Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Letter Article Section: Applied Materials

Methylated Barbituric Acid-Functionalized Tetraphenylethylene: Aggregation- Induced Emission, Mechanochromism, and Optical Wave-Guiding Properties

Author(s): Sheng Ge, Xiangjun Xu, Ziqiang Xu, Erjing Wang*, Dongqin Li* and Shimin Wang*

Volume 2, Issue 5, 2022

Published on: 14 June, 2022

Page: [336 - 343] Pages: 8

DOI: 10.2174/2210298102666220317110743

Abstract

Background: Restrained by the aggregation-causing quenching of conventional fluorophores, the design and synthesis of solid-state emissive materials is a persistent pursuit for scientists. The discovery of aggregation-induced emission provides an efficient strategy for preparing solidstate emissive luminogens.

Objective: A multifunctional solid-state emissive material DMBTPE was prepared from tetraphenylethylene and N-methylated barbituric acid through the construction of donor-acceptor structure.

Methods: DMBTPE showed typical aggregation-induced emission characteristics: non-emissive when molecularly dissolved in solution while strongly emissive in the aggregated state or as solid. Owing to the strong donor-acceptor interaction, the maximum absorption of DMBTPE shifted to the visible light region. DMBTPE also exhibited reversible mechanochromic fluorescence with 30-40 nm emission wavelength change.

Results: DSC and XRD results indicated the transition between the amorphous state and crystalline state was accounted for the mechanochromic fluorescence behavior. The microcrystalline rods of DMBTPE grown from hot ethanol solution exhibited good optical waveguiding effect and the optical loss was as low as 0.018 dB/μm.

Conclusion: DMBTPE was an efficient solid emitter. Such attributes enable this kind of materials to find wide applications in many areas, such as biological imaging and optoelectronic devices.

Keywords: Aggregation-induced emission, barbituric acid, mechanochromism, donor-acceptor interaction, tetraphenylethylene, optoelectronic nanodevices.

Graphical Abstract

[1]
Forrest, S.R.; Thompson, M.E. Introduction: Organic electronics and optoelectronics. Chem. Rev., 2007, 107, 923-925.
[http://dx.doi.org/10.1021/cr0501590]
[2]
Yang, Z.; Cao, J.; He, Y.; Yang, J.H.; Kim, T.; Peng, X.; Kim, J.S. Macro-/micro-environment-sensitive chemosensing and biological imag-ing. Chem. Soc. Rev., 2014, 43(13), 4563-4601.
[http://dx.doi.org/10.1039/C4CS00051J] [PMID: 24723011]
[3]
Cheng, W.; Chen, H.; Liu, C.; Ji, C.; Ma, G.; Yin, M. Functional organic dyes for health-related applications. View, 2020, 1, 20200055.
[http://dx.doi.org/10.1002/VIW.20200055]
[4]
Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B.Z. Aggregation-induced emis-sion of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. (Camb.), 2001, 37(18), 1740-1741.
[http://dx.doi.org/10.1039/b105159h] [PMID: 12240292]
[5]
(a) Li, Q.; Li, Z. Molecular packing: Another key point for the performance of organic and polymeric optoelectronic materials. Acc. Chem. Res., 2020, 53(4), 962-973.
[http://dx.doi.org/10.1021/acs.accounts.0c00060] [PMID: 32242656]
(b) Zhao, Z.; Zhang, H.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: New vistas at aggregate level. Angew. Chem. Int. Ed. Engl., 2020, 59(25), 9888-9907.
[http://dx.doi.org/10.1002/anie.201916729] [PMID: 32048428]
(c) Yang, J.; Fang, M.; Li, Z. Organic luminescent materials: The concentration on aggregates from aggregation-induced emission. Aggregate, 2020, 1, 6-18.
[http://dx.doi.org/10.1002/agt2.2]
(d) Tu, L.; Xie, Y.; Li, Z.; Tang, B. Aggregation-induced emission: Red and near-Infrared organic light-emitting diodes. SmartMat, 2021, 2, 326-346.
[http://dx.doi.org/10.1002/smm2.1060]
[6]
(a) Liu, J.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission of silole molecules and polymers: Fundamental and applications. J. Inorg. Organomet. Polym., 2009, 19, 249.
[http://dx.doi.org/10.1007/s10904-009-9282-8]
(b) Lyu, G.; Southern, T.J.F.; Charles, B.L.; Roger, M.; Gerbier, P.; Clément, S.; Evans, R.C. Aggregation-induced emission from silole-based lumophores embedded in organic-inorganic hybrid hosts. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(39), 13914-13925.
[http://dx.doi.org/10.1039/D1TC02794H] [PMID: 34745631]
[7]
(a) Wang, E.; Zhao, E.; Hong, Y.; Lam, J.W.Y.; Tang, B.Z. A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(14), 2013-2019.
[http://dx.doi.org/10.1039/C3TB21675F] [PMID: 32261636]
(b) Wang, E.; He, Z.; Zhao, E.; Meng, L.; Schütt, C.; Lam, J.W.Y.; Sung, H.H.Y.; Williams, I.D.; Huang, X.; Herges, R.; Tang, B.Z. Aggre-gation-induced-emission-active macrocycle exhibiting analogous triply and singly twisted Möbius topologies. Chem. Eur. J, 2015, 21(33), 11707-11711.
[http://dx.doi.org/10.1002/chem.201502224] [PMID: 26177730]
(c) He, Z.; Wang, E.; Lam, J.W.Y.; Li, Y.; Lin, Z.; Tang, B.Z. Aggregation-induced emission-active macrocycle: Illusory topology of the Penrose stairs. ChemPlusChem, 2015, 80(8), 1245-1249.
[http://dx.doi.org/10.1002/cplu.201500199] [PMID: 31973298]
[8]
Abdollahi, M.; Baghaei, A. Encyclopedia of Toxicology, 3rd ed; Elsevier, 2014.
[9]
(a) Koyano, H.; Yoshihara, K.; Arigo, K.; Kunitake, T.; Oishi, Y.; Kawano, O.; Kuramori, M.; Suehiro, K. Atomic force microscopic ob-servation of a dialkylmelamine monolayer on barbituric acid. Chem. Commun. (Camb.), 1996, 15, 1769-1770.
[http://dx.doi.org/10.1039/cc9960001769]
(b) Xu, J.; Wu, G.; Wang, Z.; Zhang, X. Generation of 2D organic microsheets from protonated melamine derivatives: Suppression of the self assembly of a particular dimension by introduction of alkyl chains. Chem. Sci. (Camb.), 2012, 3, 3227.
[http://dx.doi.org/10.1039/c2sc20871g]
(c) Wang, E.; Lam, J.W.Y.; Hu, R.; Zhang, C.; Zhao, Y.S.; Tang, B.Z. Twisted intramolecular charge transfer, aggregation-induced emis-sion, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2, 1801-1807.
[http://dx.doi.org/10.1039/c3tc32161d]
[10]
Sanji, T.; Nakamura, M.; Kawamata, S.; Tanaka, M.; Itagaki, S.; Gunji, T. Fluorescence “turn-on” detection of melamine with aggregation-induced-emission-active tetraphenylethene. Chemistry, 2012, 18(48), 15254-15257.
[http://dx.doi.org/10.1002/chem.201203081] [PMID: 23129529]
[11]
Kulinich, A.V.; Ishchenko, A.A.; Bondarev, S.L.; Knyukshto, V.N. Effect of donor and acceptor end-groups on electronic structure and spectral-fluorescent properties of merocyanines in frozen ethanol. J. Photoch. Photobio. A, 2021, 405, 112932.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112932]
[12]
Liang, J.; Yan, Y.; Zhao, Y.S. Organic microlaser arrays: From materials engineering to optoelectronic applications. Acc. Mater. Res., 2021, 2, 340-351.
[http://dx.doi.org/10.1021/accountsmr.1c00029]
[13]
Hu, R.; Maldonado, J.L.; Rodriguez, M.; Deng, C.; Jim, C.K.W.; Lam, J.W.Y.; Yuen, M.M.F.; Ramos-Ortiz, G.; Tang, B.Z. Luminogenic materials constructed from tetraphenylethene building blocks: Synthesis, aggregation-induced emission, two-photon absorption, light re-fraction, and explosive detection. J. Mater. Chem., 2012, 22, 232-240.
[http://dx.doi.org/10.1039/C1JM13556B]
[14]
(a) Schijndel, J.v.; Molendijk, D.; Spakman, H.; Knaven, E.; Alberto Canalle, L.; Meuldijk, J. Mechanistic considerations and characteriza-tion of ammonia-based catalytic active intermediates of the green Knoevenagel reaction of various benzaldehydes. Green Chem. Lett. Rev., 2019, 12, 323-331.
[http://dx.doi.org/10.1080/17518253.2019.1643931]
(b) Krabbe, S.W.; Do, D.T.; Johnson, J.S. Cu(II)-catalyzed aerobic hydroperoxidation of Meldrum’s acid derivatives and application in in-tramolecular oxidation: A conceptual blueprint for O2/H2 dihydroxylation. Org. Lett., 2012, 14(23), 5932-5935.
[http://dx.doi.org/10.1021/ol302848m] [PMID: 23163733]
[15]
(a) Lee, W.; Lee, D.; Kim, J-Y.; Lee, S.; Yoon, J. Imidazole and triazole head group-containing polydiacetylenes for colorimetric monitor-ing of pH and detecting HCl gas. Mater. Chem. Front., 2018, 2, 291-295.
[http://dx.doi.org/10.1039/C7QM00528H]
(b) Sun, J.; Jia, J.; Zhao, B.; Yang, J.; Singh, M.; An, Z.; Wang, H.; Xu, B.; Huang, W. A purely organic D-π-A-π-D emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED. Chin. Chem. Lett., 2021, 32, 1367-137.
[http://dx.doi.org/10.1016/j.cclet.2020.09.060]
(c) Shen, Y.; Tang, X.; Xu, Y.; Liu, H.; Zhang, S.; Yang, B.; Ma, Y. Enhanced deep-red emission in donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl. Chin. Chem. Lett., 2019, 30, 1947-1950.
[http://dx.doi.org/10.1016/j.cclet.2019.07.059]
(d) Lia, H-C.; Tang, X.; Yang, S-Y.; Qu, Y-K.; Jiang, Z-Q.; Liao, L-S. Spatial donor/acceptor architecture for intramolecular charge-transfer emitter. Chin. Chem. Lett., 2021, 32, 1245-1248.
[http://dx.doi.org/10.1016/j.cclet.2020.08.045]
[16]
(a) Dhara, A.; Sadhukhan, T.; Sheetz, E.G.; Olsson, A.H.; Raghavachari, K.; Flood, A.H. Zero-overlap fluorophores for fluorescent stud-ies at any concentration. J. Am. Chem. Soc., 2020, 142(28), 12167-12180.
[http://dx.doi.org/10.1021/jacs.0c02450] [PMID: 32539380]
(b) Grabowski, Z.R.; Rotkiewicz, K.; Rettig, W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intra-molecular charge-transfer states and structures. Chem. Rev., 2003, 103(10), 3899-4032.
[http://dx.doi.org/10.1021/cr940745l] [PMID: 14531716]
[17]
(a) Dai, W.; Bianconi, T.; Ferraguzzi, E.; Wu, X.; Lei, Y.; Shi, J.; Tong, B.; Carlotti, B.; Cai, Z.; Dong, Y. Excited-state modulation of aggre-gation-induced emission molecules for high-efficiency triplet exciton generation. ACS Mater. Lett., 2021, 3, 1767-1777.
[http://dx.doi.org/10.1021/acsmaterialslett.1c00528]
(b) Yu, H-X.; Zhi, J.; Wang, J-L. Regioisomeric AIE-active luminogens with a substituent aldehyde group for controllable and reversible photochromic behavior and sensitive fluorescence detection of hydrogen sulfite. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9, 3882-3891.
[http://dx.doi.org/10.1039/D0TC05994C]
(c) Du, F.; Li, D.; Ge, S.; Xie, S.; Tang, M.; Xu, Z. A new V-shaped 2H-imidazole-based spirocyclic fluorophore: Aggregation-induced emission, twisted intramolecular charge transfer, and high responsiveness to trace water and acid. Dyes Pigments, 2021, 194, 109640.
[http://dx.doi.org/10.1016/j.dyepig.2021.109640]
[18]
Takazawa, K.; Kitahama, Y.; Kimura, Y.; Kido, G. Optical waveguide self-assembled from organic dye molecules in solution. Nano Lett., 2005, 5(7), 1293-1296.
[http://dx.doi.org/10.1021/nl050469y] [PMID: 16178226]
[19]
Liu, T.; Li, Y.; Yan, Y.; Li, Y.; Yu, Y.; Chen, N.; Chen, S.; Liu, C.; Zhao, Y.; Liu, H. Tuning growth of low-dimensional organic nanostructures for efficient optical waveguide applications. J. Phys. Chem. C, 2012, 116, 14134-14138.
[http://dx.doi.org/10.1021/jp301998d]
[20]
Zhang, C.; Zou, C-L.; Yan, Y.; Hao, R.; Sun, F-W.; Han, Z-F.; Zhao, Y.S.; Yao, J. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J. Am. Chem. Soc., 2011, 133, 7276-7279.
[http://dx.doi.org/10.1021/ja200549v]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy