Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Production of Effective Phyto-antimicrobials via Metabolic Engineering Strategies

Author(s): Abhishek Sharma, Vyoma Mistry, Vinay Kumar and Pragya Tiwari*

Volume 22, Issue 13, 2022

Published on: 01 April, 2022

Page: [1068 - 1092] Pages: 25

DOI: 10.2174/1568026622666220310104645

Price: $65

Abstract

The emerging outbreak of infectious diseases poses a challenge and threatens human survival. The indiscriminate use and drying pipelines of antibiotic arsenals have led to the alarming rise of drug-resistant pathogens, projecting a serious concern. The rising antimicrobial resistance and redundancy of antibiotic discovery platforms (ADPs) have highlighted the growing concern to discover new antibiotics, necessitating exploring natural products as effective alternatives to counter drug resistance. Recently, plants have been extensively investigated in search of the “phytotherapeutics”, attributed to their potential efficacy and tackling the majority of the drug-resistant mechanisms, including biofilms, efflux pumps, cell communication, and membrane proteins. However, major challenges in geographical fluctuations, low plant concentration, and over-harvestation of natural resources restrict availability and complete utilization of phyto-therapeutics as antimicrobials. Recent advances in scientific interventions have been instrumental in producing novel antimicrobials via metabolic engineering approaches in plant systems. The progress in plant genome editing, pathway reconstitution, and expression has defined new paradigms in the successful production of antimicrobials in the post-antibiotic era. The thematic review discusses the existing and emerging significance of phytotherapeutics in tackling antimicrobial resistance and employing metabolic engineering approaches. The prevailing scenario of antimicrobial resistance and the mechanisms, the traditional and modern drug-discovery approaches in addressing antimicrobial resistance, emphasizing advances in metabolic engineering approaches for antimicrobial production, and the plausible solutions for tackling drug-resistant pathogens, forms the key theme of the article.

Keywords: Antibiotic discovery platforms, Antimicrobial resistance, Drug-resistant pathogens, Natural products, Metabolic engineering, One-Health concept, Phyto-therapeutics.

Graphical Abstract

[1]
Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial enzymes and antibiotic resistance. Acta Naturae., 2018, 10(4), 33-48.
[2]
O’Neill, J. Tackling drug-resistant infections globally: Final report and recommendations-the review on antimicrobial resistance chaired by Jim O’Neill Wellcome Trust; HM Government: London, UK, 2016.
[3]
Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; Paillard, C.; Pontier, D.; Sueur, C.; Voituron, Y. The one health concept: 10 years old and a long road ahead. Front. Vet. Sci., 2018, 5, 14.
[http://dx.doi.org/10.3389/fvets.2018.00014] [PMID: 29484301]
[4]
Wright, G.D.; Sutherland, A.D. New strategies for combating multidrug-resistant bacteria. Trends Mol. Med., 2007, 13(6), 260-267.
[http://dx.doi.org/10.1016/j.molmed.2007.04.004] [PMID: 17493872]
[5]
Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev., 2017, 30(2), 557-596.
[http://dx.doi.org/10.1128/CMR.00064-16] [PMID: 28275006]
[6]
Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol., 2009, 2(1), 40-61.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00063.x] [PMID: 21261881]
[7]
Vila, J. Fluoroquinolone resistance; White, D.G.; Alekshun, M.N.; McDermott, P.F., Eds.;: ASM Press, 2005, pp. 52-41.
[8]
Floss, H.G.; Yu, T-W. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev., 2005, 105(2), 621-632.
[http://dx.doi.org/10.1021/cr030112j] [PMID: 15700959]
[9]
Mazzei, T.; Mini, E.; Novelli, A.; Periti, P. Chemistry and mode of action of macrolides. J. Antimicrob. Chemother., 1993, 31(Suppl. C), 1-9.
[http://dx.doi.org/10.1093/jac/31.suppl_C.1] [PMID: 7683018]
[10]
Clark, J.P.; Langston, E. Ketolides: A new class of antibacterial agents for treatment of community-acquired respiratory tract infections in a primary care setting. Mayo Clin. Proc., 2003, 78(9), 1113-1124.
[http://dx.doi.org/10.4065/78.9.1113] [PMID: 12962166]
[11]
Champney, W.S.; Tober, C.L. Inhibition of translation and 50S ribosomal subunit formation in Staphylococcus aureus cells by 11 differ-ent ketolide antibiotics. Curr. Microbiol., 1998, 37(6), 418-425.
[http://dx.doi.org/10.1007/s002849900403] [PMID: 9806981]
[12]
Beyer, D.; Pepper, K. The streptogramin antibiotics: Update on their mechanism of action. Expert Opin. Investig. Drugs, 1998, 7(4), 591-599.
[http://dx.doi.org/10.1517/13543784.7.4.591] [PMID: 15991995]
[13]
Bergmann, E.D.; Sicher, S. Mode of action of Chloramphenicol. Nature volume, 1952, 170, 931-932.
[14]
Spížek, J. Řezanka, T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem. Pharmacol., 2017, 133, 20-28.
[http://dx.doi.org/10.1016/j.bcp.2016.12.001] [PMID: 27940264]
[15]
Cavallo, G.; Martinetto, P. The mechanism of action of aminoglycosides. G. Batteriol. Virol. Immunol., 1981, 74(7-12), 335-346.
[PMID: 6182050]
[16]
Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial re-sistance. Microbiol. Mol. Biol. Rev., 2001, 65(2), 232-260.
[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]
[18]
Gleckman, R.; Blagg, N.; Joubert, D.W. Trimethoprim: Mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinet-ics, adverse reactions, and therapeutic indications. Pharmacotherapy, 1981, 1(1), 14-20.
[http://dx.doi.org/10.1002/j.1875-9114.1981.tb03548.x] [PMID: 6985448]
[19]
Williamson, R.; Collatz, E.; Gutmann, L. Mechanisms of action of beta-lactam antibiotics and mechanisms of non-enzymatic resistance. Presse Med., 1986, 15(46), 2282-2289.
[PMID: 2949269]
[20]
Reynolds, P.E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis., 1989, 8(11), 943-950.
[http://dx.doi.org/10.1007/BF01967563] [PMID: 2532132]
[21]
Silver, L.L. Fosfomycin: Mechanism and resistance. Cold Spring Harb. Perspect. Med., 2017, 7(2), a025262.
[http://dx.doi.org/10.1101/cshperspect.a025262] [PMID: 28062557]
[24]
Tiwari, P.; Srivastava, Y.; Bae, H. Trends of pharmaceutical design of endophytes as anti-infective. Curr. Top. Med. Chem., 2021, 21(17), 1572-1586.
[http://dx.doi.org/10.2174/1568026621666210524093234] [PMID: 34030614]
[25]
WHO (World Health Organization), 2011. Regional committee for Europe. European strategic action plan on antibiotic resistance, Copenhagen. Available from: https://www.euro.who.int/data/assets/pdf_file/0008/147734/wd14E_AntibioticResistance
[26]
Yu, Z.; Tang, J.; Khare, T.; Kumar, V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the res-cue? Fitoterapia, 2020, 140(104433), 104433.
[http://dx.doi.org/10.1016/j.fitote.2019.104433] [PMID: 31760066]
[27]
Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol., 2020, 18(5), 275-285.
[http://dx.doi.org/10.1038/s41579-019-0288-0] [PMID: 31745331]
[28]
Aghayan, S.S.; Kalalian Mogadam, H.; Fazli, M.; Darban-Sarokhalil, D.; Khoramrooz, S.S.; Jabalameli, F.; Yaslianifard, S.; Mirzaii, M. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas aeruginosa isolated from burn infections. Avicenna J. Med. Biotechnol., 2017, 9(1), 2-7.
[PMID: 28090273]
[29]
Borges, A.; Serra, S.; Cristina Abreu, A.; Saavedra, M.J.; Salgado, A.; Simões, M. Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling, 2014, 30(2), 183-195.
[http://dx.doi.org/10.1080/08927014.2013.852542] [PMID: 24344870]
[30]
Côté, H.; Pichette, A.; Simard, F.; Ouellette, M.E.; Ripoll, L.; Mihoub, M.; Grimard, D.; Legault, J. Balsacone C, a new antibiotic targeting bacterial cell membranes, inhibits clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) without inducing resistance. Front. Microbiol., 2019, 10, 2341.
[http://dx.doi.org/10.3389/fmicb.2019.02341] [PMID: 31681206]
[31]
Smanski, M.J.; Zhou, H.; Claesen, J.; Shen, B.; Fischbach, M.A.; Voigt, C.A. Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol., 2016, 14(3), 135-149.
[http://dx.doi.org/10.1038/nrmicro.2015.24] [PMID: 26876034]
[32]
Chahardoli, M.; Fazeli, A.; Niazi, A.; Ghabooli, M. Recombinant expression of LF chimera antimicrobial peptide in a plant-based expres-sion system and its antimicrobial activity against clinical and phytopathogenic bacteria. Biotechnol. Biotechnol. Equip., 2018, 32(3), 714-723.
[http://dx.doi.org/10.1080/13102818.2018.1451780]
[33]
Levy, S.B. Antibiotic resistance: Consequences of inaction. Clin. Infect. Dis., 2001, 33(s3)(Suppl. 3), S124-S129.
[http://dx.doi.org/10.1086/321837] [PMID: 11524708]
[34]
Magiorakos, A-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G. Ols-son-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[35]
WHO. 2017. Available from: https://www.who.int/
[36]
Dorman, S.E.; Chaisson, R.E. From magic bullets back to the magic mountain: The rise of extensively drug-resistant tuberculosis. Nat. Med., 2007, 13(3), 295-298.
[http://dx.doi.org/10.1038/nm0307-295] [PMID: 17342143]
[37]
Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014, 2014, 541340.
[http://dx.doi.org/10.1155/2014/541340] [PMID: 25140175]
[38]
Jaumaux, F.; Gómez de Cadiñanos, L.P.; Gabant, P. Perspective in the age of synthetic biology, will antimicrobial peptides be the next generation of antibiotics? Antibiotics (Basel), 2020, 9, 484-497.
[http://dx.doi.org/10.3390/antibiotics9080484]
[39]
Ibrahim, O.M.; Polk, R.E. Benchmarking antimicrobial drug use in hospitals. Expert Rev. Anti Infect. Ther., 2012, 10(4), 445-457.
[http://dx.doi.org/10.1586/eri.12.18] [PMID: 22512754]
[40]
McNulty, C.A.; Boyle, P.; Nichols, T.; Clappison, P.; Davey, P. Don’t wear me out--the public’s knowledge of and attitudes to antibiotic use. J. Antimicrob. Chemother., 2007, 59(4), 727-738.
[http://dx.doi.org/10.1093/jac/dkl558] [PMID: 17307770]
[41]
André, M.; Vernby, A.; Berg, J.; Lundborg, C.S. A survey of public knowledge and awareness related to antibiotic use and resistance in Sweden. J. Antimicrob. Chemother., 2010, 65(6), 1292-1296.
[http://dx.doi.org/10.1093/jac/dkq104] [PMID: 20360063]
[42]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[43]
Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[44]
Murray, I.A.; Lewendon, A.; Shaw, W.V. Stabilization of the imidazole ring of His-195 at the active site of chloramphenicol acetyltrans-ferase. J. Biol. Chem., 1991, 266(18), 11695-11698.
[http://dx.doi.org/10.1016/S0021-9258(18)99012-5] [PMID: 2050670]
[45]
Yang, W.; Moore, I.F.; Koteva, K.P.; Bareich, D.C.; Hughes, D.W.; Wright, G.D.; Tet, X. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem., 2004, 279(50), 52346-52352.
[http://dx.doi.org/10.1074/jbc.M409573200] [PMID: 15452119]
[46]
Lambert, P.A. Bacterial resistance to antibiotics: Modified target sites. Adv. Drug Deliv. Rev., 2005, 57(10), 1471-1485.
[http://dx.doi.org/10.1016/j.addr.2005.04.003] [PMID: 15964098]
[47]
Enright, M.C. The evolution of a resistant pathogen--the case of MRSA. Curr. Opin. Pharmacol., 2003, 3(5), 474-479.
[http://dx.doi.org/10.1016/S1471-4892(03)00109-7] [PMID: 14559091]
[48]
Eliopoulos, G.M. Quinolone resistance mechanisms in pneumococci. Clin. Infect. Dis., 2004, 38(4)(Suppl. 4), S350-S356.
[http://dx.doi.org/10.1086/382709] [PMID: 15127369]
[49]
Paulsen, I.T.; Sliwinski, M.K.; Saier, M.H. Jr Microbial genome analyses: Global comparisons of transport capabilities based on phylog-enies, bioenergetics and substrate specificities. J. Mol. Biol., 1998, 277(3), 573-592.
[http://dx.doi.org/10.1006/jmbi.1998.1609] [PMID: 9533881]
[50]
Pao, S.S.; Paulsen, I.T.; Saier, M.H. Jr Major facilitator superfamily. Microbiol. Mol. Biol. Rev., 1998, 62(1), 1-34.
[http://dx.doi.org/10.1128/MMBR.62.1.1-34.1998] [PMID: 9529885]
[51]
Paulsen, I.T.; Skurray, R.A.; Tam, R.; Saier, M.H., Jr; Turner, R.J.; Weiner, J.H.; Goldberg, E.B.; Grinius, L.L. The SMR family: A novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol. Microbiol., 1996, 19(6), 1167-1175.
[http://dx.doi.org/10.1111/j.1365-2958.1996.tb02462.x] [PMID: 8730859]
[52]
Brown, M.H.; Paulsen, I.T.; Skurray, R.A. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol. Microbiol., 1999, 31(1), 394-395.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01162.x] [PMID: 9987140]
[53]
Saier, M.H., Jr; Tam, R.; Reizer, A.; Reizer, J. Two novel families of bacterial membrane proteins concerned with nodulation, cell divi-sion and transport. Mol. Microbiol., 1994, 11(5), 841-847.
[http://dx.doi.org/10.1111/j.1365-2958.1994.tb00362.x] [PMID: 8022262]
[54]
van Veen, H.W.; Konings, W.N. The ABC family of multidrug transporters in microorganisms. Biochim. Biophys. Acta, 1998, 1365(1-2), 31-36.
[http://dx.doi.org/10.1016/S0005-2728(98)00039-5] [PMID: 9693718]
[55]
Cronquist, A.; Takhtadzhian, A.L. An integrated system of classification of flowering plants; Columbia university press: New York, 1981.
[56]
Cronquíst, A. Evolution and classification of flowering plants. AGRIS; Botanical Garden: New York, 1988. 08, pp. 932-73325. ISBN:08-932-73325
[57]
Verpoorte, R. Pharmacognosy in the new millennium: Leadfinding and biotechnology. J. Pharm. Pharmacol., 2000, 52(3), 253-262.
[http://dx.doi.org/10.1211/0022357001773931] [PMID: 10757412]
[58]
Farnsworth, N.R. The role of ethnopharmacology in drug development. Ciba Found. Symp., 1990, 154, 2-11.
[PMID: 2086037]
[59]
Solecki, R.S.; Shanidar, I. A Neanderthal flower burial in Northern Iraq. Science, 1975, 190(4217), 880-881.
[http://dx.doi.org/10.1126/science.190.4217.880]
[60]
Farnsworth, N.R.; Akerele, O.; Bingel, A.S.; Soejarto, D.D.; Guo, Z. Medicinal plants in therapy. Bull. World Health Organ., 1985, 63(6), 965-981.
[PMID: 3879679]
[61]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(1)(Suppl. 1), 69-75.
[PMID: 11250806]
[62]
Suffness, M.; Douros, J. Current status of the NCI plant and animal product program. J. Nat. Prod., 1982, 45(1), 1-14.
[http://dx.doi.org/10.1021/np50019a001] [PMID: 7069421]
[63]
Dhawan, B.N.; Dubey, M.P.; Mehrotra, B.N.; Rastogi, R.P.; Tandon, J.S. Screening of Indian plants for biological activity: Part IX. Indian J. Exp. Biol., 1980, 18(6), 594-606.
[PMID: 7439945]
[64]
Rastogi, R.P.; Dhawan, B.N. Research on medicinal plants at the central drug research institute, lucknow (India). Indian J. Med. Res., 1982, 76(Suppl.), 27-45.
[PMID: 6764455]
[65]
Owen, J.G.; Reddy, B.V.B.; Ternei, M.A.; Charlop-Powers, Z.; Calle, P.Y.; Kim, J.H.; Brady, S.F. Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc. Natl. Acad. Sci. USA, 2013, 110(29), 11797-11802.
[http://dx.doi.org/10.1073/pnas.1222159110] [PMID: 23824289]
[66]
Medina-Franco, J.L. Discovery and development of lead compounds from natural sources using computational approaches. In:Evi-dence-Based Validation of Herbal Medicine; Elsevier, 2015, pp. 455-475.
[http://dx.doi.org/10.1016/B978-0-12-800874-4.00021-0]
[67]
Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem., 2015, 15(18), 1780-1800.
[http://dx.doi.org/10.2174/1568026615666150506151101] [PMID: 25961523]
[68]
Su, X-Z.; Miller, L.H. The discovery of artemisinin and the nobel prize in physiology or medicine. Sci. China Life Sci., 2015, 58(11), 1175-1179.
[http://dx.doi.org/10.1007/s11427-015-4948-7] [PMID: 26481135]
[69]
Hammami, R.; Fliss, I. Current trends in antimicrobial agent research: Chemo- and bioinformatics approaches. Drug Discov. Today, 2010, 15(13-14), 540-546.
[http://dx.doi.org/10.1016/j.drudis.2010.05.002] [PMID: 20546918]
[70]
Klipp, E.; Schaber, J. Modelling of signal transduction in yeast - sensitivity and model analysis. In:Understanding and exploiting system biology in bioprocesses and biomedicine; Canovas, M.; Iborra, J.L.; Manjon, A., Eds.; Fundaci’on Cajamurcia, 2006, pp. 15-30.
[71]
Zhang, P.; Dreher, K.; Karthikeyan, A.; Chi, A.; Pujar, A.; Caspi, R.; Karp, P.; Kirkup, V.; Latendresse, M.; Lee, C.; Mueller, L.A.; Mul-ler, R.; Rhee, S.Y. Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruc-tion and curation of metabolic pathways for plants. Plant Physiol., 2010, 153(4), 1479-1491.
[http://dx.doi.org/10.1104/pp.110.157396] [PMID: 20522724]
[72]
Lee, E.Y.; Lee, M.W.; Fulan, B.M.; Ferguson, A.L.; Wong, G.C.L. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus, 2017, 7(6), 20160153.
[http://dx.doi.org/10.1098/rsfs.2016.0153] [PMID: 29147555]
[73]
Faccone, D.; Veliz, O.; Corso, A.; Noguera, M.; Martínez, M.; Payes, C.; Semorile, L.; Maffía, P.C. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates. Eur. J. Med. Chem., 2014, 71, 31-35.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.065] [PMID: 24269514]
[74]
Su, M.; Satola, S.W.; Read, T.D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol., 2019, 57(3), e01405-e01418.
[http://dx.doi.org/10.1128/JCM.01405-18] [PMID: 30381421]
[75]
Depledge, D.P.; Kundu, S.; Jensen, N.J.; Gray, E.R.; Jones, M.; Steinberg, S.; Gershon, A.; Kinchington, P.R.; Schmid, D.S.; Balloux, F.; Nichols, R.A.; Breuer, J. Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of varicella zoster virus and its vaccine in humans. Mol. Biol. Evol., 2014, 31(2), 397-409.
[http://dx.doi.org/10.1093/molbev/mst210] [PMID: 24162921]
[76]
Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; Berkow, E.L.; Castanheira, M.; Magobo, R.E.; Jabeen, K.; Asghar, R.J.; Meis, J.F.; Jackson, B.; Chiller, T.; Litvintseva, A.P. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epide-miological analyses. Clin. Infect. Dis., 2017, 64(2), 134-140.
[http://dx.doi.org/10.1093/cid/ciw691] [PMID: 27988485]
[77]
Tiwari, P.; Katyal, A.; Khan, M.F.; Ashraf, G.M.; Ahmad, K. Lead optimization resources in drug discovery for diabetes. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 754-774.
[http://dx.doi.org/10.2174/1871530319666190304121826] [PMID: 30834844]
[78]
Chen, S.; Song, J.; Sun, C.; Xu, J.; Zhu, Y.; Verpoorte, R.; Fan, T.P. Herbal genomics: Examining the biology of traditional medicines. Science, 2015, 347(6219), 27-29.
[PMID: 25593179]
[79]
Chin, Y-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J., 2006, 8(2), E239-E253.
[http://dx.doi.org/10.1007/BF02854894] [PMID: 16796374]
[80]
Robinson, M.M.; Zhang, X. The world medicines situation 2011, traditional medicines: Global situation, issues and challenges; World Health Organization: Geneva, Switzerland, 2011, pp. 1-4.
[81]
Chavan, S.S.; Damale, M.G.; Devanand, B. Antibacterial and antifungal drugs from natural source: A review of clinical development. Natural Products in Clinical Trials: Sharjah, UAE., 2018, 1, 114-164.
[http://dx.doi.org/10.2174/9781681082134118010006]
[82]
Tortorella, E.; Tedesco, P.; Palma Esposito, F.; January, G.G.; Fani, R.; Jaspars, M.; de Pascale, D. Antibiotics from deep-sea microor-ganisms: Current discoveries and perspectives. Mar. Drugs, 2018, 16(10), 355.
[http://dx.doi.org/10.3390/md16100355] [PMID: 30274274]
[83]
Pye, C.R.; Bertin, M.J.; Lokey, R.S.; Gerwick, W.H.; Linington, R.G. Retrospective analysis of natural products provides insights for future discovery trends. Proc. Natl. Acad. Sci. USA, 2017, 114(22), 5601-5606.
[http://dx.doi.org/10.1073/pnas.1614680114] [PMID: 28461474]
[84]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[85]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. ChemInform abstract: Counting on natural products for drug design. ChemInform, 2016, 8(6), 531-541.
[http://dx.doi.org/10.1002/chin.201630259]
[86]
Patwardhan, B.; Warude, D.; Pushpangadan, P.; Bhatt, N. Ayurveda and traditional Chinese medicine: A comparative overview. Evid. Based Complement. Alternat. Med., 2005, 2(4), 465-473.
[http://dx.doi.org/10.1093/ecam/neh140] [PMID: 16322803]
[87]
Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med., 2017, 8(4), 266-275.
[http://dx.doi.org/10.1016/j.jaim.2017.05.004] [PMID: 28869082]
[88]
Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applica-tions. Int. J. Biol. Sci., 2015, 11(8), 982-991.
[http://dx.doi.org/10.7150/ijbs.12096] [PMID: 26157352]
[89]
Sridevi, D.; Shankar, C.; Prakash, P.; Park, J.H.; Thamaraiselvi, K. Inhibitory effects of Reserpine against efflux pump activity of antibi-otic resistance bacteria. Chem. Biol. Lett., 2017, 4(2), 69-72.
[90]
Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly Bazzaz, B.S.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev. Ind. Pharm., 2015, 41(6), 989-994.
[http://dx.doi.org/10.3109/03639045.2014.920025] [PMID: 24842547]
[91]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[92]
Siriyong, T.; Srimanote, P.; Chusri, S.; Yingyongnarongkul, B-E.; Suaisom, C.; Tipmanee, V.; Voravuthikunchai, S.P. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement. Altern. Med., 2017, 17(1), 405.
[http://dx.doi.org/10.1186/s12906-017-1913-y] [PMID: 28806947]
[93]
Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des., 2013, 81(4), 484-490.
[http://dx.doi.org/10.1111/cbdd.12103] [PMID: 23290001]
[94]
Klančnik, A.; Šikić Pogačar, M.; Trošt, K.; Tušek Žnidarič, M.; Mozetič Vodopivec, B.; Smole Možina, S. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, me-diated via the CmeABC efflux pump. J. Appl. Microbiol., 2017, 122(1), 65-77.
[http://dx.doi.org/10.1111/jam.13315] [PMID: 27709726]
[95]
Lechner, D.; Gibbons, S.; Bucar, F. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J. Antimicrob. Chemother., 2008, 62(2), 345-348.
[http://dx.doi.org/10.1093/jac/dkn178] [PMID: 18430720]
[96]
Chan, B.C.L.; Ip, M.; Lau, C.B.S.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[http://dx.doi.org/10.1016/j.jep.2011.06.039] [PMID: 21782012]
[97]
Zou, D.; Xie, K.; Wang, H.; Chen, Y.; Xie, M. [Inhibitory effects of biochanin A on the efflux pump of methicillin-resistant Staphylococcus aureus (MRSA)]. Wei Sheng Wu Hsueh Pao, 2014, 54(10), 1204-1211.
[PMID: 25803898]
[98]
Hanski, L.; Genina, N.; Uvell, H.; Malinovskaja, K.; Gylfe, Å.; Laaksonen, T.; Kolakovic, R.; Mäkilä, E.; Salonen, J.; Hirvonen, J.; Elofsson, M.; Sandler, N.; Vuorela, P.M. Inhibitory activity of the isoflavone biochanin A on intracellular bacteria of genus Chlamydia and initial development of a buccal formulation. PLoS One, 2014, 9(12), e115115.
[http://dx.doi.org/10.1371/journal.pone.0115115] [PMID: 25514140]
[99]
Rodrigues, L.; Aínsa, J.A.; Amaral, L.; Viveiros, M. Inhibition of drug efflux in mycobacteria with phenothiazines and other putative efflux inhibitors. Recent Pat. Antiinfect. Drug Discov., 2011, 6(2), 118-127.
[http://dx.doi.org/10.2174/157489111796064579] [PMID: 21517739]
[100]
Randhawa, H.K.; Hundal, K.K.; Ahirrao, P.N.; Jachak, S.M.; Nandanwar, H.S. Efflux pump i Inhibitory activity of Flavonoids isolated from Alpinia calcarata against Methicillin-resistant Staphylococcus aureus. Biologia (Bratisl.), 2016, 71(5), 484-493.
[http://dx.doi.org/10.1515/biolog-2016-0073]
[101]
Shao, J.; Zhang, M.; Wang, T.; Li, Y.; Wang, C. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with flucona-zole-resistant Candida albicans. Pharm. Biol., 2016, 54(6), 984-992.
[http://dx.doi.org/10.3109/13880209.2015.1091483] [PMID: 26459663]
[102]
Holler, J.G.; Christensen, S.B.; Slotved, H-C.; Rasmussen, H.B.; Gúzman, A.; Olsen, C-E.; Petersen, B.; Mølgaard, P. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J. Antimicrob. Chemother., 2012, 67(5), 1138-1144.
[http://dx.doi.org/10.1093/jac/dks005] [PMID: 22311936]
[103]
Stermitz, F.R.; Cashman, K.K.; Halligan, K.M.; Morel, C.; Tegos, G.P.; Lewis, K. Polyacylated neohesperidosides from Geranium caespi-tosum: Bacterial multidrug resistance pump inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(11), 1915-1918.
[http://dx.doi.org/10.1016/S0960-894X(03)00316-0] [PMID: 12749897]
[104]
Stermitz, F.R.; Beeson, T.D.; Mueller, P.J.; Hsiang, J.; Lewis, K. Staphylococcus aureus MDR efflux pump inhibitors from a Berberis and a Mahonia (sensu strictu) species. Biochem. Syst. Ecol., 2001, 29(8), 793-798.
[http://dx.doi.org/10.1016/S0305-1978(01)00025-4] [PMID: 11412952]
[105]
Morel, C.; Stermitz, F.R.; Tegos, G.; Lewis, K. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem., 2003, 51(19), 5677-5679.
[http://dx.doi.org/10.1021/jf0302714] [PMID: 12952418]
[106]
Roy, S.K.; Kumari, N.; Pahwa, S.; Agrahari, U.C.; Bhutani, K.K.; Jachak, S.M.; Nandanwar, H. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia, 2013, 90, 140-150.
[http://dx.doi.org/10.1016/j.fitote.2013.07.015] [PMID: 23892000]
[107]
de Araújo, R.S.A.; Barbosa-Filho, J.M.; Scotti, M.T.; Scotti, L.; da Cruz, R.M.D.; Falcão-Silva, V.S.; de Siqueira-Júnior, J.P.; Mendonça-Junior, F.J. Modulation of drug resistance in Staphylococcus aureus with coumarin derivatives. Scientifica (Cairo), 2016, 2016, 6894758.
[http://dx.doi.org/10.1155/2016/6894758] [PMID: 27200211]
[108]
Bazzaz, B.S.F.; Memariani, Z.; Khashiarmanesh, Z.; Iranshahi, M.; Naderinasab, M. Effect of galbanic Acid, a sesquiterpene coumarin from ferula szowitsiana, as an inhibitor of efflux mechanism in resistant clinical isolates of Staphylococcus aureus. Braz. J. Microbiol., 2010, 41(3), 574-580.
[http://dx.doi.org/10.1590/S1517-83822010000300006] [PMID: 24031531]
[109]
Sharma, A.; Mathur, A.K.; Ganpathy, J.; Joshi, B.; Patel, P. Effect of abiotic elicitation and pathway precursors feeding over Terpenoid indole alkaloids production in multiple shoot and callus cultures of Catharanthus roseus. Biologia (Bratisl.), 2019, 74(5), 543-553.
[http://dx.doi.org/10.2478/s11756-019-00202-5]
[110]
Sharma, A.; Amin, D.; Sankaranarayanan, A.; Arora, R.; Mathur, A.K. Present status of Catharanthus roseus monoterpenoid indole alka-loids engineering in homo- and hetero-logous systems. Biotechnol. Lett., 2020, 42(1), 11-23.
[http://dx.doi.org/10.1007/s10529-019-02757-4] [PMID: 31729591]
[111]
Kumar, A.; Khan, I.A.; Koul, S.; Koul, J.L.; Taneja, S.C.; Ali, I.; Ali, F.; Sharma, S.; Mirza, Z.M.; Kumar, M.; Sangwan, P.L.; Gupta, P.; Thota, N.; Qazi, G.N. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J. Antimicrob. Chemother., 2008, 61(6), 1270-1276.
[http://dx.doi.org/10.1093/jac/dkn088] [PMID: 18334493]
[112]
Khan, I.A.; Mirza, Z.M.; Kumar, A.; Verma, V.; Qazi, G.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 810-812.
[http://dx.doi.org/10.1128/AAC.50.2.810-812.2006] [PMID: 16436753]
[113]
Abdelfatah, S.A.A.; Efferth, T. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells. Phytomedicine, 2015, 22(2), 308-318.
[http://dx.doi.org/10.1016/j.phymed.2015.01.002] [PMID: 25765838]
[114]
Iwasa, K.; Moriyasu, M.; Yamori, T.; Turuo, T.; Lee, D.U.; Wiegrebe, W. In vitro cytotoxicity of the protoberberine-type alkaloids. J. Nat. Prod., 2001, 64(7), 896-898.
[http://dx.doi.org/10.1021/np000554f] [PMID: 11473418]
[115]
Yi, Z-B.; Yan, Yu Liang, Y-Z.; Bao Zeng, Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. J. Pharm. Biomed. Anal., 2007, 44(1), 301-304.
[http://dx.doi.org/10.1016/j.jpba.2007.02.018] [PMID: 17383137]
[116]
Feng, R.; Qu, J.; Zhou, W.; Wei, Q.; Yin, Z.; Du, Y. Antibacterial activity and mechanism of berberine on avian Pasteurella multocida. Int. J. Clin. Exp. Med., 2016, 9(11), 22886-22892.
[117]
Casu, L.; Cottiglia, F.; Leonti, M.; De Logu, A.; Agus, E.; Tse-Dinh, Y-C.; Lombardo, V.; Sissi, C. Ungeremine effectively targets mam-malian as well as bacterial type I and type II topoisomerases. Bioorg. Med. Chem. Lett., 2011, 21(23), 7041-7044.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.097] [PMID: 22014547]
[118]
Schrader, K.K.; Avolio, F.; Andolfi, A.; Cimmino, A.; Evidente, A. Ungeremine and Its hemisynthesized analogues as bactericides against Flavobacterium columnare. J. Agric. Food Chem., 2013, 61(6), 1179-1183.
[http://dx.doi.org/10.1021/jf304586j] [PMID: 23331165]
[119]
Heeb, S.; Fletcher, M.P.; Chhabra, S.R.; Diggle, S.P.; Williams, P.; Cámara, M. Quinolones: From antibiotics to autoinducers. FEMS Microbiol. Rev., 2011, 35(2), 247-274.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00247.x] [PMID: 20738404]
[120]
Duan, F.; Li, X.; Cai, S.; Xin, G.; Wang, Y.; Du, D.; He, S.; Huang, B.; Guo, X.; Zhao, H.; Zhang, R.; Ma, L.; Liu, Y.; Du, Q.; Wei, Z.; Xing, Z.; Liang, Y.; Wu, X.; Fan, C.; Ji, C.; Zeng, D.; Chen, Q.; He, Y.; Liu, X.; Huang, W. Haloemodin as novel antibacterial agent inhib-iting DNA gyrase and bacterial topoisomerase I. J. Med. Chem., 2014, 57(9), 3707-3714.
[http://dx.doi.org/10.1021/jm401685f] [PMID: 24588790]
[121]
Patel, K.; Tyagi, C.; Goyal, S.; Jamal, S.; Wahi, D.; Jain, R. Identification of Chebulinic acid as potent natural inhibitor of M. Tuberculosis DNA Gyrase and molecular insights into its binding mode of action. Comput. Biol. Chem., 2015, 59(Pt A), 37-47.
[122]
Gradisar, H.; Pristovsek, P.; Plaper, A.; Jerala, R. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. J. Med. Chem., 2007, 50(2), 264-271.
[http://dx.doi.org/10.1021/jm060817o] [PMID: 17228868]
[123]
Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 2009, 14(3), 939-952.
[http://dx.doi.org/10.3390/molecules14030939] [PMID: 19255552]
[124]
Tan, N. Yazıcı-Tütüniş, S.; Bilgin, M.; Tan, E.; Miski, M. Antibacterial activities of pyrenylated Coumarins from the roots of Prangos hulusii. Molecules, 2017, 22(7), E1098.
[http://dx.doi.org/10.3390/molecules22071098] [PMID: 28671568]
[125]
El-Seedi, H.R. Antimicrobial arylcoumarins from Asphodelus microcarpus. J. Nat. Prod., 2007, 70(1), 118-120.
[http://dx.doi.org/10.1021/np060444u] [PMID: 17253862]
[126]
Maxwell, A. The interaction between coumarin drugs and DNA gyrase. Mol. Microbiol., 1993, 9(4), 681-686.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb01728.x] [PMID: 8231802]
[127]
Boberek, J.M.; Stach, J.; Good, L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One, 2010, 5(10), e13745.
[http://dx.doi.org/10.1371/journal.pone.0013745] [PMID: 21060782]
[128]
Zorić, N.; Kosalec, I.; Tomić, S.; Bobnjarić, I.; Jug, M.; Vlainić, T.; Vlainić, J. Membrane of Candida albicans as a target of berberine. BMC Complement. Altern. Med., 2017, 17(1), 268.
[http://dx.doi.org/10.1186/s12906-017-1773-5] [PMID: 28514949]
[129]
Reiter, J.; Levina, N.; van der Linden, M.; Gruhlke, M.; Martin, C.; Slusarenko, A.J. Diallylthiosulfinate (Allicin), a volatile antimicrobial from Garlic (Allium sativum), kills human Lung pathogenic bacteria, including MDR strains, as a vapor. Molecules, 2017, 22(10), E1711.
[http://dx.doi.org/10.3390/molecules22101711] [PMID: 29023413]
[130]
Wu, H-Z.; Fei, H-J.; Zhao, Y-L.; Liu, X-J.; Huang, Y-J.; Wu, S-W. [Antibacterial mechanism of sulforaphane on Escherichia coli. Sichuan Da Xue Xue Bao Yi Xue Ban, 2012, 43(3), 386-390.
[PMID: 22812243]
[131]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res., 2017, 196, 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[132]
Sobolewska, D.; Podolak, I. Makowska-Wąs, J. Allium ursinum: Botanical, phytochemical and pharmacological overview. Phytochem. Rev., 2015, 14(1), 81-97.
[http://dx.doi.org/10.1007/s11101-013-9334-0] [PMID: 25774103]
[133]
Lanzotti, V.; Scala, F.; Bonanomi, G. Compounds from Allium Species with cytotoxic and antimicrobial activity. Phytochem. Rev., 2014, 13(4), 769-791.
[http://dx.doi.org/10.1007/s11101-014-9366-0]
[134]
Rehman, F.; Mairaj, S.A.M.Y.A. Antimicrobial studies of Allicin and Ajoene. Int. J. Pharm Bio. Sci., 2013, 4(2), 1095-1105.
[135]
Maresso, A.W.; Schneewind, O. Sortase as a target of anti-infective therapy. Pharmacol. Rev., 2008, 60(1), 128-141.
[http://dx.doi.org/10.1124/pr.107.07110] [PMID: 18321961]
[136]
Xiao, Z-P.; Peng, Z-Y.; Dong, J-J.; He, J.; Ouyang, H.; Feng, Y-T.; Lu, C.L.; Lin, W.Q.; Wang, J.X.; Xiang, Y.P.; Zhu, H.L. Synthesis, structure-activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 63, 685-695.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.016] [PMID: 23567958]
[137]
Navarro-Martínez, M.D.; Navarro-Perán, E.; Cabezas-Herrera, J.; Ruiz-Gómez, J.; García-Cánovas, F.; Rodríguez-López, J.N. Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia. Antimicrob. Agents Chemother., 2005, 49(7), 2914-2920.
[http://dx.doi.org/10.1128/AAC.49.7.2914-2920.2005] [PMID: 15980368]
[138]
Wu, D.; Kong, Y.; Han, C.; Chen, J.; Hu, L.; Jiang, H.; Shen, X. D-Alanine:D-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int. J. Antimicrob. Agents, 2008, 32(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.06.010] [PMID: 18774266]
[139]
Li, B-H.; Zhang, R.; Du, Y-T.; Sun, Y-H.; Tian, W-X. Inactivation mechanism of the beta-ketoacyl-[acyl carrier protein] reductase of bacterial type-II fatty acid synthase by epigallocatechin gallate. Biochem. Cell Biol., 2006, 84(5), 755-762.
[http://dx.doi.org/10.1139/o06-047] [PMID: 17167539]
[140]
Jeong, K-W.; Lee, J-Y.; Kang, D-I.; Lee, J-U.; Shin, S.Y.; Kim, Y. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis. J. Nat. Prod., 2009, 72(4), 719-724.
[http://dx.doi.org/10.1021/np800698d] [PMID: 19236029]
[141]
Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40.
[http://dx.doi.org/10.1002/ptr.6208] [PMID: 30346068]
[142]
Sharifzadeh, A.; Khosravi, A.R.; Shokri, H.; Shirzadi, H. Potential effect of 2-isopropyl-5-methylphenol (thymol) alone and in combina-tion with fluconazole against clinical isolates of Candida albicans, C. glabrata and C. krusei. J. Mycol. Med., 2018, 28(2), 294-299.
[http://dx.doi.org/10.1016/j.mycmed.2018.04.002] [PMID: 29661606]
[143]
Lamontagne Boulet, M.; Isabelle, C.; Guay, I.; Brouillette, E.; Langlois, J-P.; Jacques, P-É.; Rodrigue, S.; Brzezinski, R.; Beauregard, P.B.; Bouarab, K.; Boyapelly, K.; Boudreault, P.L.; Marsault, É.; Malouin, F. Tomatidine is a lead antibiotic molecule that targets Staphylococ-cus aureus ATP synthase subunit C. Antimicrob. Agents Chemother., 2018, 62(6), e02197-e17.
[http://dx.doi.org/10.1128/AAC.02197-17] [PMID: 29610201]
[144]
Guay, I.; Boulanger, S.; Isabelle, C.; Brouillette, E.; Chagnon, F.; Bouarab, K.; Marsault, E.; Malouin, F. Tomatidine and analog FC04-100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp. BMC Pharmacol. Toxicol., 2018, 19(1), 7.
[http://dx.doi.org/10.1186/s40360-018-0197-2] [PMID: 29439722]
[145]
Obiang-Obounou, B.W.; Kang, O-H.; Choi, J-G.; Keum, J-H.; Kim, S-B.; Mun, S-H.; Shin, D.W.; Kim, K.W.; Park, C.B.; Kim, Y.G.; Han, S.H.; Kwon, D.Y. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus. J. Toxicol. Sci., 2011, 36(3), 277-283.
[http://dx.doi.org/10.2131/jts.36.277] [PMID: 21628956]
[146]
Fahey, J.W.; Stephenson, K.K.; Wade, K.L.; Talalay, P. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothio-cyanates. Biochem. Biophys. Res. Commun., 2013, 435(1), 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.126] [PMID: 23583386]
[147]
Lu, Z.; Dockery, C.R.; Crosby, M.; Chavarria, K.; Patterson, B.; Giedd, M. Antibacterial activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus. Front. Microbiol., 2016, 7, 1403.
[http://dx.doi.org/10.3389/fmicb.2016.01403] [PMID: 27708622]
[148]
Lin, C.M.; Preston, J.F., III; Wei, C.I. Antibacterial mechanism of allyl isothiocyanate. J. Food Prot., 2000, 63(6), 727-734.
[http://dx.doi.org/10.4315/0362-028X-63.6.727] [PMID: 10852565]
[149]
Sofrata, A.; Santangelo, E.M.; Azeem, M.; Borg-Karlson, A-K.; Gustafsson, A.; Pütsep, K. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS One, 2011, 6(8), e23045.
[http://dx.doi.org/10.1371/journal.pone.0023045] [PMID: 21829688]
[150]
Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine, 2015, 22(2), 245-255.
[http://dx.doi.org/10.1016/j.phymed.2014.11.019] [PMID: 25765829]
[151]
Wu, Y.; Bai, J.; Zhong, K.; Huang, Y.; Qi, H.; Jiang, Y.; Gao, H. Antibacterial activity and membrane-disruptive mechanism of 3-p-trans-coumaroyl-2-hydroxyquinic acid, a novel phenolic compound from pine needles of Cedrus Deodara, against Staphylococcus aureus. Molecules, 2016, 21(8), 1084.
[http://dx.doi.org/10.3390/molecules21081084] [PMID: 27548123]
[152]
Campos, F.M.; Couto, J.A.; Figueiredo, A.R.; Tóth, I.V.; Rangel, A.O.S.S.; Hogg, T.A. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int. J. Food Microbiol., 2009, 135(2), 144-151.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.031] [PMID: 19733929]
[153]
Mun, S-H.; Joung, D-K.; Kim, S-B.; Park, S-J.; Seo, Y-S.; Gong, R.; Choi, J.G.; Shin, D.W.; Rho, J.R.; Kang, O.H.; Kwon, D.Y. The mechanism of antimicrobial activity of sophoraflavanone B against methicillin-resistant Staphylococcus aureus. Foodborne Pathog. Dis., 2014, 11(3), 234-239.
[http://dx.doi.org/10.1089/fpd.2013.1627] [PMID: 24601672]
[154]
Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin I is associated with damaging of bac-terial membrane. PLoS One, 2015, 10(3), e0121313.
[http://dx.doi.org/10.1371/journal.pone.0121313] [PMID: 25811596]
[155]
Togashi, N.; Hamashima, H.; Shiraishi, A.; Inoue, Y.; Takano, A. Antibacterial activities against Staphylococcus aureus of terpene alco-hols with aliphatic carbon chains. J. Essent. Oil Res., 2010, 22(3), 263-269.
[http://dx.doi.org/10.1080/10412905.2010.9700321]
[156]
Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and men-thol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Med., 2014, 24(2), e51-e56.
[http://dx.doi.org/10.1016/j.mycmed.2014.01.063] [PMID: 24582134]
[157]
Broniatowski, M.; Mastalerz, P. Flasiński, M. Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane-Langmuir monolayer approach. Biochim. Biophys. Acta, 2015, 1848(2), 469-476.
[http://dx.doi.org/10.1016/j.bbamem.2014.10.024] [PMID: 25450351]
[158]
Ali, S.M.; Khan, A.A.; Ahmed, I.; Musaddiq, M.; Ahmed, K.S.; Polasa, H.; Rao, L.V.; Habibullah, C.M.; Sechi, L.A.; Ahmed, N. Antimi-crobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clin. Microbiol. Antimicrob., 2005, 4(1), 20.
[http://dx.doi.org/10.1186/1476-0711-4-20] [PMID: 16371157]
[159]
Tiwari, P.; Khare, T.; Shriram, V.; Bae, H.; Kumar, V. Plant synthetic biology for producing potent phyto-antimicrobials to combat anti-microbial resistance. Biotechnol. Adv., 2021, 48(107729), 107729.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107729] [PMID: 33705914]
[160]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]
[161]
Shriram, V.; Jahagirdar, S.; Latha, C.; Kumar, V.; Puranik, V.; Rojatkar, S.; Dhakephalkar, P.K.; Shitole, M.G. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria. Int. J. Antimicrob. Agents, 2008, 32(5), 405-410.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.05.013] [PMID: 18718743]
[162]
Shriram, V.; Khare, T.; Bhagwat, R.; Shukla, R.; Kumar, V. Inhibiting bacterial drug efflux pumps via Phyto-therapeutics to combat threatening antimicrobial resistance. Front. Microbiol., 2018, 9, 2990.
[http://dx.doi.org/10.3389/fmicb.2018.02990] [PMID: 30619113]
[163]
Prasch, S.; Bucar, F. Plant derived inhibitors of Bacterial efflux pumps: An update. Phytochem. Rev., 2015, 14(6), 961-974.
[http://dx.doi.org/10.1007/s11101-015-9436-y]
[164]
Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16(2-3), 97-110.
[http://dx.doi.org/10.1016/j.phymed.2008.12.018] [PMID: 19211237]
[165]
Zhang, R.; Li, C.; Wang, J.; Yang, Y.; Yan, Y. Microbial production of small medicinal molecules and biologics: From nature to synthetic pathways. Biotechnol. Adv., 2018, 36(8), 2219-2231.
[http://dx.doi.org/10.1016/j.biotechadv.2018.10.009] [PMID: 30385278]
[166]
Domínguez, A.; Fermiñán, E.; Sánchez, M.; González, F.J.; Pérez-Campo, F.M.; García, S.; Herrero, A.B.; San Vicente, A.; Cabello, J.; Prado, M.; Iglesias, F.J.; Choupina, A.; Burguillo, F.J.; Fernández-Lago, L.; López, M.C. Non-conventional yeasts as hosts for heterolo-gous protein production. Int. Microbiol., 1998, 1(2), 131-142.
[PMID: 10943351]
[167]
Guirimand, G.; Courdavault, V.; Lanoue, A.; Mahroug, S.; Guihur, A.; Blanc, N.; Giglioli-Guivarc’h, N.; St-Pierre, B.; Burlat, V. Stric-tosidine activation in Apocynaceae: Towards a “nuclear time bomb”? BMC Plant Biol., 2010, 10(1), 182.
[http://dx.doi.org/10.1186/1471-2229-10-182] [PMID: 20723215]
[168]
Okay, S.; Sezgin, M. Transgenic plants for the production of immunogenic proteins. AIMS Bioeng., 2018, 5(3), 151-161.
[http://dx.doi.org/10.3934/bioeng.2018.3.151]
[169]
Kaouthar, E.; Benjamin, R.L. Nature’s chemists: The discovery and engineering of phytochemical biosynthesis. Front Chem., 2020, 8(1041), 596479.
[170]
Unamba, C.I.N.; Nag, A.; Sharma, R.K. Next generation sequencing technologies: The doorway to the unexplored genomics of non-model plants. Front. Plant Sci., 2015, 6, 1074.
[http://dx.doi.org/10.3389/fpls.2015.01074] [PMID: 26734016]
[171]
Birchfield, A.S.; McIntosh, C.A. Metabolic engineering and synthetic biology of plant natural products -a minireview. Curr. Plant Biol., 2020, 24, 100163.
[http://dx.doi.org/10.1016/j.cpb.2020.100163]
[172]
Galanie, S.; Thodey, K.; Trenchard, I.J.; Filsinger Interrante, M.; Smolke, C.D. Complete biosynthesis of opioids in yeast. Science, 2015, 349(6252), 1095-1100.
[http://dx.doi.org/10.1126/science.aac9373] [PMID: 26272907]
[173]
Li, R.; Li, R.; Li, X.; Fu, D.; Zhu, B.; Tian, H.; Luo, Y.; Zhu, H. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol. J., 2018, 16(2), 415-427.
[http://dx.doi.org/10.1111/pbi.12781] [PMID: 28640983]
[174]
Li, S.; Li, Y.; Smolke, C.D. Strategies for microbial synthesis of high-value phytochemicals. Nat. Chem., 2018, 10(4), 395-404.
[http://dx.doi.org/10.1038/s41557-018-0013-z] [PMID: 29568052]
[175]
Lauersen, K.J. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production. Planta, 2019, 249(1), 155-180.
[http://dx.doi.org/10.1007/s00425-018-3048-x] [PMID: 30467629]
[176]
Navarro, F.; Forján, E.; Vázquez, M.; Toimil, A.; Montero, Z.; Ruiz-Domínguez, M.D.C.; Garbayo, I.; Castaño, M.Á.; Vílchez, C.; Vega, J.M. Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycol. Res., 2017, 65(1), 38-43.
[http://dx.doi.org/10.1111/pre.12158]
[177]
Santhakumaran, P.; Ayyappan, S.M.; Ray, J.G. Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Res., 2020, 47, 101878.
[http://dx.doi.org/10.1016/j.algal.2020.101878]
[178]
Little, S.M.; Senhorinho, G.N.A.; Saleh, M.; Basiliko, N.; Scott, J.A. Antibacterial compounds in green microalgae from extreme envi-ronments: A review. Algae, 2021, 36(1), 61-72.
[http://dx.doi.org/10.4490/algae.2021.36.3.6]
[179]
Pratt, R.; Daniels, T.C.; Eiler, J.J.; Gunnison, J.B.; Kumler, W.D.; Oneto, J.F.; Strait, L.A.; Spoehr, H.A.; Hardin, G.J.; Milner, H.W.; Smith, J.H.; Strain, H.H. Chlorellin, an antibacterial substance from Chlorella. Science, 1944, 99(2574), 351-352.
[http://dx.doi.org/10.1126/science.99.2574.351] [PMID: 17750208]
[180]
Ördög, V.; Stirk, W.A.; Lenobel, R. Bancířová, M.; Strnad, M.; Van Staden, J.; Szigeti, J.; Németh, L. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Appl. Phycol., 2004, 16(4), 309-314.
[http://dx.doi.org/10.1023/B:JAPH.0000047789.34883.aa]
[181]
Shannon, E.; Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applica-tions. Mar. Drugs, 2016, 14(4), 81.
[http://dx.doi.org/10.3390/md14040081] [PMID: 27110798]
[182]
Wei, Y.; Liu, Q.; Xu, C.; Yu, J.; Zhao, L.; Guo, Q. Damage to the membrane permeability and cell death of Vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii. J. Aquat. Food Prod. Technol., 2015, 25(3), 323-333.
[http://dx.doi.org/10.1080/10498850.2013.851757]
[183]
Lee, J-H.; Eom, S-H.; Lee, E-H.; Jung, Y-J.; Kim, H-J.; Jo, M-R.; Son, K-T.; Lee, H-J.; Kim, J.H.; Lee, M-S.; Kim, Y-M. In vitro antibac-terial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae, 2014, 29(1), 47-55.
[http://dx.doi.org/10.4490/algae.2014.29.1.047]
[184]
Lee, S.H.; Kim, S.K. Biological phlorotannins of Eisenia bicyclis; Mar. Algae Extr. Processes Prod. Appl, 2015, pp. 453-464.
[185]
Eom, S-H.; Lee, D-S.; Jung, Y-J.; Park, J-H.; Choi, J-I.; Yim, M-J.; Jeon, J.M.; Kim, H.W.; Son, K.T.; Je, J.Y.; Lee, M.S.; Kim, Y.M. The mechanism of antibacterial activity of phlorofucofuroeckol-A against methicillin-resistant Staphylococcus aureus. Appl. Microbiol. Biotechnol., 2014, 98(23), 9795-9804.
[http://dx.doi.org/10.1007/s00253-014-6041-8] [PMID: 25267155]
[186]
El Shafay, S.M.; Ali, S.S.; El-Sheekh, M.M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt. J. Aquat. Res., 2016, 42(1), 65-74.
[http://dx.doi.org/10.1016/j.ejar.2015.11.006]
[187]
Courdavault, V.; O’Connor, S.E.; Jensen, M.K.; Papon, N. Metabolic engineering for plant natural products biosynthesis: New proce-dures, concrete achievements and remaining limits. Nat. Prod. Rep., 2021, 38(12), 2145-2153.
[http://dx.doi.org/10.1039/D0NP00092B] [PMID: 33969366]
[188]
Oliver, J.W.K.; Machado, I.M.P.; Yoneda, H.; Atsumi, S. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc. Natl. Acad. Sci. USA, 2013, 110(4), 1249-1254.
[http://dx.doi.org/10.1073/pnas.1213024110] [PMID: 23297225]
[189]
Couso, I.; Vila, M.; Rodriguez, H.; Vargas, M.A.; León, R. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol. Prog., 2011, 27(1), 54-60.
[http://dx.doi.org/10.1002/btpr.527] [PMID: 21312355]
[190]
Ajayi, O.S.; Aderogba, M.A.; Obuotor, E.M.; Majinda, R.R.T. Acetylcholinesterase inhibitor from Anthocleista vogelii leaf extracts. J. Ethnopharmacol., 2019, 231, 503-506.
[http://dx.doi.org/10.1016/j.jep.2018.11.009] [PMID: 30415061]
[191]
Holaskova, E.; Galuszka, P.; Frebort, I.; Oz, M.T. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol. Adv., 2015, 33(6 Pt 2), 1005-1023.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.007] [PMID: 25784148]
[192]
Li, Q.; Lawrence, C.B.; Xing, H.Y.; Babbitt, R.A.; Bass, W.T.; Maiti, I.B.; Everett, N.P. Enhanced disease resistance conferred by expres-sion of an antimicrobial magainin analog in transgenic tobacco. Planta, 2001, 212(4), 635-639.
[http://dx.doi.org/10.1007/s004250000480] [PMID: 11525522]
[193]
Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev., 2017, 117(19), 12415-12474.
[http://dx.doi.org/10.1021/acs.chemrev.7b00283] [PMID: 28953368]
[194]
Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 2019, 8(1), 118.
[http://dx.doi.org/10.1186/s13756-019-0559-6] [PMID: 31346459]
[195]
Badosa, E.; Moiset, G.; Montesinos, L.; Talleda, M.; Bardají, E.; Feliu, L.; Planas, M.; Montesinos, E. Derivatives of the antimicrobial peptide BP100 for expression in plant systems. PLoS One, 2013, 8(12), e85515.
[http://dx.doi.org/10.1371/journal.pone.0085515] [PMID: 24376887]
[196]
Rong, W.; Qi, L.; Wang, J.; Du, L.; Xu, H.; Wang, A.; Zhang, Z. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct. Integr. Genomics, 2013, 13(3), 403-409.
[http://dx.doi.org/10.1007/s10142-013-0332-5] [PMID: 23839728]
[197]
Holásková, E.; Galuszka, P. Mičúchová, A.; Šebela, M.; Öz, M.T.; Frébort, I. Molecular farming in barley: Development of a novel pro-duction platform to produce human antimicrobial peptide LL-37. Biotechnol. J., 2018, 13(6), e1700628.
[http://dx.doi.org/10.1002/biot.201700628] [PMID: 29369519]
[198]
Obbard, D.J.; Gordon, K.H.; Buck, A.H.; Jiggins, F.M. The evolution of RNAi as a defence against viruses and transposable elements. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1513), 99-115.
[http://dx.doi.org/10.1098/rstb.2008.0168] [PMID: 18926973]
[199]
Lacroix, B.; Citovsky, V. Biolistic approach for transient gene expression studies in plants. Methods Mol. Biol., 2020, 2124, 125-139.
[http://dx.doi.org/10.1007/978-1-0716-0356-7_6] [PMID: 32277451]
[200]
Chen, Q.; Lai, H. Gene delivery into plant cells for recombinant protein production. BioMed Res. Int., 2015, 2015, 932161.
[http://dx.doi.org/10.1155/2015/932161] [PMID: 26075275]
[201]
Scholthof, H.B.; Morris, T.J.; Jackson, A.O. The capsid protein gene of Tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol. Plant Microbe Interact., 1993, 6(3), 309-322.
[http://dx.doi.org/10.1094/MPMI-6-309]
[202]
Du, L.; Gao, R.; Forster, A.C. Engineering multigene expression in vitro and in vivo with small terminators for T7 RNA polymerase. Biotechnol. Bioeng., 2009, 104(6), 1189-1196.
[http://dx.doi.org/10.1002/bit.22491] [PMID: 19650080]
[203]
Machens, F.; Balazadeh, S.; Mueller-Roeber, B.; Messerschmidt, K. Synthetic promoters and transcription factors for heterologous pro-tein expression in Saccharomyces cerevisiae. Front. Bioeng. Biotechnol., 2017, 5, 63.
[http://dx.doi.org/10.3389/fbioe.2017.00063] [PMID: 29098147]
[204]
Vogl, T.; Kickenweiz, T.; Pitzer, J.; Sturmberger, L.; Weninger, A.; Biggs, B.W.; Köhler, E.M.; Baumschlager, A.; Fischer, J.E.; Hyden, P.; Wagner, M.; Baumann, M.; Borth, N.; Geier, M.; Ajikumar, P.K.; Glieder, A. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat. Commun., 2018, 9(1), 3589.
[http://dx.doi.org/10.1038/s41467-018-05915-w] [PMID: 30181586]
[205]
Lu, T.K.; Khalil, A.S.; Collins, J.J. Next-generation synthetic gene networks. Nat. Biotechnol., 2009, 27(12), 1139-1150.
[http://dx.doi.org/10.1038/nbt.1591] [PMID: 20010597]
[206]
Wiedenheft, B.; Sternberg, S.H.; Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482(7385), 331-338.
[http://dx.doi.org/10.1038/nature10886] [PMID: 22337052]
[207]
Naseri, G.; Koffas, M.A.G. Application of combinatorial optimization strategies in synthetic biology. Nat. Commun., 2020, 11(1), 2446.
[http://dx.doi.org/10.1038/s41467-020-16175-y] [PMID: 32415065]
[208]
Suarez, M.; Haenni, M.; Canarelli, S.; Fisch, F.; Chodanowski, P.; Servis, C.; Michielin, O.; Freitag, R.; Moreillon, P.; Mermod, N. Struc-ture-function characterization and optimization of a plant-derived antibacterial peptide. Antimicrob. Agents Chemother., 2005, 49(9), 3847-3857.
[http://dx.doi.org/10.1128/AAC.49.9.3847-3857.2005] [PMID: 16127062]
[209]
Simões, M.; Bennett, R.N.; Rosa, E.A.S. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep., 2009, 26(6), 746-757.
[http://dx.doi.org/10.1039/b821648g] [PMID: 19471683]
[210]
Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Solmajer, T.; Jerala, R. Characterization of quercetin binding site on DNA gyrase. Biochem. Biophys. Res. Commun., 2003, 306(2), 530-536.
[http://dx.doi.org/10.1016/S0006-291X(03)01006-4] [PMID: 12804597]
[211]
Zhang, Y-M.; Rock, C.O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reduc-tases of bacterial type II fatty-acid synthase. J. Biol. Chem., 2004, 279(30), 30994-31001.
[http://dx.doi.org/10.1074/jbc.M403697200] [PMID: 15133034]
[212]
Ghimire, B.K.; Seong, E.S.; Yu, C.Y.; Kim, S-H.; Chung, I-M. Evaluation of phenolic compounds and antimicrobial activities in trans-genic Codonopsis lanceolate plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene. S. Afr. J. Bot., 2017, 109, 25-33.
[http://dx.doi.org/10.1016/j.sajb.2016.12.022]
[213]
Sitarek, P.; Kowalczyk, T.; Rijo, P. Białas, A.J.; Wielanek, M.; Wysokińska, H.; Garcia, C.; Toma, M.; Śliwiński, T.; Skała, E. Overex-pression of AtPAP1 transcriptional factor enhances phenolic acid production in transgenic roots of Leonurus sibiricus L. and their bio-logical activities. Mol. Biotechnol., 2018, 60(1), 74-82.
[http://dx.doi.org/10.1007/s12033-017-0048-1] [PMID: 29196986]
[214]
Jung, Y.J.; Lee, S.Y.; Moon, Y.S.; Kang, K.K. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol. Rep., 2012, 6(1), 39-46.
[http://dx.doi.org/10.1007/s11816-011-0193-0] [PMID: 22308171]
[215]
Ghag, S.B.; Shekhawat, U.K.S.; Ganapathi, T.R. Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One, 2012, 7, e39557.
[216]
Wu, T.; Tang, D.; Chen, W.; Huang, H.; Wang, R.; Chen, Y. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene, 2013, 527, 235-242.
[217]
Cabanos, C.; Ekyo, A.; Amari, Y.; Kato, N.; Kuroda, M.; Nagaoka, S.; Takaiwa, F.; Utsumi, S.; Maruyama, N. High-level production of lactostatin, a hypocholesterolemic peptide, in transgenic rice using soybean A1aB1b as carrier. Transgenic Res., 2013, 22(3), 621-629.
[http://dx.doi.org/10.1007/s11248-012-9672-5] [PMID: 23129483]
[218]
Balaji, V.; Smart, C.D. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances toler-ance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res., 2012, 21(1), 23-37.
[http://dx.doi.org/10.1007/s11248-011-9506-x] [PMID: 21479554]
[219]
Zhang, P.; Du, H.; Wang, J.; Pu, Y.; Yang, C.; Yan, R.; Yang, H.; Cheng, H.; Yu, D. Multiplex CRISPR/Cas9-mediated metabolic engineer-ing increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol. J., 2020, 18(6), 1384-1395.
[http://dx.doi.org/10.1111/pbi.13302] [PMID: 31769589]
[220]
Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol., 2016, 17(7), 1140-1153.
[http://dx.doi.org/10.1111/mpp.12375] [PMID: 26808139]
[221]
Zeitler, B.; Bernhard, A.; Meyer, H.; Sattler, M.; Koop, H-U.; Lindermayr, C. Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Mol. Biol., 2013, 81(3), 259-272.
[http://dx.doi.org/10.1007/s11103-012-9996-9] [PMID: 23242916]
[222]
Ritala, A.; Dong, L.; Imseng, N.; Seppänen-Laakso, T.; Vasilev, N.; van der Krol, S.; Rischer, H.; Maaheimo, H.; Virkki, A.; Brändli, J.; Schillberg, S.; Eibl, R.; Bouwmeester, H.; Oksman-Caldentey, K.M. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. J. Biotechnol., 2014, 176, 20-28.
[http://dx.doi.org/10.1016/j.jbiotec.2014.01.031] [PMID: 24530945]
[223]
Barone, R.P.; Knittel, D.K.; Ooka, J.K.; Porter, L.N.; Smith, N.T.; Owens, D.K. The production of plant natural products beneficial to humanity by metabolic engineering. Curr. Plant Biol., 2020, 24(100121), 100121.
[http://dx.doi.org/10.1016/j.cpb.2019.100121]
[224]
Maeda, H.A. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. J. Biol. Chem., 2019, 294(45), 16549-16566.
[http://dx.doi.org/10.1074/jbc.REV119.006132] [PMID: 31558606]
[225]
Farré, G.; Blancquaert, D.; Capell, T.; Van Der Straeten, D.; Christou, P.; Zhu, C. Engineering complex metabolic pathways in plants. Annu. Rev. Plant Biol., 2014, 65(1), 187-223.
[http://dx.doi.org/10.1146/annurev-arplant-050213-035825] [PMID: 24579989]
[226]
DeGray, G.; Rajasekaran, K.; Smith, F.; Sanford, J.; Daniell, H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol., 2001, 127(3), 852-862.
[http://dx.doi.org/10.1104/pp.010233] [PMID: 11706168]
[227]
Wani, S.H.; Sah, S.K. Transgenic plants as expression factories for bio-pharmaceuticals. Research and Reviews: J. Bot. Sci., 2015, 2320-0189.
[228]
Borges, A.; Abreu, A.C.; Dias, C.; Saavedra, M.J.; Borges, F.; Simões, M. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules, 2016, 21(7), 877.
[http://dx.doi.org/10.3390/molecules21070877] [PMID: 27399652]
[229]
Vaghchhipawala, Z.; Rojas, C.M.; Senthil-Kumar, M.; Mysore, K.S. Agroinoculation and agroinfiltration: Simple tools for complex gene function analyses. Methods Mol. Biol., 2011, 678, 65-76.
[http://dx.doi.org/10.1007/978-1-60761-682-5_6] [PMID: 20931373]
[230]
Schnee, C.; Köllner, T.G.; Held, M.; Turlings, T.C.J.; Gershenzon, J.; Degenhardt, J. The products of a single maize sesquiterpene syn-thase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA, 2006, 103(4), 1129-1134.
[http://dx.doi.org/10.1073/pnas.0508027103] [PMID: 16418295]
[231]
Wu, T.; Tang, D.; Chen, W.; Huang, H.; Wang, R.; Chen, Y. Expression of antimicrobial peptides Thanatin(S) in transgenic Arabidopsis enhanced to Phytopathogenic fungi. Gene, 2013, 527(1), 235-242.
[http://dx.doi.org/10.1016/j.gene.2013.06.037] [PMID: 23820081]
[232]
Yevtushenko, D.P.; Misra, S. Transgenic expression of antimicrobial peptides in plants: Strategies for enhanced disease resistance, im-proved productivity, and production of therapeutics. ACS Symposium Series, 2012, pp. 445-458.
[http://dx.doi.org/10.1021/bk-2012-1095.ch021]
[233]
O’Connor, S.E. Engineering of secondary metabolism. Annu. Rev. Genet., 2015, 49(1), 71-94.
[http://dx.doi.org/10.1146/annurev-genet-120213-092053] [PMID: 26393965]
[234]
Jia, H.; Zhang, Y. Orbović, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J., 2017, 15(7), 817-823.
[http://dx.doi.org/10.1111/pbi.12677] [PMID: 27936512]
[235]
Hale, C.; Kleppe, K.; Terns, R.M.; Terns, M.P. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA, 2008, 14(12), 2572-2579.
[http://dx.doi.org/10.1261/rna.1246808] [PMID: 18971321]
[236]
Eidem, T.M.; Roux, C.M.; Dunman, P.M. RNA decay: A novel therapeutic target in bacteria. Wiley Interdiscip. Rev. RNA, 2012, 3(3), 443-454.
[http://dx.doi.org/10.1002/wrna.1110] [PMID: 22374855]
[237]
McGinnis, K.M. RNAi for functional genomics in plants. Brief. Funct. Genomics, 2010, 9(2), 111-117.
[http://dx.doi.org/10.1093/bfgp/elp052] [PMID: 20053816]
[238]
Edson, J.A.; Kwon, Y.J. RNAi for silencing drug resistance in microbes toward development of nanoantibiotics. J. Control. Release, 2014, 189, 150-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.054] [PMID: 24995951]
[239]
Xu, X.; Zhou, M. Antimicrobial gelatin nanofibers containing silver nanoparticles. Fibers Polym., 2008, 9(6), 685-690.
[http://dx.doi.org/10.1007/s12221-008-0108-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy