Abstract
Background: Restrained by the aggregation-causing quenching of conventional fluorophores, the design and synthesis of solid-state emissive materials is a persistent pursuit for scientists. The discovery of aggregation-induced emission provides an efficient strategy for preparing solidstate emissive luminogens.
Objective: A multifunctional solid-state emissive material DMBTPE was prepared from tetraphenylethylene and N-methylated barbituric acid through the construction of donor-acceptor structure.
Methods: DMBTPE showed typical aggregation-induced emission characteristics: non-emissive when molecularly dissolved in solution while strongly emissive in the aggregated state or as solid. Owing to the strong donor-acceptor interaction, the maximum absorption of DMBTPE shifted to the visible light region. DMBTPE also exhibited reversible mechanochromic fluorescence with 30-40 nm emission wavelength change.
Results: DSC and XRD results indicated the transition between the amorphous state and crystalline state was accounted for the mechanochromic fluorescence behavior. The microcrystalline rods of DMBTPE grown from hot ethanol solution exhibited good optical waveguiding effect and the optical loss was as low as 0.018 dB/μm.
Conclusion: DMBTPE was an efficient solid emitter. Such attributes enable this kind of materials to find wide applications in many areas, such as biological imaging and optoelectronic devices.
Keywords: Aggregation-induced emission, barbituric acid, mechanochromism, donor-acceptor interaction, tetraphenylethylene, optoelectronic nanodevices.
Graphical Abstract
[http://dx.doi.org/10.1021/cr0501590]
[http://dx.doi.org/10.1039/C4CS00051J] [PMID: 24723011]
[http://dx.doi.org/10.1002/VIW.20200055]
[http://dx.doi.org/10.1039/b105159h] [PMID: 12240292]
[http://dx.doi.org/10.1021/acs.accounts.0c00060] [PMID: 32242656]
(b) Zhao, Z.; Zhang, H.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: New vistas at aggregate level. Angew. Chem. Int. Ed. Engl., 2020, 59(25), 9888-9907.
[http://dx.doi.org/10.1002/anie.201916729] [PMID: 32048428]
(c) Yang, J.; Fang, M.; Li, Z. Organic luminescent materials: The concentration on aggregates from aggregation-induced emission. Aggregate, 2020, 1, 6-18.
[http://dx.doi.org/10.1002/agt2.2]
(d) Tu, L.; Xie, Y.; Li, Z.; Tang, B. Aggregation-induced emission: Red and near-Infrared organic light-emitting diodes. SmartMat, 2021, 2, 326-346.
[http://dx.doi.org/10.1002/smm2.1060]
[http://dx.doi.org/10.1007/s10904-009-9282-8]
(b) Lyu, G.; Southern, T.J.F.; Charles, B.L.; Roger, M.; Gerbier, P.; Clément, S.; Evans, R.C. Aggregation-induced emission from silole-based lumophores embedded in organic-inorganic hybrid hosts. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(39), 13914-13925.
[http://dx.doi.org/10.1039/D1TC02794H] [PMID: 34745631]
[http://dx.doi.org/10.1039/C3TB21675F] [PMID: 32261636]
(b) Wang, E.; He, Z.; Zhao, E.; Meng, L.; Schütt, C.; Lam, J.W.Y.; Sung, H.H.Y.; Williams, I.D.; Huang, X.; Herges, R.; Tang, B.Z. Aggre-gation-induced-emission-active macrocycle exhibiting analogous triply and singly twisted Möbius topologies. Chem. Eur. J, 2015, 21(33), 11707-11711.
[http://dx.doi.org/10.1002/chem.201502224] [PMID: 26177730]
(c) He, Z.; Wang, E.; Lam, J.W.Y.; Li, Y.; Lin, Z.; Tang, B.Z. Aggregation-induced emission-active macrocycle: Illusory topology of the Penrose stairs. ChemPlusChem, 2015, 80(8), 1245-1249.
[http://dx.doi.org/10.1002/cplu.201500199] [PMID: 31973298]
[http://dx.doi.org/10.1039/cc9960001769]
(b) Xu, J.; Wu, G.; Wang, Z.; Zhang, X. Generation of 2D organic microsheets from protonated melamine derivatives: Suppression of the self assembly of a particular dimension by introduction of alkyl chains. Chem. Sci. (Camb.), 2012, 3, 3227.
[http://dx.doi.org/10.1039/c2sc20871g]
(c) Wang, E.; Lam, J.W.Y.; Hu, R.; Zhang, C.; Zhao, Y.S.; Tang, B.Z. Twisted intramolecular charge transfer, aggregation-induced emis-sion, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2, 1801-1807.
[http://dx.doi.org/10.1039/c3tc32161d]
[http://dx.doi.org/10.1002/chem.201203081] [PMID: 23129529]
[http://dx.doi.org/10.1016/j.jphotochem.2020.112932]
[http://dx.doi.org/10.1021/accountsmr.1c00029]
[http://dx.doi.org/10.1039/C1JM13556B]
[http://dx.doi.org/10.1080/17518253.2019.1643931]
(b) Krabbe, S.W.; Do, D.T.; Johnson, J.S. Cu(II)-catalyzed aerobic hydroperoxidation of Meldrum’s acid derivatives and application in in-tramolecular oxidation: A conceptual blueprint for O2/H2 dihydroxylation. Org. Lett., 2012, 14(23), 5932-5935.
[http://dx.doi.org/10.1021/ol302848m] [PMID: 23163733]
[http://dx.doi.org/10.1039/C7QM00528H]
(b) Sun, J.; Jia, J.; Zhao, B.; Yang, J.; Singh, M.; An, Z.; Wang, H.; Xu, B.; Huang, W. A purely organic D-π-A-π-D emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED. Chin. Chem. Lett., 2021, 32, 1367-137.
[http://dx.doi.org/10.1016/j.cclet.2020.09.060]
(c) Shen, Y.; Tang, X.; Xu, Y.; Liu, H.; Zhang, S.; Yang, B.; Ma, Y. Enhanced deep-red emission in donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl. Chin. Chem. Lett., 2019, 30, 1947-1950.
[http://dx.doi.org/10.1016/j.cclet.2019.07.059]
(d) Lia, H-C.; Tang, X.; Yang, S-Y.; Qu, Y-K.; Jiang, Z-Q.; Liao, L-S. Spatial donor/acceptor architecture for intramolecular charge-transfer emitter. Chin. Chem. Lett., 2021, 32, 1245-1248.
[http://dx.doi.org/10.1016/j.cclet.2020.08.045]
[http://dx.doi.org/10.1021/jacs.0c02450] [PMID: 32539380]
(b) Grabowski, Z.R.; Rotkiewicz, K.; Rettig, W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intra-molecular charge-transfer states and structures. Chem. Rev., 2003, 103(10), 3899-4032.
[http://dx.doi.org/10.1021/cr940745l] [PMID: 14531716]
[http://dx.doi.org/10.1021/acsmaterialslett.1c00528]
(b) Yu, H-X.; Zhi, J.; Wang, J-L. Regioisomeric AIE-active luminogens with a substituent aldehyde group for controllable and reversible photochromic behavior and sensitive fluorescence detection of hydrogen sulfite. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9, 3882-3891.
[http://dx.doi.org/10.1039/D0TC05994C]
(c) Du, F.; Li, D.; Ge, S.; Xie, S.; Tang, M.; Xu, Z. A new V-shaped 2H-imidazole-based spirocyclic fluorophore: Aggregation-induced emission, twisted intramolecular charge transfer, and high responsiveness to trace water and acid. Dyes Pigments, 2021, 194, 109640.
[http://dx.doi.org/10.1016/j.dyepig.2021.109640]
[http://dx.doi.org/10.1021/nl050469y] [PMID: 16178226]
[http://dx.doi.org/10.1021/jp301998d]
[http://dx.doi.org/10.1021/ja200549v]