topical hydrogel patches of vinyl monomers containing mupirocin for skin injuries: Synthesis and evaluation. Adv. Polym. Technol., 2018, 37(8), 3401-3411.
[http://dx.doi.org/10.1002/adv.22124]
[34]
Ahmad, S. Synthesis and evaluation of topical hydrogel membranes; a novel approach to treat skin disorders. J. Mater. Sci. Mater. Med., 2018, 29(12), 1-13.
[35]
Osti, E.J.A.o.b. Skin ph variations from the acute phase to reepithelialization in burn patients treated with new materials (burnshield®, semi-permeable adhesive film, dermasilk®, and hyalomatrix®). Non-invasive Prelim. Exp. Clin. Trial, 2008, 21(2), 73.
[36]
Lambers, H. LNatural skin surface pH is on average below 5, which is beneficial for its resident flora. 2006, 28(5), 359-370.
[37]
Chen, T.; Liu, H.; Dong, C.; An, Y.; Liu, J.; Li, J.; Li, X.; Si, C.; Zhang, M. Synthesis and characterization of temperature/pH dual sensitive hemicellulose-based hydrogels from Eucalyptus APMP waste liquor. Carbohydr. Polym., 2020, 247, 116717.
[http://dx.doi.org/10.1016/j.carbpol.2020.116717] [PMID: 32829844]
[38]
Khan, K.U. Synthesis of PEG-4000-co-poly (AMPS) nanogels by cross-linking polymerization as highly responsive networks for enhancement in meloxicam solubility. 2021, 47(3), 465-476.
[39]
Asghar, S.; Akhtar, N.; Minhas, M.U.; Khan, K.U. Bi-polymeric spongy matrices through cross-linking polymerization: Synthesized and evaluated for solubility enhancement of acyclovir. AAPS PharmSciTech, 2021, 22(5), 181.
[http://dx.doi.org/10.1208/s12249-021-02054-2] [PMID: 34129154]
[40]
Khan, K.U. β-cyclodextrin modification by cross-linking polymerization as highly porous nanomatrices for olanzapine solubility improvement; synthesis, characterization and bio-compatibility evaluation. J. Drug Deliv. Sci. Technol., 2021, 102952.
[http://dx.doi.org/10.1016/j.jddst.2021.102952]
[41]
Draize, J.H.; Woodard, G.; Calvery, H.O. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther., 1944, 82(3), 377-390.
[42]
Vermeer, B. Skin irritation and sensitization. J. Control. Release, 1991, 15(3), 261-265.
[http://dx.doi.org/10.1016/0168-3659(91)90117-V]
[43]
Joshi, M.; Patravale, V. Formulation and evaluation of nanostructured lipid carrier (NLC)-based gel of valdecoxib. Drug Dev. Ind. Pharm., 2006, 32(8), 911-918.
[http://dx.doi.org/10.1080/03639040600814676] [PMID: 16954103]
[44]
Mandawgade, S.D.; Patravale, V.B. Development of SLNs from natural lipids: Application to topical delivery of tretinoin. Int. J. Pharm., 2008, 363(1-2), 132-138.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.028] [PMID: 18657601]
[45]
Idrees, A.; Rahman, N.U.; Javaid, Z.; Kashif, M.; Aslam, I.; Abbas, K.; Hussain, T. In vitro evaluation of transdermal patches of flurbiprofen with ethyl cellulose. Acta Pol. Pharm., 2014, 71(2), 287-295.
[PMID: 25272649]
[46]
Baviskar, D.T.; Parik, V.B.; Jain, D.J. Development of matrix-type transdermal delivery of lornoxicam: In vitro evaluation and pharmacodynamic and pharmacokinetic studies in albino rats. PDA J. Pharm. Sci. Technol., 2013, 67(1), 9-22.
[http://dx.doi.org/10.5731/pdajpst.2013.00898] [PMID: 23385560]
[47]
Saikia, A.; Aggarwal, S.; Mandal, U. Preparation and controlled drug release characteristics of thermoresponsive PEG/poly (NIPAM-co-AMPS) hydrogels. Int. J. Polym. Mater., 2013, 62(1), 39-44.
[http://dx.doi.org/10.1080/00914037.2012.664208]
[48]
Dutta, J. Synthesis and characterization of γ-irradiated PVA/PEG/CaCl 2 hydrogel for wound dressing. Synthesis, 2012, 2(2), 6-11.
[49]
Rivas, B.L.; Castro, A. Preparation and adsorption properties of resins containing amine, sulfonic acid, and carboxylic acid moieties. J. Appl. Polym. Sci., 2003, 90(3), 700-705.
[http://dx.doi.org/10.1002/app.12697]
[50]
Ashkani, M. Hybrid hydrogel based on pre-gelatinized starch modified with glycidyl-crosslinked microgel. Iran. Polym. J., 2018, 1-10.
[http://dx.doi.org/10.1007/s13726-018-0599-4]
[51]
Vashishth, V.; Kaushik, D. Mupirocin amalgamated inorganic nanoparticles for augmenting drug delivery in resistant microbial strains. World J. Pharm. Pharmceut. Sci., 2017, 6(11), 1214-1229.
[52]
Bojarska, J. Structural and spectroscopic characterization and Hirshfeld surface analysis of major component of antibiotic mupirocin-pseudomonic acid A. J. Mol. Struct., 2014, 1076, 126-135.
[http://dx.doi.org/10.1016/j.molstruc.2014.07.049]
[53]
Doshi, D.; Ravis, W.; Betageri, G. Carbamazepine and polyethylene glycol solid dispersions: Preparation, in vitro dissolution, and characterization. Drug Dev. Ind. Pharm., 1997, 23(12), 1167-1176.
[http://dx.doi.org/10.3109/03639049709146154]
[54]
Devrim, Y.G.; Rzaev, Z.; Pişkin, E. Physically and chemically cross-linked poly {[(maleic anhydride)‐alt‐styrene]‐co‐(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)}/poly (ethylene glycol) protonexchange membranes. Macromol. Chem. Phys., 2007, 208(2), 175-187.
[http://dx.doi.org/10.1002/macp.200600331]
[55]
Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res., 2007, 298(9), 413-420.
[http://dx.doi.org/10.1007/s00403-006-0713-x] [PMID: 17091276]
[56]
Ravichandran, P.; Shantha, K.; Rao, K.P. Preparation, swelling characteristics and evaluation of hydrogels for stomach specific drug delivery. Int. J. Pharm., 1997, 154(1), 89-94.
[http://dx.doi.org/10.1016/S0378-5173(97)00131-2]
[57]
Das, N. Preparation methods and properties of hydrogel: A review. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 112-117.
[58]
Kim, B.; Peppas, N.A. Poly (ethylene glycol)-containing hydrogels for oral protein delivery applications. Biomed. Microdevices, 2003, 5(4), 333-341.
[http://dx.doi.org/10.1023/A:1027313931273]
[59]
Mohammad, N.; Atassi, Y.; Tally, M. Synthesis and swelling behavior of metal-chelating superabsorbent hydrogels based on sodium algi-nate-g-poly (AMPS-co-AA-co-AM) obtained under microwave irradiation. Polym. Bull., 2017, 74(11), 4453-4481.
[http://dx.doi.org/10.1007/s00289-017-1967-5]
[60]
Khan, K.U.; Akhtar, N.; Minhas, M.U. Poloxamer-407-co-poly (2-acrylamido-2-methylpropane sulfonic acid) cross-linked nanogels for solubility enhancement of olanzapine: Synthesis, characterization, and toxicity evaluation. AAPS PharmSciTech, 2020, 21(5), 141.
[http://dx.doi.org/10.1208/s12249-020-01694-0] [PMID: 32419084]
[61]
Mahdavinia, G. Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. Eur. Polym. J., 2004, 40(7), 1399-1407.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.01.039]
[62]
Ijaz, Q.A. Synthesis and evaluation of pH dependent polyethylene glycol-co-acrylic acid hydrogels for controlled release of venlafaxine HCl. J. Drug Deliv. Sci. Technol., 2018, 43, 221-232.
[http://dx.doi.org/10.1016/j.jddst.2017.10.010]
[63]
Basu, S.; Samanta, H.S.; Ganguly, J. Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft Mater., 2018, 16(1), 7-19.
[http://dx.doi.org/10.1080/1539445X.2017.1368559]
[64]
Chou, W-L. Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers. Separ. Purif. Tech., 2007, 57(2), 209-219.
[http://dx.doi.org/10.1016/j.seppur.2007.04.005]
[65]
Jones, C.D.; Lyon, L.A. Shell-restricted swelling and core compression in poly (N-isopropylacrylamide) core-shell microgels. Macromolecules, 2003, 36(6), 1988-1993.
[http://dx.doi.org/10.1021/ma021079q]
[66]
Jovančić, P.; Vílchez, A.; Molina, R. Synthesis of thermo-sensitive hydrogels from free radical copolymerization of NIPAAm with MBA initiated by atmospheric plasma treatment. Plasma Process. Polym., 2016, 13(7), 752-760.
[http://dx.doi.org/10.1002/ppap.201500194]
[67]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[http://dx.doi.org/10.1208/s12249-009-9220-7] [PMID: 19381834]
[68]
Vega, E.; Egea, M.A.; Garduño-Ramírez, M.L.; García, M.L.; Sánchez, E.; Espina, M.; Calpena, A.C. Flurbiprofen PLGA-PEG nanospheres: role of hydroxy-β-cyclodextrin on ex vivo human skin permeation and in vivo topical anti-inflammatory efficacy. Colloids Surf. B Biointerfaces, 2013, 110, 339-346.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.045] [PMID: 23743255]
[69]
Dorrani, M.; Kaul, M.; Parhi, A.; LaVoie, E.J.; Pilch, D.S.; Michniak-Kohn, B. TXA497 as a topical antibacterial agent: Comparative antistaphylococcal, skin deposition, and skin permeation studies with mupirocin. Int. J. Pharm., 2014, 476(1-2), 199-204.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.033] [PMID: 25263100]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy