Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Oakmoss Exhibits Antihyperglycemic Activity in Streptozotocin-Induced Diabetic Rats

Author(s): Ayoub Amssayef, Ismail Bouadid and Mohamed Eddouks*

Volume 22, Issue 1, 2022

Published on: 07 July, 2022

Page: [42 - 51] Pages: 10

DOI: 10.2174/1871529X22666220316100022

Price: $65

Abstract

Aims: The study aimed to assess the antidiabetic effect of oakmoss. Background: Lichens species are dual organisms consisting of a mycobiont (Fungi) and a photoautotrophic partner (Algae). They are widely used in traditional medicine as a treatment for diabetes.

Objective: This study was designed to assess the antihyperglycemic activity as well as the antihyperlipidemic capacity of oakmoss (Evernia prunastri (L.)) in normal and streptozotocin(STZ)- induced diabetic rats.

Methods: This study has evaluated the effects of aqueous extract of oakmoss at a dose of 60 mg/kg on blood glucose levels and lipid profile in normal and STZ-induced diabetic rats. Histopathological examination of the liver, determination of glycogen content in liver and skeletal muscles (EDL and soleus), antioxidant activity, and phytochemical investigation were also performed.

Results: Both single and repeated oral doses of oakmoss (60 mg/kg) significantly reduced blood glucose, triglycerides, and very-low-density lipoprotein (VLDL) levels in diabetic rats. Furthermore, repeated oral administration of oakmoss for 7 days ameliorated the liver function by increasing its glycogen content and improving its histological architecture in treated diabetic rats. In addition, the aqueous extract of oakmoss exhibited antioxidant activity and showed richness in certain phytochemicals, especially in phenolic acids and flavonoids.

Conclusion: Oakmoss, a lichen species, exhibits a potential effect on improving hyperglycemia and hypertriglyceridemia in diabetic rats.

Keywords: Diabetic rats, hyperglycemia, streptozotocin, hypertriglyceridemia, glycogen, oakmoss.

Graphical Abstract

[1]
Punthakee, Z.; Goldenberg, R.; Katz, P. Diabetes canada clinical practice guidelines expert committee. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can. J. Diabetes, 2018, 10-15.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.003]
[2]
Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci. Rep., 2020, 10(1), 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[3]
Rehani, P.R.; Iftikhar, H.; Nakajima, M.; Tanaka, T.; Jabbar, Z.; Rehani, R.N. Safety and mode of action of diabetes medications in comparison with 5-aminolevulinic acid (5-ALA). J. Diabetes Res., 2019, 2019, 4267357.
[http://dx.doi.org/10.1155/2019/4267357] [PMID: 31781665]
[4]
Scicchitano, P.; Cameli, M.; Maiello, M.; Modesti, A.P.; Muiesan, M.L.; Novo, S.; Palmiero, P.; Saba, P.S.; Pedrinelli, R.; Ciccone, M.M. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J. Funct. Foods, 2014, 6, 11-32.
[http://dx.doi.org/10.1016/j.jff.2013.12.006]
[5]
Tran, N.; Pham, B.; Le, L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel), 2020, 9(9), 252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[6]
Crawford, S.D. Lichens used in traditional medicine. Lichen secondary metabolites.Springer: Cham; Springer: Cham, 2019, pp. 31-97.
[http://dx.doi.org/10.1007/978-3-030-16814-8_2]
[7]
Ranković, B. Lichen secondary metabolites: Bioactive properties and pharmaceutical Potential; Springer, 2019.
[http://dx.doi.org/10.1007/978-3-030-16814-8]
[8]
Miara, M.D.; Hammou, M.A.; Aoul, S.H. Phytothérapie et taxonomie des plantes médicinales spontanées dans la région de Tiaret (Algérie). Phytotherapie, 2013, 11, 206-218.
[http://dx.doi.org/10.1007/s10298-013-0789-3]
[9]
Doukkali, Z.; Bouidida, H.; Srifi, A. Les plantes anxiolytiques au Maroc. Étude ethnobotanique et ethno pharmacologique. Phytotherapie, 2015, 13, 306-313.
[http://dx.doi.org/10.1007/s10298-015-0921-z]
[10]
Eddouks, M.; Amssayef, A.; Ajebli, M.; Hebi, M. Étude ethnopharmacologique sur l’utilisation des plantes médicinales dans le traitement de la tuberculose dans le sud-est du Maroc. Phytotherapie, 2020, 18, 340-334.
[http://dx.doi.org/10.3166/phyto-2019-0200]
[11]
Kosanić, M.; Manojlović, N.; Janković, S.; Stanojković, T.; Ranković, B. Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem. Toxicol., 2013, 53, 112-118.
[http://dx.doi.org/10.1016/j.fct.2012.11.034] [PMID: 23220145]
[12]
Amssayef, A.; Ajebli, M.; Eddouks, M. Aqueous extract of oakmoss produces antihypertensive activity in L-NAME-induced hypertensive rats through sGC-cGMP pathway. Clin. Exp. Hypertens., 2021, 43(1), 49-55.
[http://dx.doi.org/10.1080/10641963.2020.1797087] [PMID: 32706597]
[13]
Amssayef, A.; Lahrach, N.; Eddouks, M. Potent antihyperglycemic effects of an endemic plant from morocco (matthiola maroccana coss.) in normal and streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(3), 434-440.
[http://dx.doi.org/10.2174/1871530320666200513081312] [PMID: 32433012]
[14]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of Mentha suaveolens ehrh in normal and streptozotocin induced diabetic rats. Nat. Prod. J., 2018.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[15]
Amssayef, A.; Eddouks, M. Antihyperglycemic, antihyperlipidemic and antioxidant effects of cotula cinerea (Del) in normal and streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(9), 1504-1513.
[http://dx.doi.org/10.2174/1871530320666200513081312] [PMID: 32400337]
[16]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[17]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[18]
Amssayef, A.; Eddouks, M. Antihyperglycemic effect of the moroccan collard green (Brassica oleracea var. viridis) in streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21, 1043-1052.
[http://dx.doi.org/10.2174/1871530320666200929141140] [PMID: 32990547]
[19]
Amssayef, A.; Eddouks, M. Acute toxicity analysis and antidiabetic effect of the moroccan spider flower (cleome arabica l.) in normal and sreptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(8), 1423-1430.
[http://dx.doi.org/10.2174/1871530320666201007150438] [PMID: 33030136]
[20]
Morris, S. The estimation of glycogen with anthrone reagent. Science, 1948, 107(2775), 254.
[http://dx.doi.org/10.1126/science.107.2775.254] [PMID: 17814729]
[21]
Carroll, N.V.; Longley, R.W.; Roe, J.H. The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem., 1956, 220(2), 583-593.
[http://dx.doi.org/10.1016/S0021-9258(18)65284-6] [PMID: 13331917]
[22]
Amssayef, A.; Azzaoui, B.; Ajebli, M.; Eddouks, M. Antidyslipidemic and antioxidant activities of matricaria pubescens (desf.) shultz.in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2021, 19(1), 62-71.
[http://dx.doi.org/10.2174/1871525718666200506100139] [PMID: 32370726]
[23]
Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O. Attenuation of salt-loading induced cardiomegaly and dyslipidemia in Wistar rats by aqueous leaf extract of Chromolaena odorata. Pharmacol. Pharm., 2014, 5, 160-170.
[http://dx.doi.org/10.4236/pp.2014.52022]
[24]
Dobiásová, M.; Frohlich, J.; Sedová, M.; Cheung, M.C.; Brown, B.G. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J. Lipid Res., 2011, 52(3), 566-571.
[http://dx.doi.org/10.1194/jlr.P011668] [PMID: 21224290]
[25]
Ikewuchi, C.C.; Ikewuchi, J.C.; Ezeka, U.K.; Ifeanacho, M.O. Effect of “edible clay” (takere) suspension on serum lipid profiles and atherogenic indices of normal Wistar rats. Food Sci. Nutr., 2019, 7(3), 977-986.
[http://dx.doi.org/10.1002/fsn3.910] [PMID: 30918640]
[26]
Ojiako, O.A.; Nwanjo, H.U. Effects of pioglitazone on atherogenic risk predictor indices of alloxan-induced diabetic rabbits. Biokemistri, 2005, 17, 179-184.
[27]
Amssayef, A.; Ajebli, M.; Eddouks, M. Antihyperglycemic potential of Matricaria pubescens (Desf.) Schultz. in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2020, 20(4), 297-304.
[http://dx.doi.org/10.2174/1871529X20666200630112610] [PMID: 32603288]
[28]
Ajebli, M.; Amssayef, A.; Eddouks, M. Antihyperglycemic activity and safety assessment of the aqueous extract of aerial parts of scorzonera undulata ssp deliciosa in rat. Cardiovasc. Hematol. Disord. Drug Targets, 2020, 20(4), 305-316.
[http://dx.doi.org/10.2174/1871529X20666200827113029] [PMID: 32860366]
[29]
Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.R.; Miraldi, E.; Biagi, M. Phytotherapy in the management of diabetes: a review. Molecules, 2018, 23(1), E105.
[http://dx.doi.org/10.3390/molecules23010105] [PMID: 29300317]
[30]
Nazarian-Samani, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Medicinal plants with multiple effects on diabetes mellitus and its complications: A systematic review. Curr. Diab. Rep., 2018, 18(10), 72.
[http://dx.doi.org/10.1007/s11892-018-1042-0] [PMID: 30105479]
[31]
Schofield, J.D.; Liu, Y.; Rao-Balakrishna, P.; Malik, R.A.; Soran, H. Diabetes dyslipidemia. Diabetes Ther., 2016, 7(2), 203-219.
[http://dx.doi.org/10.1007/s13300-016-0167-x] [PMID: 27056202]
[32]
Hirano, T. Pathophysiology of diabetic dyslipidemia. J. Atheroscler. Thromb., 2018, 25(9), 771-782.
[http://dx.doi.org/10.5551/jat.RV17023] [PMID: 29998913]
[33]
Ferrer, J.C.; Favre, C.; Gomis, R.R.; Fernández-Novell, J.M.; García-Rocha, M.; de la Iglesia, N.; Cid, E.; Guinovart, J.J. Control of glycogen deposition. FEBS Lett., 2003, 546(1), 127-132.
[http://dx.doi.org/10.1016/S0014-5793(03)00565-9] [PMID: 12829248]
[34]
Vats, V.; Yadav, S.P.; Grover, J.K. Effect of T. foenumgraecum on glycogen content of tissues and the key enzymes of carbohydrate metabolism. J. Ethnopharmacol., 2003, 85(2-3), 237-242.
[http://dx.doi.org/10.1016/S0378-8741(03)00022-9] [PMID: 12639747]
[35]
Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative stress and diabetes: antioxidative strategies. Front. Med., 2020, 14(5), 583-600.
[http://dx.doi.org/10.1007/s11684-019-0729-1] [PMID: 32248333]
[36]
Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients, 2016, 8(1), 17.
[http://dx.doi.org/10.3390/nu8010017] [PMID: 26742071]
[37]
Xu, J.; Wang, S.; Feng, T.; Chen, Y.; Yang, G. Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. J. Cell. Mol. Med., 2018, 22(12), 6026-6038.
[http://dx.doi.org/10.1111/jcmm.13876] [PMID: 30324705]
[38]
Ajebli, M.; Eddouks, M. The promising role of plant tannins as bioactive antidiabetic agents. Curr. Med. Chem., 2019, 26(25), 4852-4884.
[http://dx.doi.org/10.2174/0929867325666180605124256] [PMID: 29874989]
[39]
Ingelfinger, R.; Henke, M.; Roser, L.; Ulshöfer, T.; Calchera, A.; Singh, G.; Parnham, M.J.; Geisslinger, G.; Fürst, R.; Schmitt, I.; Schiffmann, S. Unraveling the pharmacological potential of lichen extracts in the context of cancer and inflammation with a broad screening approach. Front. Pharmacol., 2020, 11, 1322.
[http://dx.doi.org/10.3389/fphar.2020.01322] [PMID: 33013369]
[40]
Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol., 2012, 50(6), 778-798.
[http://dx.doi.org/10.3109/13880209.2011.633089] [PMID: 22471936]
[41]
Kekuda, T.P.; Lavanya, D.; Pooja, R. Lichens as promising resources of enzyme inhibitors: A review. J. Drug Deliv. Ther., 2019, 9(2), 665-676.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy