Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Differential Response to Three Antidepressants in Patients with Major Depressive Episode Who Suffered Covid-19-Related Trauma

Author(s): Sergio De Filippis, Ginevra Lombardozzi*, Marta Matrone, Emanuela Amici, Giada Trovini, Filippo Perrini, Alessandro Di Giovanni, Valeria Giovanetti and Georgios D. Kotzalidis*

Volume 20, Issue 12, 2022

Published on: 22 August, 2022

Page: [2393 - 2407] Pages: 15

DOI: 10.2174/1570159X20666220310122849

Price: $65

Abstract

Background: The Covid 19 pandemic might have impacted response to drug treatment in major depressive episode (MDE). We compared responses to three different antidepressant drugs, i.e., vortioxetine, sertraline, and trazodone, in outpatients with MDE during Major Depressive Disorder (MDD), Bipolar Disorder (BD), or schizophrenia and related psychoses (SSOPDs) during two time periods, i.e., before and after suffering Covid-19-related trauma.

Methods: We conducted an observational study on clinically stabilised for at least 6 months outpatients with MDE during the course of MDD (N=58), BD (N=33), or SSOPDs (N=51). Patients, whose baseline assessments of Montgomery-Åsberg Rating Scale (MADRS), Hamilton Anxiety Rating Scale (Ham-A), Brief Psychiatric Rating Scale (BPRS), Visual Analogue Scale for Craving (VAS-crav) and World Health Organization Quality of Life, Brief version (WHOQOL-BREF) were available, were recruited at the time they suffered Covid-19-related traumas. Fifty patients, prior to the pandemic, when they were clinically stable, were treated with 15 mg/die vortioxetine, 44 with 450 mg/die trazodone, and 48 with 150 mg/die sertraline. After experiencing a major Covid-19-related personal trauma, patients showed clinical worsening which required dosage adjustment (20 mg/day vortioxetine; 600 mg/day trazodone, and 200 mg/day sertraline) and, for some of them, hospitalisation. Scores on the MADRS, Ham-A, BPRS, VAS-crav and WHOQOL-BREF were compared drug-wise and genderwise with Student’s t test for continuous variables and Χ2 for categorical variables.

Results: The sample consisted of 142 outpatients (age, mean 39.63 ± 16.84; 70 men and 72 women); women were older than men (mean age 43.18 ± 17.61 vs. 35.98 ± 15.30; p=0.01). The two genders did not differ on other variables. For all treatments, worsening symptoms were observed at the time of trauma, followed by slow recovery with treatment readjustment. Trauma-related worsening in patients on vortioxetine was less intense than patients on the other two antidepressants and recovery was faster. All drugs were associated with an improvement in QoL. The vortioxetine group showed a lower hospitalisation rate (24%) than sertraline (35.4%) and trazodone (38.6%), but this was not significant (p=0.27).

Conclusion: All drugs improved symptoms of Covid-19 trauma in patients with MDE, with vortioxetine showing a small advantage. No differences between vortioxetine, sertraline and trazodone were found as concerning the need for hospitalisation.

Keywords: Covid-19, Major Depressive Episode, Vortioxetine, Sertraline, Trazodone, Pandemic-related trauma, Anxiety, Quality of Life, Craving, Substance Use Disorders, Hospitalization

Graphical Abstract

[1]
Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[2]
Pierce, M.; Hope, H.; Ford, T.; Hatch, S.; Hotopf, M.; John, A.; Kontopantelis, E.; Webb, R.; Wessely, S.; McManus, S.; Abel, K.M. Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet Psychiatry, 2020, 7(10), 883-892.
[http://dx.doi.org/10.1016/S2215-0366(20)30308-4] [PMID: 32707037]
[3]
Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry, 2020, 7(7), 611-627.
[http://dx.doi.org/10.1016/S2215-0366(20)30203-0] [PMID: 32437679]
[4]
Janiri, D.; Carfì, A.; Kotzalidis, G.D.; Bernabei, R.; Landi, F.; Sani, G. Posttraumatic stress disorder in patients after severe COVID-19 infection. JAMA Psychiatry, 2021, 78(5), 567-569.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.0109] [PMID: 33599709]
[5]
International Federation of Red Cross and Red Crescent Societies. UNICEF, WHO. Social stigma associated with COVID‐19. A guide to preventing and addressing social stigma; International Federation of Red Cross and Red Crescent Societies: Geneva, CH, 2020.
[6]
Kofman, Y.B.; Garfin, D.R. Home is not always a haven: The domestic violence crisis amid the COVID-19 pandemic. Psychol. Trauma, 2020, 12(S1), S199-S201.
[http://dx.doi.org/10.1037/tra0000866] [PMID: 32478558]
[7]
World Health Organization. Mental health and psychosocial considerations during the COVID‐19 outbreak; World Health Organization: Geneva, CH, 2020.
[8]
Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatr., 2020, 52, 102066.
[http://dx.doi.org/10.1016/j.ajp.2020.102066] [PMID: 32302935]
[9]
Zhang, L.; Pan, R.; Cai, Y.; Pan, J. The prevalence of post-traumatic stress disorder in the general population during the COVID-19 pandemic: A systematic review and single-arm meta-analysis. Psychiatry Investig., 2021, 18(5), 426-433.
[http://dx.doi.org/10.30773/pi.2020.0458] [PMID: 33910325]
[10]
Shinn, A.K.; Viron, M. Perspectives on the COVID-19 pandemic and individuals with serious mental illness. J Clin Psychiatry, 2020, 81(3), 20com13412.
[http://dx.doi.org/10.4088/JCP.20com13412] [PMID: 32369691]
[11]
Yao, H.; Chen, J.H.; Xu, Y.F. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry, 2020, 7(4), e21.
[http://dx.doi.org/10.1016/S2215-0366(20)30090-0] [PMID: 32199510]
[12]
Wang, Q.; Xu, R.; Volkow, N.D. Increased risk of COVID-19 infection and mortality in people with mental disorders: analysis from electronic health records in the United States. World Psychiatry, 2021, 20(1), 124-130.
[http://dx.doi.org/10.1002/wps.20806] [PMID: 33026219]
[13]
Nemani, K.; Li, C.; Olfson, M.; Blessing, E.M.; Razavian, N.; Chen, J.; Petkova, E.; Goff, D.C. Association of psychiatric disorders with mortality among patients with COVID-19. JAMA Psychiatry, 2021, 78(4), 380-386.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.4442] [PMID: 33502436]
[14]
Adhanom Ghebreyesus, T. Addressing mental health needs: an integral part of COVID-19 response. World Psychiatry, 2020, 19(2), 129-130.
[http://dx.doi.org/10.1002/wps.20768] [PMID: 32394569]
[15]
Steel, Z.; Marnane, C.; Iranpour, C.; Chey, T.; Jackson, J.W.; Patel, V.; Silove, D. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. Int. J. Epidemiol., 2014, 43(2), 476-493.
[http://dx.doi.org/10.1093/ije/dyu038] [PMID: 24648481]
[16]
Li, J.; Yang, Z.; Qiu, H.; Wang, Y.; Jian, L.; Ji, J.; Li, K. Anxiety and depression among general population in China at the peak of the COVID-19 epidemic. World Psychiatry, 2020, 19(2), 249-250.
[http://dx.doi.org/10.1002/wps.20758] [PMID: 32394560]
[17]
Maes, M.; Christophe, A.; Delanghe, J.; Altamura, C.; Neels, H.; Meltzer, H.Y. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res., 1999, 85(3), 275-291.
[http://dx.doi.org/10.1016/S0165-1781(99)00014-1] [PMID: 10333380]
[18]
Fourrier, C.; Sampson, E.; Mills, N.T.; Baune, B.T. Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo. Trials, 2018, 19(1), 447.
[http://dx.doi.org/10.1186/s13063-018-2829-7] [PMID: 30126458]
[19]
Tomaz, V.S.; Chaves Filho, A.J.M.; Cordeiro, R.C.; Jucá, P.M.; Soares, M.V.R.; Barroso, P.N.; Cristino, L.M.F.; Jiang, W.; Teixeira, A.L.; de Lucena, D.F.; Macedo, D.S. Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression. J. Affect. Disord., 2020, 268, 188-200.
[http://dx.doi.org/10.1016/j.jad.2020.03.022] [PMID: 32174477]
[20]
Nobile, B.; Durand, M.; Olié, E.; Guillaume, S.; Molès, J-P.; Haffen, E.; Courtet, P. The anti-inflammatory effect of the tricyclic antidepressant clomipramine and its high penetration in the brain might be useful to prevent the psychiatric consequences of SARS-CoV-2 infection. Front. Pharmacol., 2021, 12, 615695.
[http://dx.doi.org/10.3389/fphar.2021.615695] [PMID: 33767623]
[21]
Keepers, G.A.; Fochtmann, L.J.; Anzia, J.M.; Benjamin, S.; Lyness, J.M.; Mojtabai, R.; Servis, M.; Walaszek, A.; Buckley, P.; Lenzenweger, M.F.; Young, A.S.; Degenhardt, A.; Hong, S.H. (Systematic Review). The American Psychiatric Association Practice Guideline for the Treatment of Patients With Schizophrenia. Am. J. Psychiatry, 2020, 177(9), 868-872.
[http://dx.doi.org/10.1176/appi.ajp.2020.177901] [PMID: 32867516]
[22]
Malhi, G.S.; Bell, E.; Bassett, D.; Boyce, P.; Bryant, R.; Hazell, P.; Hopwood, M.; Lyndon, B.; Mulder, R.; Porter, R.; Singh, A.B.; Murray, G. The 2020 Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust. N. Z. J. Psychiatry, 2021, 55(1), 7-117.
[http://dx.doi.org/10.1177/0004867420979353] [PMID: 33353391]
[23]
Kotzalidis, G.D.; Lombardozzi, G.; Matrone, M.; Amici, E.; Perrini, F.; Cuomo, I.; De Filippis, S. Vortioxetine vs. other antidepressants in patients with major depressive episode with or without substance use disorder. Curr. Neuropharmacol., 2021, 19(12), 2296-2307.
[http://dx.doi.org/10.2174/1570159X19666210113150123] [PMID: 33441069]
[24]
Bang-Andersen, B.; Ruhland, T.; Jørgensen, M.; Smith, G.; Frederiksen, K.; Jensen, K.G.; Zhong, H.; Nielsen, S.M.; Hogg, S.; Mørk, A.; Stensbøl, T.B. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem., 2011, 54(9), 3206-3221.
[http://dx.doi.org/10.1021/jm101459g] [PMID: 21486038]
[25]
Okada, M.; Matsumoto, R.; Yamamoto, Y.; Fukuyama, K. Effects of subchronic administrations of vortioxetine, lurasidone, and escitalopram on thalamocortical glutamatergic transmission associated with serotonin 5-HT7 receptor. Int. J. Mol. Sci., 2021, 22(3), 1351.
[http://dx.doi.org/10.3390/ijms22031351] [PMID: 33572981]
[26]
Koesters, M.; Ostuzzi, G.; Guaiana, G.; Breilmann, J.; Barbui, C. Vortioxetine for depression in adults. Cochrane Database Syst. Rev., 2017, 7(7), CD011520.
[http://dx.doi.org/10.1002/14651858] [PMID: 28677828]
[27]
Talmon, M.; Rossi, S.; Pastore, A.; Cattaneo, C.I.; Brunelleschi, S.; Fresu, L.G. Vortioxetine exerts anti-inflammatory and immunomodulatory effects on human monocytes/macrophages. Br. J. Pharmacol., 2018, 175(1), 113-124.
[http://dx.doi.org/10.1111/bph.14074] [PMID: 29057467]
[28]
Wang, Y.; Gu, J.H.; Liu, L.; Liu, Y.; Tang, W.Q.; Ji, C.H.; Guan, W.; Zhao, X.Y.; Sun, Y.F.; Xu, D.W.; Jiang, B. Hippocampal PPARα plays a role in the pharmacological mechanism of vortioxetine, a multimodal-acting antidepressant. Front. Pharmacol., 2021, 12, 673221.
[http://dx.doi.org/10.3389/fphar.2021.673221] [PMID: 34211395]
[29]
Shin, J.J.; Saadabadi, A. Trazodone. In: StatPearls; StatPearls Publishing: Treasure Island, (FL), 2021. https://www.ncbi.nlm.nih.gov/books/NBK470560/ Accessed on June 23, 2021
[30]
Daniele, S.; Zappelli, E.; Martini, C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J. Neuroinflammation, 2015, 12(1), 225.
[http://dx.doi.org/10.1186/s12974-015-0446-x] [PMID: 26627476]
[31]
Hoozemans, J.J.; van Haastert, E.S.; Nijholt, D.A.; Rozemuller, A.J.; Eikelenboom, P.; Scheper, W. The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am. J. Pathol., 2009, 174(4), 1241-1251.
[http://dx.doi.org/10.2353/ajpath.2009.080814] [PMID: 19264902]
[32]
Wilhelmus, M.M.; Verhaar, R.; Andringa, G.; Bol, J.G.; Cras, P.; Shan, L.; Hoozemans, J.J.; Drukarch, B. Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson’s disease brain. Brain Pathol., 2011, 21(2), 130-139.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00429.x] [PMID: 20731657]
[33]
Stutzbach, L.D.; Xie, S.X.; Naj, A.C.; Albin, R.; Gilman, S.; Lee, V.M.; Trojanowski, J.Q.; Devlin, B.; Schellenberg, G.D. The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol. Commun., 2013, 1(1), 31.
[http://dx.doi.org/10.1186/2051-5960-1-31] [PMID: 24252572]
[34]
Hoozemans, J.J.; van Haastert, E.S.; Eikelenboom, P.; de Vos, R.A.; Rozemuller, J.M.; Scheper, W. Activation of the unfolded protein response in Parkinson’s disease. Biochem. Biophys. Res. Commun., 2007, 354(3), 707-711.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.043] [PMID: 17254549]
[35]
Halliday, M.; Radford, H.; Zents, K.A.M.; Molloy, C.; Moreno, J.A.; Verity, N.C.; Smith, E.; Ortori, C.A.; Barrett, D.A.; Bushell, M.; Mallucci, G.R. Repurposed drugs targeting eIF2&α-P-mediated translational repression prevent neurodegeneration in mice. Brain, 2017, 140(6), 1768-1783.
[http://dx.doi.org/10.1093/brain/awx074] [PMID: 28430857]
[36]
Emam, A.M.; Saad, M.A.; Ahmed, N.A.; Zaki, H.F. Vortioxetine mitigates neuronal damage by restricting PERK/eIF2α/ATF4/CHOP signaling pathway in rats subjected to focal cerebral ischemia-reperfusion. Life Sci., 2021, 283, 119865.
[http://dx.doi.org/10.1016/j.lfs.2021.119865] [PMID: 34358549]
[37]
Kelmendi, B.; Adams, T.G.; Yarnell, S.; Southwick, S.; Abdallah, C.G.; Krystal, J.H. PTSD: from neurobiology to pharmacological treatments. Eur. J. Psychotraumatol., 2016, 7(1), 31858.
[http://dx.doi.org/10.3402/ejpt.v7.31858] [PMID: 27837583]
[38]
U.S. Department of Veterans Affairs. VA/DoD clinical practice guidelines: management of posttraumatic stress disorder and acute stress reaction; US Department of Veterans Affairs: Washington, DC, 2017.
[39]
American Psychological Association (APA). Clinical Practice Guideline for the Treatment of Posttraumatic Stress Disorder (PTSD) in Adults; American Psychological Association: Washington, DC, 2017.
[40]
NICE (National Institute for Health and Care Excellence). Posttraumatic Stress Disorder NICE guideline (NG116); London (UK),, 2018. Available from: www.nice.org.uk/guidance/ng116 Accessed on June 23, 2021
[41]
Owens, M.J.; Morgan, W.N.; Plott, S.J.; Nemeroff, C.B. Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J. Pharmacol. Exp. Ther., 1997, 283(3), 1305-1322.
[PMID: 9400006]
[42]
Tatsumi, M.; Groshan, K.; Blakely, R.D.; Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol., 1997, 340(2-3), 249-258.
[http://dx.doi.org/10.1016/S0014-2999(97)01393-9] [PMID: 9537821]
[43]
Cusack, B.; Nelson, A.; Richelson, E. Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl.), 1994, 114(4), 559-565.
[http://dx.doi.org/10.1007/BF02244985] [PMID: 7855217]
[44]
Koe, B.K.; Lebel, L.A. Effects of serotoninergic agents on downregulation of beta-adrenoceptors by the selective serotonin reuptake inhibitor sertraline. Arch. Int. Pharmacodyn. Ther., 1995, 329(2), 231-244.
[PMID: 8540763]
[45]
Thomas, D.N.; Nutt, D.J.; Holman, R.B. Sertraline, a selective serotonin reuptake inhibitor modulates extracellular noradrenaline in the rat frontal cortex. J. Psychopharmacol., 1998, 12(4), 366-370.
[http://dx.doi.org/10.1177/026988119801200406] [PMID: 10065910]
[46]
Ishima, T.; Fujita, Y.; Hashimoto, K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur. J. Pharmacol., 2014, 727, 167-173.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.064] [PMID: 24508523]
[47]
Matsushima, Y.; Terada, K.; Kamei, C.; Sugimoto, Y. Sertraline inhibits nerve growth factor-induced neurite outgrowth in PC12 cells via a mechanism involving the sigma-1 receptor. Eur. J. Pharmacol., 2019, 853, 129-135.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.032] [PMID: 30902656]
[48]
Montgomery, S.A.; Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry, 1979, 134(4), 382-389.
[http://dx.doi.org/10.1192/bjp.134.4.382] [PMID: 444788]
[49]
Overall, J.E. The Brief Psychiatric Rating Scale in psychopharmacology research. In: Psychological measurements in psychopharmacology: Modern Problems in Pharmacopsychiatry 7; Pichot, P.; Oliver-Martin, R., Eds.; Karger: Basel, 1974; pp. 67-78.
[http://dx.doi.org/10.1159/000395069]
[50]
Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol., 1959, 32(1), 50-55.
[http://dx.doi.org/10.1111/j.2044-8341.1959.tb00467.x] [PMID: 13638508]
[51]
Nicholson, A.N. Visual analogue scales and drug effects in man. Br. J. Clin. Pharmacol., 1978, 6(1), 3-4.
[http://dx.doi.org/10.1111/j.1365-2125.1978.tb01673.x] [PMID: 666945]
[52]
World Health Organization (WHO). The World Health Organization Quality of Life (WHOQOL)-BREF; World Health Organization: Geneva, Switzerland, 2004.
[53]
Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika, 1965, 52(3-4), 591-611.
[http://dx.doi.org/10.1093/biomet/52.3-4.591]
[54]
Mauchly, J.W. Significance Test for Sphericity of a Normal n-Variate Distribution. Ann. Math. Stat., 1940, 11(2), 204-209.
[http://dx.doi.org/10.1214/aoms/1177731915]
[55]
Pancheri, L.; Paparo, F. Fattori terapeutici specifici e comuni in psicoanalisi: Il self-righting. Riv. Psichiatr., 2003, 38(3), 105-116. [Specific and nonspecific therapeutic factors in psychoanalysis: Self-righting]
[56]
Herman, J.L. Recovery from psychological trauma. Psychiatry Clin. Neurosci., 1998, 52(S1)(Suppl. 1), S98-S103.
[http://dx.doi.org/10.1046/j.1440-1819.1998.0520s5S145.x]
[57]
Bremner, J.D. Effects of traumatic stress on brain structure and function: relevance to early responses to trauma. J. Trauma Dissociation, 2005, 6(2), 51-68.
[http://dx.doi.org/10.1300/J229v06n02_06] [PMID: 16150669]
[58]
Szabó, C.; Kelemen, O.; Levy-Gigi, E.; Kéri, S. Acute response to psychological trauma and subsequent recovery: no changes in brain structure. Psychiatry Res., 2015, 231(3), 269-272.
[http://dx.doi.org/10.1016/j.pscychresns.2015.01.005] [PMID: 25659474]
[59]
Werner, G.G.; Riemann, D.; Ehring, T. Fear of sleep and trauma-induced insomnia: A review and conceptual model. Sleep Med. Rev., 2021, 55, 101383.
[http://dx.doi.org/10.1016/j.smrv.2020.101383] [PMID: 32992229]
[60]
Olfson, M.; Wall, M.; Liu, S.M.; Morin, C.M.; Blanco, C. Insomnia and impaired quality of life in the United States. J Clin Psychiatry, 2018, 79(5), 17m12020.
[http://dx.doi.org/10.4088/JCP.17m12020] [PMID: 30256547]
[61]
Alvarez, E.; Perez, V.; Artigas, F. Pharmacology and clinical potential of vortioxetine in the treatment of major depressive disorder. Neuropsychiatr. Dis. Treat., 2014, 10, 1297-1307.
[http://dx.doi.org/10.2147/NDT.S41387] [PMID: 25075188]
[62]
de Bartolomeis, A.; Fagiolini, A.; Maina, G. Vortioxetine in the treatment of major depression Riv. Psichiatr., 2016, 51(6), 215-230.
[http://dx.doi.org/10.1708/2596.26720] [PMID: 27996982]
[63]
Katona, C.L.; Katona, C.P. New generation multi-modal antidepressants: focus on vortioxetine for major depressive disorder. Neuropsychiatr. Dis. Treat., 2014, 10, 349-354.
[http://dx.doi.org/10.2147/NDT.S39544] [PMID: 24570588]
[64]
Baldwin, D.S.; Chrones, L.; Florea, I.; Nielsen, R.; Nomikos, G.G.; Palo, W.; Reines, E. The safety and tolerability of vortioxetine: Analysis of data from randomized placebo-controlled trials and open-label extension studies. J. Psychopharmacol., 2016, 30(3), 242-252.
[http://dx.doi.org/10.1177/0269881116628440] [PMID: 26864543]
[65]
Theunissen, E.L.; Street, D.; Højer, A.M.; Vermeeren, A.; van Oers, A.; Ramaekers, J.G. A randomized trial on the acute and steady-state effects of a new antidepressant, vortioxetine (Lu AA21004), on actual driving and cognition. Clin. Pharmacol. Ther., 2013, 93(6), 493-501.
[http://dx.doi.org/10.1038/clpt.2013.39] [PMID: 23588319]
[66]
Fiorentini, A.; Rovera, C.; Caldiroli, A.; Arici, C.; Prunas, C.; Di Pace, C.; Paletta, S.; Pozzoli, S.M.; Buoli, M.; Altamura, A.C. Efficacy of oral trazodone slow release following intravenous administration in depressed patients: a naturalistic study. Riv. Psichiatr., 2018, 53(5), 261-266.
[http://dx.doi.org/10.1708/3000.30005] [PMID: 30353201]
[67]
Buoli, M.; Rovera, C.; Pozzoli, S.M.; Fiorentini, A.; Cremaschi, L.; Caldiroli, A.; Altamura, A.C. Is trazodone more effective than clomipramine in major depressed outpatients? A single-blind study with intravenous and oral administration. CNS Spectr., 2019, 24(2), 258-264.
[http://dx.doi.org/10.1017/S1092852917000773] [PMID: 29081313]
[68]
Rurak, A.; Melzacka, M.; Danek, L. Pharmacokinetics of trazodone after different routes of administration. Pol. J. Pharmacol. Pharm., 1981, 33(3), 341-348.
[PMID: 7322946]
[69]
Nilsen, O.G.; Dale, O. Single dose pharmacokinetics of trazodone in healthy subjects. Pharmacol. Toxicol., 1992, 71(2), 150-153.
[http://dx.doi.org/10.1111/j.1600-0773.1992.tb00535.x] [PMID: 1438031]
[70]
Wang, L.; Pan, Y.; Ye, C.; Guo, L.; Luo, S.; Dai, S.; Chen, N.; Wang, E. A network meta-analysis of the long- and short-term efficacy of sleep medicines in adults and older adults. Neurosci. Biobehav. Rev., 2021, 131, 489-496.
[http://dx.doi.org/10.1016/j.neubiorev.2021.09.035] [PMID: 34560134]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy