Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification and Verification of Potential Core Genes in Pediatric Septic Shock

Author(s): Zhihao Xu, Meiling Jiang, Xiwen Bai, Lianlei Ding, Pengzhi Dong and Meixiu Jiang*

Volume 25, Issue 13, 2022

Published on: 29 April, 2022

Page: [2228 - 2239] Pages: 12

DOI: 10.2174/1386207325666220310110902

Price: $65

Abstract

Background: Septic shock is a frequent and costly problem among patients in the pediatric intensive care unit (PICU) and is associated with high mortality and devastating survivor morbidity. In this study, we aimed to screen candidate biomarkers and potential therapeutic targets for septic shock.

Methods: GSE26440 dataset was downloaded from Gene Expression Omnibus (GEO), including 32 normal controls and 98 children with septic shock RNA samples from whole blood. The pathways and functional annotations of differentially expressed genes (DEGs) in the two types of samples were examined by GO and KEGG pathway enrichment analyses using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool. Protein-protein interactions (PPI) of the above-described DEGs were investigated using the Search Tool for the Retrieval of Interacting Genes (STRING) and Hub gene identification was performed by the plug-in cytoHubba in Cytoscape software.

Results: A total of 140 genes were identified as DEGs, of which 98 genes were up-regulated and 42 genes were down-regulated. GO function analysis showed that DEGs were significantly enriched in biological processes, including immune response, leukocyte activation involved in immune response, and so on. The top hub genes, namely MMP9, CEACAM8, ARG1, MCEMP1, LCN2, RETN, S100A12, GPR97, and TRAT1 were recognized from the protein-protein interaction (PPI) network. Furthermore, qRT-PCR results demonstrated that the mRNA level of MMP9, CEACAM8, ARG1, MCEMP1, LCN2, RETN, and S100A12 was elevated while GPR97 was decreased in involved mouse and human models. However, TRAT1 expression is species-dependent which was decreased in the mouse septic shock model but elevated in the human LPS-treated macrophages model.

Conclusion: Taken together, the identification and validation of several novel hub genes, especially GPR97 and TRAT1, deepen our comprehension of the molecular mechanisms of septic shock progression. These genes may be therapeutic molecular targets or diagnostic biomarkers in patients with septic shock.

Keywords: Septic shock, crucial genes, immune response, bioinformatics, GPR97, TRAT1.

Graphical Abstract

[1]
Levy, M.M.; Artigas, A.; Phillips, G.S.; Rhodes, A.; Beale, R.; Osborn, T.; Vincent, J.L.; Townsend, S.; Lemeshow, S.; Dellinger, R.P. Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: A prospective cohort study. Lancet Infect. Dis., 2012, 12(12), 919-924.
[http://dx.doi.org/10.1016/S1473-3099(12)70239-6] [PMID: 23103175]
[2]
van Zanten, A.R. The golden hour of antibiotic administration in severe sepsis: Avoid a false start striving for gold*. Crit. Care Med., 2014, 42(8), 1931-1932.
[http://dx.doi.org/10.1097/CCM.0000000000000363] [PMID: 25029127]
[3]
Lan, K.C.; Chao, S.C.; Wu, H.Y.; Chiang, C.L.; Wang, C.C.; Liu, S.H.; Weng, T.I. Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF-κB and HMGB1 pathways through the upregulation of SIRT1. Sci. Rep., 2017, 7(1), 12026.
[http://dx.doi.org/10.1038/s41598-017-12285-8] [PMID: 28931916]
[4]
Vincent, J.L.; Marshall, J.C.; Namendys-Silva, S.A.; François, B.; Martin-Loeches, I.; Lipman, J.; Reinhart, K.; Antonelli, M.; Pickkers, P.; Njimi, H.; Jimenez, E.; Sakr, Y. ICON investigators. Assessment of the worldwide burden of critical illness: The intensive care over nations (ICON) audit. Lancet Respir. Med., 2014, 2(5), 380-386.
[http://dx.doi.org/10.1016/S2213-2600(14)70061-X] [PMID: 24740011]
[5]
Shimaoka, M.; Park, E.J. Advances in understanding sepsis. Eur. J. Anaesthesiol. Suppl., 2008, 42, 146-153.
[http://dx.doi.org/10.1017/S0265021507003389] [PMID: 18289433]
[6]
Sevransky, J.E.; Martin, G.S.; Shanholtz, C.; Mendez-Tellez, P.A.; Pronovost, P.; Brower, R.; Needham, D.M. Mortality in sepsis versus non-sepsis induced acute lung injury. Crit. Care, 2009, 13(5), R150.
[http://dx.doi.org/10.1186/cc8048] [PMID: 19758459]
[7]
Stevenson, E.K.; Rubenstein, A.R.; Radin, G.T.; Wiener, R.S.; Walkey, A.J. Two decades of mortality trends among patients with severe sepsis: A comparative meta-analysis*. Crit. Care Med., 2014, 42(3), 625-631.
[http://dx.doi.org/10.1097/CCM.0000000000000026] [PMID: 24201173]
[8]
Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.L. Sepsis and septic shock. Nat. Rev. Dis. Primers, 2016, 2, 16045.
[http://dx.doi.org/10.1038/nrdp.2016.45] [PMID: 28117397]
[9]
Martin, G.S. Sepsis, severe sepsis and septic shock: Changes in incidence, pathogens and outcomes. Expert Rev. Anti Infect. Ther., 2012, 10(6), 701-706.
[http://dx.doi.org/10.1586/eri.12.50] [PMID: 22734959]
[10]
Takahashi, P.; Xavier, D.J.; Evangelista, A.F.; Manoel-Caetano, F.S.; Macedo, C.; Collares, C.V.; Foss-Freitas, M.C.; Foss, M.C.; Rassi, D.M.; Donadi, E.A.; Passos, G.A.; Sakamoto-Hojo, E.T. MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene, 2014, 539(2), 213-223.
[http://dx.doi.org/10.1016/j.gene.2014.01.075] [PMID: 24530307]
[11]
Dennis, G., Jr; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol., 2003, 4(5), 3.
[http://dx.doi.org/10.1186/gb-2003-4-5-p3] [PMID: 12734009]
[12]
Yang, J.; Zhang, S.; Zhang, J.; Dong, J.; Wu, J.; Zhang, L.; Guo, P.; Tang, S.; Zhao, Z.; Wang, H.; Zhao, Y.; Zhang, W.; Wu, F. Identification of key genes and pathways using bioinformatics analysis in septic shock children. Infect. Drug Resist., 2018, 11, 1163-1174.
[http://dx.doi.org/10.2147/IDR.S157269] [PMID: 30147344]
[13]
Liu, S.Y.; Zhang, L.; Zhang, Y.; Zhen, Y.; Wu, Y.F. Bioinformatic analysis of pivotal genes associated with septic shock. J. Biol. Regul. Homeost. Agents, 2017, 31(4), 935-941.
[PMID: 29254296]
[14]
Wu, W.; You, K.; Zhong, J.; Ruan, Z.; Wang, B. Identification of potential core genes in Kawasaki disease using bioinformatics analysis. J. Int. Med. Res., 2019, 47(9), 4051-4058.
[http://dx.doi.org/10.1177/0300060519862057] [PMID: 31387475]
[15]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[16]
von Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res., 2003, 31(1), 258-261.
[http://dx.doi.org/10.1093/nar/gkg034] [PMID: 12519996]
[17]
Saito, R.; Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Lotia, S.; Pico, A.R.; Bader, G.D.; Ideker, T. A travel guide to cytoscape plugins. Nat. Methods, 2012, 9(11), 1069-1076.
[http://dx.doi.org/10.1038/nmeth.2212] [PMID: 23132118]
[18]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[19]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[20]
An, Y.; Ni, Y.; Xu, Z.; Shi, S.; He, J.; Liu, Y.; Deng, K.Y.; Fu, M.; Jiang, M.; Xin, H.B. TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages through JNK signaling pathway. Cell. Signal., 2020, 67, 109522.
[http://dx.doi.org/10.1016/j.cellsig.2019.109522] [PMID: 31883458]
[21]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, 315(8), 801-810.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[22]
Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest, 1992, 101(6), 1644-1655.
[http://dx.doi.org/10.1378/chest.101.6.1644] [PMID: 1303622]
[23]
Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med., 2001, 29(7), 1303-1310.
[http://dx.doi.org/10.1097/00003246-200107000-00002] [PMID: 11445675]
[24]
Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med., 2003, 348(16), 1546-1554.
[http://dx.doi.org/10.1056/NEJMoa022139] [PMID: 12700374]
[25]
Bosmann, M.; Ward, P.A. The inflammatory response in sepsis. Trends Immunol., 2013, 34(3), 129-136.
[http://dx.doi.org/10.1016/j.it.2012.09.004] [PMID: 23036432]
[26]
Lelubre, C.; Vincent, J.L. Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol., 2018, 14(7), 417-427.
[http://dx.doi.org/10.1038/s41581-018-0005-7] [PMID: 29691495]
[27]
Rimmelé, T.; Payen, D.; Cantaluppi, V.; Marshall, J.; Gomez, H.; Gomez, A.; Murray, P.; Kellum, J.A.; Workgroup, A.X. ADQI XIV Workgroup. Immune cell phenotype and function in sepsis. Shock, 2016, 45(3), 282-291.
[http://dx.doi.org/10.1097/SHK.0000000000000495] [PMID: 26529661]
[28]
Inoue, S.; Sato, T.; Suzuki-Utsunomiya, K.; Komori, Y.; Hozumi, K.; Chiba, T.; Yahata, T.; Nakai, K.; Inokuchi, S. Sepsis-induced hypercytokinemia and lymphocyte apoptosis in aging-accelerated Klotho knockout mice. Shock, 2013, 39(3), 311-316.
[http://dx.doi.org/10.1097/SHK.0b013e3182845445] [PMID: 23364432]
[29]
Yazdan-Ashoori, P.; Liaw, P.; Toltl, L.; Webb, B.; Kilmer, G.; Carter, D.E.; Fraser, D.D.; Translation, C.C.C. Elevated plasma matrix metalloproteinases and their tissue inhibitors in patients with severe sepsis. J. Crit. Care, 2011, 26(6), 556-565.
[http://dx.doi.org/10.1016/j.jcrc.2011.01.008] [PMID: 21439766]
[30]
Martins, P.S.; Brunialti, M.K.; Martos, L.S.; Machado, F.R.; Assunçao, M.S.; Blecher, S.; Salomao, R. Expression of cell surface receptors and oxidative metabolism modulation in the clinical continuum of sepsis. Crit. Care, 2008, 12(1), R25.
[http://dx.doi.org/10.1186/cc6801] [PMID: 18302745]
[31]
Mathias, B.; Delmas, A.L.; Ozrazgat-Baslanti, T.; Vanzant, E.L.; Szpila, B.E.; Mohr, A.M.; Moore, F.A.; Brakenridge, S.C.; Brumback, B.A.; Moldawer, L.L.; Efron, P.A. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann. Surg., 2017, 265(4), 827-834.
[http://dx.doi.org/10.1097/SLA.0000000000001783] [PMID: 27163951]
[32]
Chen, J.X.; Xu, X.; Zhang, S. Silence of long noncoding RNA NEAT1 exerts suppressive effects on immunity during sepsis by promoting microRNA-125-dependent MCEMP1 downregulation. IUBMB Life, 2019, 71(7), 956-968.
[http://dx.doi.org/10.1002/iub.2033] [PMID: 30883005]
[33]
Wang, B.; Chen, G.; Zhang, J.; Xue, J.; Cao, Y.; Wu, Y. Increased neutrophil gelatinase-associated lipocalin is associated with mortality and multiple organ dysfunction syndrome in severe sepsis and septic shock. Shock, 2015, 44(3), 234-238.
[http://dx.doi.org/10.1097/SHK.0000000000000408] [PMID: 26009825]
[34]
Macdonald, S.P.J.; Stone, S.F.; Neil, C.L.; van Eeden, P.E.; Fatovich, D.M.; Arendts, G.; Brown, S.G.A. Sustained elevation of resistin, NGAL and IL-8 are associated with severe sepsis/septic shock in the emergency department. PLoS One, 2014, 9(10), e110678.
[http://dx.doi.org/10.1371/journal.pone.0110678] [PMID: 25343379]
[35]
Achouiti, A.; Föll, D.; Vogl, T.; van Till, J.W.O.; Laterre, P.F.; Dugernier, T.; Wittebole, X.; Boermeester, M.A.; Roth, J.; van der Poll, T.; van Zoelen, M.A.D. S100A12 and soluble receptor for advanced glycation end products levels during human severe sepsis. Shock, 2013, 40(3), 188-194.
[http://dx.doi.org/10.1097/SHK.0b013e31829fbc38] [PMID: 23846410]
[36]
Gordon, S.; Hamann, J.; Lin, H.H.; Stacey, M. F4/80 and the related adhesion-GPCRs. Eur. J. Immunol., 2011, 41(9), 2472-2476.
[http://dx.doi.org/10.1002/eji.201141715] [PMID: 21952799]
[37]
Lin, H.H.; Hsiao, C.C.; Pabst, C.; Hebert, J.; Schoneberg, T.; Hamann, J. Adhesion GPCRs in regulating immune responses and inflammation. Adv. Immunol., 2017, 136, 163-201.
[38]
Peng, Y.M.; van de Garde, M.D.B.; Cheng, K.F.; Baars, P.A.; Remmerswaal, E.B.M.; van Lier, R.A.W.; Mackay, C.R.; Lin, H.H.; Hamann, J. Specific expression of GPR56 by human cytotoxic lymphocytes. J. Leukoc. Biol., 2011, 90(4), 735-740.
[http://dx.doi.org/10.1189/jlb.0211092] [PMID: 21724806]
[39]
Wang, J.J.; Zhang, L.L.; Zhang, H.X.; Shen, C.L.; Lu, S.Y.; Kuang, Y.; Wan, Y.H.; Wang, W.G.; Yan, H.M.; Dang, S.Y.; Fei, J.; Jin, X.L.; Wang, Z.G. Gpr97 is essential for the follicular versus marginal zone B-lymphocyte fate decision. Cell Death Dis., 2013, 4, e853.
[http://dx.doi.org/10.1038/cddis.2013.346] [PMID: 24113187]
[40]
Valtcheva, N.; Primorac, A.; Jurisic, G.; Hollmén, M.; Detmar, M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J. Biol. Chem., 2013, 288(50), 35736-35748.
[http://dx.doi.org/10.1074/jbc.M113.512954] [PMID: 24178298]
[41]
Shi, J.; Zhang, X.; Wang, S.; Wang, J.; Du, B.; Wang, Z.; Liu, M.; Jiang, W.; Qian, M.; Ren, H. Gpr97 is dispensable for metabolic syndrome but is involved in macrophage inflammation in high-fat diet-induced obesity in mice. Sci. Rep., 2016, 6, 24649.
[http://dx.doi.org/10.1038/srep24649] [PMID: 27089991]
[42]
Fang, W.; Wang, Z.; Li, Q.; Wang, X.; Zhang, Y.; Sun, Y.; Tang, W.; Ma, C.; Sun, J.; Li, N.; Yi, F. Gpr97 exacerbates AKI by mediating sema3A signaling. J. Am. Soc. Nephrol., 2018, 29(5), 1475-1489.
[http://dx.doi.org/10.1681/ASN.2017080932] [PMID: 29531097]
[43]
Bruyns, E.; Marie-Cardine, A.; Kirchgessner, H.; Sagolla, K.; Shevchenko, A.; Mann, M.; Autschbach, F.; Bensussan, A.; Meuer, S.; Schraven, B. T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR-CD3-zeta complex, recruits intracellular signaling proteins to the plasma membrane. J. Exp. Med., 1998, 188(3), 561-575.
[http://dx.doi.org/10.1084/jem.188.3.561] [PMID: 9687533]
[44]
Kirchgessner, H.; Dietrich, J.; Scherer, J.; Isomäki, P.; Korinek, V.; Hilgert, I.; Bruyns, E.; Leo, A.; Cope, A.P.; Schraven, B. The transmembrane adaptor protein TRIM regulates T cell receptor (TCR) expression and TCR-mediated signaling via an association with the TCR zeta chain. J. Exp. Med., 2001, 193(11), 1269-1284.
[http://dx.doi.org/10.1084/jem.193.11.1269] [PMID: 11390434]
[45]
Kölsch, U.; Arndt, B.; Reinhold, D.; Lindquist, J.A.; Jüling, N.; Kliche, S.; Pfeffer, K.; Bruyns, E.; Schraven, B.; Simeoni, L. Normal T-cell development and immune functions in TRIM-deficient mice. Mol. Cell. Biol., 2006, 26(9), 3639-3648.
[http://dx.doi.org/10.1128/MCB.26.9.3639-3648.2006] [PMID: 16612002]
[46]
Valk, E.; Leung, R.; Kang, H.; Kaneko, K.; Rudd, C.E.; Schneider, H. T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity, 2006, 25(5), 807-821.
[http://dx.doi.org/10.1016/j.immuni.2006.08.024] [PMID: 17070077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy