Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy

Author(s): Ponnurengam Malliappan Sivakumar, Pranav Kumar Prabhakar, Sibel Cetinel, Neelakandan R. and Veluchamy Prabhawathi*

Volume 22, Issue 14, 2022

Published on: 13 May, 2022

Page: [1828 - 1846] Pages: 19

DOI: 10.2174/1389557522666220309140855

Price: $65

Abstract

One of the common clinical complications of diabetes is diabetic neuropathy affecting the nervous system. Painful diabetic neuropathy is widespread and highly prevalent. At least 50% of diabetes patients eventually develop diabetic neuropathy. The four main types of diabetic neuropathy are peripheral neuropathy, autonomic neuropathy, proximal neuropathy (diabetic polyradiculopathy), and mononeuropathy (Focal neuropathy). Glucose control remains the common therapy for diabetic neuropathy due to limited knowledge on early biomarkers that are expressed during nerve damage, thereby limiting the cure through pharmacotherapy. Glucose control dramatically reduces the onset of neuropathy in type 1 diabetes but proves to be less effective in type 2 diabetes. Therefore, the focus is on various herbal remedies for prevention and treatment. There is numerous research on the use of anticonvulsants and antidepressants for the management of pain in diabetic neuropathy. Extensive research is being conducted on natural products, including the isolation of pure compounds like flavonoids from plants and their effect on diabetic neuropathy. This review focuses on the use of important flavonoids such as flavanols (e.g., quercetin, rutin, kaempferol, and isorhamnetin), flavanones (e.g., hesperidin, naringenin and class eriodictyol), and flavones (e.g., apigenin, luteolin, tangeretin, chrysin, and diosmin) for the prevention and treatment of diabetic neuropathy. The mechanisms of action of flavonoids against diabetic neuropathy by their antioxidant, anti-inflammation, anti-glycation properties, etc., are also covered in this review article.

Keywords: Diabetic neuropathy, flavonoids, streptozotocin, protein kinase C, tumor necrosis factor-α, reactive oxygen species.

Graphical Abstract

[1]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. In: Diabetes Res. Clin. Pract; , 2019; 157, p. 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[2]
Mohan, V.; Ramesh, J. Managing diabetes and COVID-19: A national strategic framework. Int. J. Noncommun. Dis., 2020, 5, 58-62.
[http://dx.doi.org/10.4103/jncd.jncd_39_20]
[3]
Younossi, Z.M. Non-alcoholic fatty liver disease - A global public health perspective. J. Hepatol., 2019, 70(3), 531-544.
[http://dx.doi.org/10.1016/j.jhep.2018.10.033] [PMID: 30414863]
[4]
Buse, J.B.; Caprio, S.; Cefalu, W.T.; Ceriello, A.; Del Prato, S.; Inzucchi, S.E.; McLaughlin, S.; Phillips, G.L., II; Robertson, R.P.; Rubino, F.; Kahn, R.; Kirkman, M.S. How do we define cure of diabetes? Diabetes Care, 2009, 32(11), 2133-2135.
[http://dx.doi.org/10.2337/dc09-9036] [PMID: 19875608]
[5]
Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Dia-betic neuropathy. Nat. Rev. Dis. Primers, 2019, 5(1), 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197153]
[6]
Llewelyn, J.G. The diabetic neuropathies: Types, diagnosis and management. J. Neurol. Neurosurg. Psychiatry, 2003, 74(Suppl. 2), ii15-ii19.
[http://dx.doi.org/10.1136/jnnp.74.suppl_2.ii15] [PMID: 12754324]
[7]
Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther., 2008, 120(1), 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[8]
Ngo, L.T.; Okogun, J.I.; Folk, W.R. 21st century natural product research and drug development and traditional medicines. Nat. Prod. Rep., 2013, 30(4), 584-592.
[http://dx.doi.org/10.1039/c3np20120a] [PMID: 23450245]
[9]
Garg, G.; Adams, J.D. Treatment of neuropathic pain with plant medicines. Chin. J. Integr. Med., 2012, 18(8), 565-570.
[http://dx.doi.org/10.1007/s11655-012-1188-6] [PMID: 22855031]
[10]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[11]
Burak, M.; Imen, Y. Flavonoids and their antioxidant properties. Turk. Klin. Tip Bilim. Derg., 1999, 19, 296-304.
[12]
Lee, Y.K.; Yuk, D.Y.; Lee, J.W.; Lee, S.Y.; Ha, T.Y.; Oh, K.W.; Yun, Y.P.; Hong, J.T. (-)-Epigallocatechin-3-gallate prevents lipopolysac-charide-induced elevation of β-amyloid generation and memory deficiency. Brain Res., 2009, 1250, 164-174.
[http://dx.doi.org/10.1016/j.brainres.2008.10.012] [PMID: 18992719]
[13]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[14]
Croft, K.D. The chemistry and biological effects of flavonoids and phenolic acids. Ann. N. Y. Acad. Sci., 1998, 854, 435-442.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09922.x] [PMID: 9928450]
[15]
Griesbach, R.J. Biochemistry and genetics of flower color. Plant Breed. Rev., 2005, 25, 89-114.
[http://dx.doi.org/10.1002/9780470650301.ch4]
[16]
Takahashi, A.; Ohnishi, T. The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the International Space Station. Biol. Sci. Space, 2004, 18(4), 255-260.
[http://dx.doi.org/10.2187/bss.18.255] [PMID: 15858393]
[17]
Samanta, A.; Das, G.; Das, S. Roles of flavonoids in plants. Int. J. Pharm. Sci. Tech, 2011, 6, 12-35.
[18]
Jorgensen, R.A. Cosuppression, flower color patterns, and metastable gene expression States. Science, 1995, 268(5211), 686-691.
[http://dx.doi.org/10.1126/science.268.5211.686] [PMID: 17832380]
[19]
Dixon, R.A.; Pasinetti, G.M. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol., 2010, 154(2), 453-457.
[http://dx.doi.org/10.1104/pp.110.161430] [PMID: 20921162]
[20]
Knekt, P.; Jarvinen, R.; Reunanen, A.; Maatela, J. Flavonoid intake and coronary mortality in Finland: A cohort study. BMJ, 1996, 312(7029), 478-481.
[http://dx.doi.org/10.1136/bmj.312.7029.478] [PMID: 8597679]
[21]
Devore, E.E.; Kang, J.H.; Breteler, M.M.; Grodstein, F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann. Neurol., 2012, 72(1), 135-143.
[http://dx.doi.org/10.1002/ana.23594] [PMID: 22535616]
[22]
Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavai-lability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Arch. Toxicol., 2014, 88(10), 1803-1853.
[http://dx.doi.org/10.1007/s00204-014-1330-7] [PMID: 25182418]
[23]
Morel, I.; Lescoat, G.; Cogrel, P.; Sergent, O.; Pasdeloup, N.; Brissot, P.; Cillard, P.; Cillard, J. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem. Pharmacol., 1993, 45(1), 13-19.
[http://dx.doi.org/10.1016/0006-2952(93)90371-3] [PMID: 8424806]
[24]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[25]
Galati, G.; O’Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med., 2004, 37(3), 287-303.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.034] [PMID: 15223063]
[26]
Macready, A.L.; Kennedy, O.B.; Ellis, J.A.; Williams, C.M.; Spencer, J.P.E.; Butler, L.T. Flavonoids and cognitive function: A review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr., 2009, 4(4), 227-242.
[http://dx.doi.org/10.1007/s12263-009-0135-4] [PMID: 19680703]
[27]
Socci, V.; Tempesta, D.; Desideri, G.; De Gennaro, L.; Ferrara, M. Enhancing human cognition with cocoa flavonoids. Front. Nutr., 2017, 4, 19.
[http://dx.doi.org/10.3389/fnut.2017.00019] [PMID: 28560212]
[28]
Bakoyiannis, I.; Daskalopoulou, A.; Pergialiotis, V.; Perrea, D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed. Pharmacother., 2019, 109, 1488-1497.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[29]
Schroeter, H.; Boyd, C.; Spencer, J.P.E.; Williams, R.J.; Cadenas, E.; Rice-Evans, C. MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiol. Aging, 2002, 23(5), 861-880.
[http://dx.doi.org/10.1016/S0197-4580(02)00075-1] [PMID: 12392791]
[30]
Vauzour, D.; Vafeiadou, K.; Rice-Evans, C.; Williams, R.J.; Spencer, J.P.E. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem., 2007, 103(4), 1355-1367.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04841.x] [PMID: 17961201]
[31]
Spencer, J.P.E. Flavonoids: Modulators of brain function? Br. J. Nutr, 2008, 99 E((Suppl. 1)), ES60-ES77.
[http://dx.doi.org/10.1017/S0007114508965776] [PMID: 18503736]
[32]
Spencer, J.P.E. Flavonoids and brain health: Multiple effects underpinned by common mechanisms. Genes Nutr., 2009, 4(4), 243-250.
[http://dx.doi.org/10.1007/s12263-009-0136-3] [PMID: 19685255]
[33]
Spencer, J.P.E.; Vauzour, D.; Rendeiro, C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch. Biochem. Biophys., 2009, 492(1-2), 1-9.
[http://dx.doi.org/10.1016/j.abb.2009.10.003] [PMID: 19822127]
[34]
Chen, X.; Yin, O.Q.P.; Zuo, Z.; Chow, M.S.S. Pharmacokinetics and modeling of quercetin and metabolites. Pharm. Res., 2005, 22(6), 892-901.
[http://dx.doi.org/10.1007/s11095-005-4584-1] [PMID: 15948033]
[35]
Etxeberria, U.; Arias, N.; Boqué, N.; Macarulla, M.T.; Portillo, M.P.; Martínez, J.A.; Milagro, F.I. Reshaping faecal gut microbiota compo-sition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutr. Biochem., 2015, 26(6), 651-660.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.002] [PMID: 25762527]
[36]
Xie, J.; Song, W.; Liang, X.; Zhang, Q.; Shi, Y.; Liu, W.; Shi, X. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed. Pharmacother., 2020, 127, 110147.
[http://dx.doi.org/10.1016/j.biopha.2020.110147] [PMID: 32559841]
[37]
Anlu, W.; Dongcheng, C.; He, Z.; Qiuyi, L.; Yan, Z.; Yu, Q.; Hao, X.; Keji, C. Using herbal medicine to target the “microbiota-metabolism-immunity” axis as possible therapy for cardiovascular disease. Pharmacol. Res., 2019, 142, 205-222.
[http://dx.doi.org/10.1016/j.phrs.2019.02.018] [PMID: 30794922]
[38]
Zhao, L.; Zhang, Q.; Ma, W.; Tian, F.; Shen, H.; Zhou, M. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct., 2017, 8(12), 4644-4656.
[http://dx.doi.org/10.1039/C7FO01383C] [PMID: 29152632]
[39]
Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modu-lating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med., 2017, 102, 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[40]
Sonawane, R.D.; Vishwakarma, S.L.; Lakshmi, S.; Rajani, M.; Padh, H.; Goyal, R.K. Amelioration of STZ-induced type 1 diabetic nephro-pathy by aqueous extract of Enicostemma littorale Blume and swertiamarin in rats. Mol. Cell. Biochem., 2010, 340(1-2), 1-6.
[http://dx.doi.org/10.1007/s11010-010-0393-x] [PMID: 20229291]
[41]
Haneda, M.; Koya, D.; Kikkawa, R. Cellular mechanisms in the development and progression of diabetic nephropathy: Activation of the DAG-PKC-ERK pathway. Am. J. Kidney Dis., 2001, 38(4)(Suppl. 1), S178-S181.
[http://dx.doi.org/10.1053/ajkd.2001.27438] [PMID: 11576950]
[42]
Guo, X.; Zhou, G.; Guo, M.; Cheung, A.K.; Huang, Y.; Beddhu, S. Adiponectin retards the progression of diabetic nephropathy in db/db mice by counteracting angiotensin II. Physiol. Rep., 2014, 2(2), e00230.
[http://dx.doi.org/10.1002/phy2.230] [PMID: 24744899]
[43]
Tziomalos, K.; Athyros, V.G. Diabetic nephropathy: New risk factors and improvements in diagnosis. Rev. Diabet. Stud., 2015, 12(1-2), 110-118.
[http://dx.doi.org/10.1900/RDS.2015.12.110] [PMID: 26676664]
[44]
Avignon, A.; Sultan, A. PKC-B inhibition: A new therapeutic approach for diabetic complications? Diabetes Metab., 2006, 32(3), 205-213.
[http://dx.doi.org/10.1016/S1262-3636(07)70270-7] [PMID: 16799396]
[45]
Xu, X.; Chen, P.; Zheng, Q.; Wang, Y.; Chen, W. Effect of pioglitazone on diabetic nephropathy and expression of HIF-1α and VEGF in the renal tissues of type 2 diabetic rats. Diabetes Res. Clin. Pract., 2011, 93(1), 63-69.
[http://dx.doi.org/10.1016/j.diabres.2011.03.019] [PMID: 21514683]
[46]
Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol., 2017, 67, 220-235.
[http://dx.doi.org/10.1016/j.tifs.2017.07.008]
[47]
Mittal, R.; Kumar, A.; Singh, D.P.; Bishnoi, M.; Nag, T.C. Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: Targeting Nrf2/HO-1/NF-kB and COX signalling pathway. Inflammopharmacology, 2018, 26(3), 755-768.
[http://dx.doi.org/10.1007/s10787-017-0413-5] [PMID: 29094308]
[48]
Al-Enazi, M.M. Ameliorative potential of rutin on streptozotocin-induced neuropathic pain in rat. Afr. J. Pharm. Pharmacol., 2013, 7, 2743-2754.
[http://dx.doi.org/10.5897/AJPP2012.1534]
[49]
Azevedo, M.I.; Pereira, A.F.; Nogueira, R.B.; Rolim, F.E.; Brito, G.A.C.; Wong, D.V.T.; Lima-Júnior, R.C.P.; de Albuquerque Ribeiro, R.; Vale, M.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol. Pain, 2013, 9, 53.
[http://dx.doi.org/10.1186/1744-8069-9-53] [PMID: 24152430]
[50]
Schwingel, T.E.; Klein, C.P.; Nicoletti, N.F.; Dora, C.L.; Hadrich, G.; Bica, C.G.; Lopes, T.G.; da Silva, V.D.; Morrone, F.B. Effects of the compounds resveratrol, rutin, quercetin, and quercetin nanoemulsion on oxaliplatin-induced hepatotoxicity and neurotoxicity in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(9), 837-848.
[http://dx.doi.org/10.1007/s00210-014-0994-0] [PMID: 24908156]
[51]
Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nur-mikko, T.; Raja, S.N.; Rice, A.S.C.; Serra, J.; Smith, B.H.; Treede, R.D.; Jensen, T.S. Neuropathic pain: An updated grading system for re-search and clinical practice. Pain, 2016, 157(8), 1599-1606.
[http://dx.doi.org/10.1097/j.pain.0000000000000492] [PMID: 27115670]
[52]
Kishore, L.; Kaur, N.; Singh, R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology, 2018, 26(4), 993-1003.
[http://dx.doi.org/10.1007/s10787-017-0416-2] [PMID: 29159712]
[53]
Abo-Salem, O.M. Kaempferol attenuates the development of diabetic neuropathic pain in mice: Possible anti-inflammatory and anti-oxidant mechanisms. Maced. J. Med. Sci., 2014, 2, 424-430.
[http://dx.doi.org/10.3889/oamjms.2014.073]
[54]
Seo, K.; Yang, J.H.; Kim, S.C.; Ku, S.K.; Ki, S.H.; Shin, S.M. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expres-sion in response to inflammation: a potential role of HO-1. Inflammation, 2014, 37(3), 712-722.
[http://dx.doi.org/10.1007/s10753-013-9789-6] [PMID: 24337631]
[55]
Jamali-Raeufy, N.; Baluchnejadmojarad, T.; Roghani, M.; Keimasi, S.; Goudarzi, M. Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. J. Chem. Neuroanat., 2019, 102, 101709.
[http://dx.doi.org/10.1016/j.jchemneu.2019.101709] [PMID: 31698018]
[56]
Lan, K.; Jiang, X.; He, J. Quantitative determination of isorhamnetin, quercetin and kaempferol in rat plasma by liquid chromatography with electrospray ionization tandem mass spectrometry and its application to the pharmacokinetic study of isorhamnetin. Rapid Commun. Mass Spectrom., 2007, 21(2), 112-120.
[http://dx.doi.org/10.1002/rcm.2814] [PMID: 17154349]
[57]
Mancera-Andrade, E.I.; Parsaeimehr, A.; Ruiz-Ruiz, F.; Rorrer, G.L.; González-Valdez, J.; Iqbal, H.M.N.; Parra-Saldivar, R. Isorhamnetin encapsulation into biogenic silica from Cyclotella sp. using a microfluidic device for drug delivery applications. Biocatal. Agric. Biotechnol., 2019, 19, 101175.
[http://dx.doi.org/10.1016/j.bcab.2019.101175]
[58]
Antunes-Ricardo, M.; Rodríguez-Rodríguez, C.; Gutiérrez-Uribe, J.A.; Cepeda-Cañedo, E.; Serna-Saldívar, S.O. Bioaccessibility, intestinal permeability and plasma stability of isorhamnetin glycosides from Opuntia ficus-indica (L.). Int. J. Mol. Sci., 2017, 18(8), 1816.
[http://dx.doi.org/10.3390/ijms18081816] [PMID: 28829356]
[59]
Emim, J.A.; Oliveira, A.B.; Lapa, A.J. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J. Pharm. Pharmacol., 1994, 46(2), 118-122.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03753.x] [PMID: 8021799]
[60]
Kawaguchi, K.; Mizuno, T.; Aida, K.; Uchino, K. Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas. Biosci. Biotechnol. Biochem., 1997, 61(1), 102-104.
[http://dx.doi.org/10.1271/bbb.61.102] [PMID: 9028038]
[61]
Kaur, G.; Tirkey, N.; Chopra, K. Beneficial effect of hesperidin on lipopolysaccharide-induced hepatotoxicity. Toxicology, 2006, 226(2-3), 152-160.
[http://dx.doi.org/10.1016/j.tox.2006.06.018] [PMID: 16919860]
[62]
Lee, N.K.; Choi, S.H.; Park, S.H.; Park, E.K.; Kim, D.H. Antiallergic activity of hesperidin is activated by intestinal microflora. Pharmacology, 2004, 71(4), 174-180.
[http://dx.doi.org/10.1159/000078083] [PMID: 15240993]
[63]
Akiyama, S.; Katsumata, S.; Suzuki, K.; Ishimi, Y.; Wu, J.; Uehara, M. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J. Clin. Biochem. Nutr., 2010, 46(1), 87-92.
[http://dx.doi.org/10.3164/jcbn.09-82] [PMID: 20104270]
[64]
Kakadiya, J.; Patel, D.; Shah, N. Effect of hesperidin on renal complication in experimentally induced renal damage in diabetic Sprague-Dawley rats. J. Ecobiotechnol, 2010, 2, 45-50.
[65]
Visnagri, A.; Kandhare, A.D.; Chakravarty, S.; Ghosh, P.; Bodhankar, S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol., 2014, 52(7), 814-828.
[http://dx.doi.org/10.3109/13880209.2013.870584] [PMID: 24559476]
[66]
Yurchenco, P.D.; Schittny, J.C. Molecular architecture of basement membranes. FASEB J., 1990, 4(6), 1577-1590.
[http://dx.doi.org/10.1096/fasebj.4.6.2180767] [PMID: 2180767]
[67]
Matrisian, L.M. The matrix-degrading metalloproteinases. BioEssays, 1992, 14(7), 455-463.
[http://dx.doi.org/10.1002/bies.950140705] [PMID: 1445287]
[68]
Sima, A.A. Pathological mechanisms involved in diabetic neuropathy: Can we slow the process? Curr. Opin. Investig. Drugs, 2006, 7(4), 324-337.
[PMID: 16625819]
[69]
Soriano, F.G.; Pacher, P.; Mabley, J.; Liaudet, L.; Szabó, C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ. Res., 2001, 89(8), 684-691.
[http://dx.doi.org/10.1161/hh2001.097797] [PMID: 11597991]
[70]
Kumar, A.; Kaundal, R.K.; Iyer, S.; Sharma, S.S. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci., 2007, 80(13), 1236-1244.
[http://dx.doi.org/10.1016/j.lfs.2006.12.036] [PMID: 17289084]
[71]
Jung, U.J.; Lee, M.K.; Jeong, K.S.; Choi, M.S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr., 2004, 134(10), 2499-2503.
[http://dx.doi.org/10.1093/jn/134.10.2499] [PMID: 15465737]
[72]
Lonchampt, M.; Guardiola, B.; Sicot, N.; Bertrand, M.; Perdrix, L.; Duhault, J. Protective effect of a purified flavonoid fraction against reactive oxygen radicals. In vivo and in vitro study. Arzneimittelforschung, 1989, 39(8), 882-885.
[PMID: 2818676]
[73]
Cook, N.; Samman, S. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7, 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[74]
Singh, P.; Bansal, S.; Kuhad, A.; Kumar, A.; Chopra, K. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels. Food Funct., 2020, 11(5), 4548-4560.
[http://dx.doi.org/10.1039/C9FO00881K] [PMID: 32400767]
[75]
Al-Rejaie, S.S.; Aleisa, A.M.; Abuohashish, H.M.; Parmar, M.Y.; Ola, M.S.; Al-Hosaini, A.A.; Ahmed, M.M. Naringenin neutralises oxida-tive stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol. Res., 2015, 37(10), 924-933.
[http://dx.doi.org/10.1179/1743132815Y.0000000079] [PMID: 26187552]
[76]
Hasanein, P.; Fazeli, F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J. Physiol. Biochem., 2014, 70, 997-1006.
[http://dx.doi.org/10.1007/s13105-014-0369-5]
[77]
Testai, L.; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 2017, 9(5), 502.
[http://dx.doi.org/10.3390/nu9050502] [PMID: 28509871]
[78]
Abdollahi, A.; Moghimi, S.; Tabasi, A.; Rajabi, M.T.; Sabet, B. Neuropathy and retinopathy in diabetes: Is there any association? Int. J. Ophthalmol., 2009, 2, 57-60.
[79]
Bucolo, C.; Leggio, G.M.; Drago, F.; Salomone, S.; Salomone, S. Eriodictyol prevents early retinal and plasma abnormalities in strepto-zotocin-induced diabetic rats. Biochem. Pharmacol., 2012, 84(1), 88-92.
[http://dx.doi.org/10.1016/j.bcp.2012.03.019] [PMID: 22484312]
[80]
Lv, P.; Yu, J.; Xu, X.; Lu, T.; Xu, F. Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells. J. Cell. Biochem., 2019, 120(4), 5644-5651.
[http://dx.doi.org/10.1002/jcb.27848] [PMID: 30317656]
[81]
Salehi, B.; Venditti, A.; Sharifi-Rad, M. Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; Antolak, H.; Azzini, E.; Setzer, W.N.; Martins, N. The therapeutic potential of apigenin. Int. J. Mol. Sci., 2019, 20(6), 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[82]
Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1- MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol., 2017, 313(2), F414-F422.
[http://dx.doi.org/10.1152/ajprenal.00393.2016] [PMID: 28566504]
[83]
Kim, M.; Jung, J.; Jeong, N.Y.; Chung, H.J. The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat. Sci. Int., 2019, 94(4), 285-294.
[http://dx.doi.org/10.1007/s12565-019-00486-2] [PMID: 30949912]
[84]
Ahamed, M.M.; Banji, O. A review on diabetic neuropathy and nephropathy. Int. J. Pharm. Sci. Res., 2012, 3, 300-304.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.3(2).300-304]
[85]
Wang, G.G.; Lu, X.H.; Li, W.; Zhao, X.; Zhang, C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid. Based Complement. Alternat. Med., 2011, 2011, 323171.
[http://dx.doi.org/10.1155/2011/323171] [PMID: 21584231]
[86]
Dunlop, M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. Suppl., 2000, 77, S3-S12.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07702.x] [PMID: 10997684]
[87]
Jang, S.; Kelley, K.W.; Johnson, R.W. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7534-7539.
[http://dx.doi.org/10.1073/pnas.0802865105] [PMID: 18490655]
[88]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[89]
Chen, C.Y.; Peng, W.H.; Tsai, K.D.; Hsu, S.L. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci., 2007, 81(23-24), 1602-1614.
[http://dx.doi.org/10.1016/j.lfs.2007.09.028] [PMID: 17977562]
[90]
Hu, C.; Kitts, D.D. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol. Cell. Biochem., 2004, 265(1-2), 107-113.
[http://dx.doi.org/10.1023/B:MCBI.0000044364.73144.fe] [PMID: 15543940]
[91]
Vaziri, N.D. Dyslipidemia of chronic renal failure: The nature, mechanisms, and potential consequences. Am. J. Physiol. Renal Physiol., 2006, 290(2), F262-F272.
[http://dx.doi.org/10.1152/ajprenal.00099.2005] [PMID: 16403839]
[92]
Sugano, M.; Yamato, H.; Hayashi, T.; Ochiai, H.; Kakuchi, J.; Goto, S.; Nishijima, F.; Iino, N.; Kazama, J.J.; Takeuchi, T.; Mokuda, O.; Ishikawa, T.; Okazaki, R. High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Nutr. Metab. Cardiovasc. Dis., 2006, 16(7), 477-484.
[http://dx.doi.org/10.1016/j.numecd.2005.08.007] [PMID: 17015185]
[93]
Makino, H.; Tanaka, I.; Mukoyama, M.; Sugawara, A.; Mori, K.; Muro, S.; Suganami, T.; Yahata, K.; Ishibashi, R.; Ohuchida, S.; Ma-ruyama, T.; Narumiya, S.; Nakao, K. Prevention of diabetic nephropathy in rats by prostaglandin E receptor EP1-selective antagonist. J. Am. Soc. Nephrol., 2002, 13(7), 1757-1765.
[http://dx.doi.org/10.1097/01.ASN.0000019782.37851.BF] [PMID: 12089371]
[94]
Breyer, M.D.; Böttinger, E.; Brosius, F.C., III; Coffman, T.M.; Harris, R.C.; Heilig, C.W.; Sharma, K. Mouse models of diabetic nephro-pathy. J. Am. Soc. Nephrol., 2005, 16(1), 27-45.
[http://dx.doi.org/10.1681/ASN.2004080648] [PMID: 15563560]
[95]
Sun, S.Z.; Wang, Y.; Li, Q.; Tian, Y.J.; Liu, M.H.; Yu, Y.H. Effects of benazepril on renal function and kidney expression of matrix meta-lloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats. Chin. Med. J. (Engl.), 2006, 119(10), 814-821.
[http://dx.doi.org/10.1097/00029330-200605020-00004] [PMID: 16732983]
[96]
Agarwal, A.; Nick, H.S. Renal response to tissue injury: Lessons from heme oxygenase-1 GeneAblation and expression. J. Am. Soc. Nephrol., 2000, 11(5), 965-973.
[http://dx.doi.org/10.1681/ASN.V115965] [PMID: 10770977]
[97]
Ryter, S.W.; Alam, J.; Choi, A.M.K. Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications. Physiol. Rev., 2006, 86(2), 583-650.
[http://dx.doi.org/10.1152/physrev.00011.2005] [PMID: 16601269]
[98]
Ryter, S.W.; Kim, H.P.; Nakahira, K.; Zuckerbraun, B.S.; Morse, D.; Choi, A.M.K. Protective functions of heme oxygenase-1 and carbon monoxide in the respiratory system. Antioxid. Redox Signal., 2007, 9(12), 2157-2173.
[http://dx.doi.org/10.1089/ars.2007.1811] [PMID: 17845132]
[99]
Brazil, D.P.; Yang, Z.Z.; Hemmings, B.A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci., 2004, 29(5), 233-242.
[http://dx.doi.org/10.1016/j.tibs.2004.03.006] [PMID: 15130559]
[100]
Naruse, K.; Rask-Madsen, C.; Takahara, N.; Ha, S.W.; Suzuma, K.; Way, K.J.; Jacobs, J.R.C.; Clermont, A.C.; Ueki, K.; Ohshiro, Y.; Zhang, J.; Goldfine, A.B.; King, G.L. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes, 2006, 55(3), 691-698.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0771] [PMID: 16505232]
[101]
Sambuceti, G.; Morbelli, S.; Vanella, L.; Kusmic, C.; Marini, C.; Massollo, M.; Augeri, C.; Corselli, M.; Ghersi, C.; Chiavarina, B.; Rodella, L.F.; L’Abbate, A.; Drummond, G.; Abraham, N.G.; Frassoni, F. Diabetes impairs the vascular recruitment of normal stem cells by oxi-dant damage, reversed by increases in pAMPK, heme oxygenase-1, and adiponectin. Stem Cells, 2009, 27(2), 399-407.
[http://dx.doi.org/10.1634/stemcells.2008-0800] [PMID: 19038792]
[102]
Han, Z.; Varadharaj, S.; Giedt, R.J.; Zweier, J.L.; Szeto, H.H.; Alevriadou, B.R. Mitochondria-derived reactive oxygen species mediate heme oxygenase-1 expression in sheared endothelial cells. J. Pharmacol. Exp. Ther., 2009, 329(1), 94-101.
[http://dx.doi.org/10.1124/jpet.108.145557] [PMID: 19131585]
[103]
Li, M.; Li, Q.; Zhao, Q.; Zhang, J.; Lin, J. Luteolin improves the impaired nerve functions in diabetic neuropathy: Behavioral and bioche-mical evidences. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10112-10120.
[PMID: 26617718]
[104]
Chen, F.; Ma, Y.; Sun, Z.; Zhu, X. Tangeretin inhibits high glucose-induced extracellular matrix accumulation in human glomerular me-sangial cells. Biomed. Pharmacother., 2018, 102, 1077-1083.
[http://dx.doi.org/10.1016/j.biopha.2018.03.169] [PMID: 29710524]
[105]
Miller, C.G.; Pozzi, A.; Zent, R.; Schwarzbauer, J.E. Effects of high glucose on integrin activity and fibronectin matrix assembly by me-sangial cells. Mol. Biol. Cell, 2014, 25(16), 2342-2350.
[http://dx.doi.org/10.1091/mbc.e14-03-0800] [PMID: 24943838]
[106]
Ji, L.; Yin, X.X.; Wu, Z.M.; Wang, J.Y.; Lu, Q.; Gao, Y.Y. Ginkgo biloba extract prevents glucose-induced accumulation of ECM in rat mesangial cells. Phytother. Res., 2009, 23(4), 477-485.
[http://dx.doi.org/10.1002/ptr.2652] [PMID: 19003945]
[107]
Shi, Y.; Zhang, Y.; Wang, C.; Du, C.; Zhao, S.; Qi, Z.; Zhang, Q.; Duan, H. Suppressor of cytokine signaling-1 reduces high glucose-induced TGF-beta1 and fibronectin synthesis in human mesangial cells. FEBS Lett., 2008, 582(23-24), 3484-3488.
[http://dx.doi.org/10.1016/j.febslet.2008.09.014] [PMID: 18801363]
[108]
Haneda, M.; Araki, S.; Togawa, M.; Sugimoto, T.; Isono, M.; Kikkawa, R. Mitogen-activated protein kinase cascade is activated in glome-ruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes, 1997, 46(5), 847-853.
[http://dx.doi.org/10.2337/diab.46.5.847] [PMID: 9133554]
[109]
Song, S.E.; Jo, H.J.; Kim, Y.W.; Cho, Y.J.; Kim, J.R.; Park, S.Y. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. J. Pharmacol. Sci., 2016, 130(4), 235-243.
[http://dx.doi.org/10.1016/j.jphs.2016.03.005] [PMID: 27103328]
[110]
Wang, Y.; Wang, M.; Chen, B.; Shi, J. Scoparone attenuates high glucose-induced extracellular matrix accumulation in rat mesangial cells. Eur. J. Pharmacol., 2017, 815, 376-380.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.039] [PMID: 28970015]
[111]
Hong, J.S.; Feng, J.H.; Park, J.S.; Lee, H.J.; Lee, J.Y.; Lim, S.S.; Suh, H.W. Antinociceptive effect of chrysin in diabetic neuropathy and formalin-induced pain models. Anim. Cells Syst., 2020, 24(3), 143-150.
[http://dx.doi.org/10.1080/19768354.2020.1765019] [PMID: 33209194]
[112]
Barrot, M. Tests and models of nociception and pain in rodents. Neuroscience, 2012, 211, 39-50.
[http://dx.doi.org/10.1016/j.neuroscience.2011.12.041] [PMID: 22244975]
[113]
Tjølsen, A.; Berge, O.G.; Hunskaar, S.; Rosland, J.H.; Hole, K. The formalin test: An evaluation of the method. Pain, 1992, 51, 5-17.
[http://dx.doi.org/10.1016/0304-3959(92)90003-T]
[114]
Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med., 2015, 8(2), 2465-2470.
[PMID: 25932190]
[115]
Miyabe, T.; Miletic, V. Multiple kinase pathways mediate the early sciatic ligation-associated activation of CREB in the rat spinal dorsal horn. Neurosci. Lett., 2005, 381(1-2), 80-85.
[http://dx.doi.org/10.1016/j.neulet.2005.02.001] [PMID: 15882794]
[116]
Song, X.S.; Cao, J.L.; Xu, Y.B.; He, J.H.; Zhang, L.C.; Zeng, Y.M. Activation of ERK/CREB pathway in spinal cord contributes to chronic constrictive injury-induced neuropathic pain in rats. Acta Pharmacol. Sin., 2005, 26(7), 789-798.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00123.x] [PMID: 15960884]
[117]
Mao, Q.; Ruan, J.; Cai, X.; Lu, W.; Ye, J.; Yang, J.; Yang, Y.; Sun, X.; Cao, J.; Cao, P. Antinociceptive effects of analgesic-antitumor pepti-de (AGAP), a neurotoxin from the scorpion Buthus martensii Karsch, on formalin-induced inflammatory pain through a mitogen-activated protein kinases-dependent mechanism in mice. PLoS One, 2013, 8(11), e78239.
[http://dx.doi.org/10.1371/journal.pone.0078239] [PMID: 24244296]
[118]
Tochiki, K.K.; Maiarù, M.; Miller, J.R.; Hunt, S.P.; Géranton, S.M. Short-term anesthesia inhibits formalin-induced extracellular signal-regulated kinase (ERK) activation in the rostral anterior cingulate cortex but not in the spinal cord. Mol. Pain, 2015, 11, 49.
[http://dx.doi.org/10.1186/s12990-015-0052-z] [PMID: 26272725]
[119]
Yaksh, T.L. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res., 1979, 160(1), 180-185.
[http://dx.doi.org/10.1016/0006-8993(79)90616-4] [PMID: 581478]
[120]
Yaksh, T.L. Multiple opioid receptor systems in brain and spinal cord: Part I. Eur. J. Anaesthesiol., 1984, 1(2), 171-199.
[PMID: 6152613]
[121]
Wigdor, S.; Wilcox, G.L. Central and systemic morphine-induced antinociception in mice: Contribution of descending serotonergic and noradrenergic pathways. J. Pharmacol. Exp. Ther., 1987, 242(1), 90-95.
[PMID: 3612540]
[122]
Kandhare, A.D.; Shivakumar, V.; Rajmane, A.; Ghosh, P.; Bodhankar, S.L. Evaluation of the neuroprotective effect of chrysin via modu-lation of endogenous biomarkers in a rat model of spinal cord injury. J. Nat. Med., 2014, 68(3), 586-603.
[http://dx.doi.org/10.1007/s11418-014-0840-1] [PMID: 24789169]
[123]
Jain, D.; Bansal, M.K.; Dalvi, R.; Upganlawar, A.; Somani, R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J. Integr. Med., 2014, 12(1), 35-41.
[http://dx.doi.org/10.1016/S2095-4964(14)60001-7] [PMID: 24461593]
[124]
Ahmed, S.; Mundhe, N.; Borgohain, M.; Chowdhury, L.; Kwatra, M.; Bolshette, N.; Ahmed, A.; Lahkar, M. Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation, 2016, 39(5), 1783-1797.
[http://dx.doi.org/10.1007/s10753-016-0413-4] [PMID: 27492452]
[125]
Jiang, H.; Yamashita, Y.; Nakamura, A.; Croft, K.; Ashida, H. Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Sci. Rep., 2019, 9(1), 2690.
[http://dx.doi.org/10.1038/s41598-019-38711-7] [PMID: 30804434]
[126]
Gabbay, K.H. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med., 1973, 288(16), 831-836.
[http://dx.doi.org/10.1056/NEJM197304192881609] [PMID: 4266466]
[127]
Oates, P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol., 2002, 50, 325-392.
[http://dx.doi.org/10.1016/S0074-7742(02)50082-9] [PMID: 12198816]
[128]
Williamson, J.R.; Chang, K.; Frangos, M.; Hasan, K.S.; Ido, Y.; Kawamura, T.; Nyengaard, J.R.; van den Enden, M.; Kilo, C.; Tilton, R.G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes, 1993, 42(6), 801-813.
[http://dx.doi.org/10.2337/diab.42.6.801] [PMID: 8495803]
[129]
Yagihashi, S.; Mizukami, H.; Sugimoto, K. Mechanism of diabetic neuropathy: Where are we now and where to go? J. Diabetes Investig., 2011, 2(1), 18-32.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00070.x] [PMID: 24843457]
[130]
Ghamali, M.; Chtita, S.; Hmamouchi, R.; Adad, A.; Bouachrine, M.; Lakhlifi, T. The inhibitory activity of aldose reductase of flavonoid compounds: Combining DFT and QSAR calculations. J. Taibah Univ. Sci., 2016, 10, 534-542.
[http://dx.doi.org/10.1016/j.jtusci.2015.09.006]
[131]
Negre-Salvayre, A.; Salvayre, R.; Augé, N.; Pamplona, R.; Portero-Otín, M. Hyperglycemia and glycation in diabetic complications. Antioxid. Redox Signal., 2009, 11(12), 3071-3109.
[http://dx.doi.org/10.1089/ars.2009.2484] [PMID: 19489690]
[132]
Williams, S.K.; Howarth, N.L.; Devenny, J.J.; Bitensky, M.W. Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus. Proc. Natl. Acad. Sci. USA, 1982, 79(21), 6546-6550.
[http://dx.doi.org/10.1073/pnas.79.21.6546] [PMID: 6959136]
[133]
Wu, C.H.; Yen, G.C. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J. Agric. Food Chem., 2005, 53(8), 3167-3173.
[http://dx.doi.org/10.1021/jf048550u] [PMID: 15826074]
[134]
Hinder, L.M.; Vincent, A.M.; Burant, C.F.; Pennathur, S.; Feldman, E.L. Bioenergetics in diabetic neuropathy: What we need to know. J. Peripher. Nerv. Syst., 2012, 17(Suppl. 2), 10-14.
[http://dx.doi.org/10.1111/j.1529-8027.2012.00389.x] [PMID: 22548617]
[135]
Rumora, A.E.; Lentz, S.I.; Hinder, L.M.; Jackson, S.W.; Valesano, A.; Levinson, G.E.; Feldman, E.L. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J., 2018, 32(1), 195-207.
[http://dx.doi.org/10.1096/fj.201700206R] [PMID: 28904018]
[136]
Feldman, E.L.; Nave, K.A.; Jensen, T.S.; Bennett, D.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron, 2017, 93(6), 1296-1313.
[http://dx.doi.org/10.1016/j.neuron.2017.02.005] [PMID: 28334605]
[137]
Mulvihill, E.E.; Huff, M.W. Antiatherogenic properties of flavonoids: Implications for cardiovascular health. Can. J. Cardiol., 2010, 26(Suppl. A), 17A-21A.
[http://dx.doi.org/10.1016/S0828-282X(10)71056-4] [PMID: 20386755]
[138]
Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.P.; Giardino, I.; Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000, 404(6779), 787-790.
[http://dx.doi.org/10.1038/35008121] [PMID: 10783895]
[139]
Zotova, E.V.; Chistiakov, D.A.; Savost’ianov, K.V.; Bursa, T.R.; Galeev, I.V.; Strokov, I.A.; Nosikov, V.V. Association of the SOD2 Ala(-9)Val and SOD3 Arg213Gly polymorphisms with diabetic polyneuropathy in patients with diabetes mellitus type 1. Mol. Biol. (Mosk.), 2003, 37(3), 404-408.
[http://dx.doi.org/10.1023/A:1024287327107] [PMID: 12815947]
[140]
Derubertis, F.R.; Craven, P.A. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the patho-genesis of diabetic glomerulopathy. Diabetes, 1994, 43(1), 1-8.
[http://dx.doi.org/10.2337/diab.43.1.1] [PMID: 8262306]
[141]
Koya, D.; King, G.L. Protein kinase C activation and the development of diabetic complications. Diabetes, 1998, 47(6), 859-866.
[http://dx.doi.org/10.2337/diabetes.47.6.859] [PMID: 9604860]
[142]
Xia, P.; Inoguchi, T.; Kern, T.S.; Engerman, R.L.; Oates, P.J.; King, G.L. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes, 1994, 43(9), 1122-1129.
[http://dx.doi.org/10.2337/diab.43.9.1122] [PMID: 8070612]
[143]
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[144]
Nakamura, J.; Kato, K.; Hamada, Y.; Nakayama, M.; Chaya, S.; Nakashima, E.; Naruse, K.; Kasuya, Y.; Mizubayashi, R.; Miwa, K.; Yasu-da, Y.; Kamiya, H.; Ienaga, K.; Sakakibara, F.; Koh, N.; Hotta, N. A protein kinase C-beta-selective inhibitor ameliorates neural dysfun-ction in streptozotocin-induced diabetic rats. Diabetes, 1999, 48(10), 2090-2095.
[http://dx.doi.org/10.2337/diabetes.48.10.2090] [PMID: 10512378]
[145]
Ferriola, P.C.; Cody, V.; Middleton, E. Jr Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity rela-tionships. Biochem. Pharmacol., 1989, 38(10), 1617-1624.
[http://dx.doi.org/10.1016/0006-2952(89)90309-2] [PMID: 2730676]
[146]
Kiguchi, N.; Kobayashi, D.; Saika, F.; Matsuzaki, S.; Kishioka, S. Pharmacological regulation of neuropathic pain driven by inflammatory macrophages. Int. J. Mol. Sci., 2017, 18(11), 2296.
[http://dx.doi.org/10.3390/ijms18112296] [PMID: 29104252]
[147]
Tang, H.Y.; Jiang, A.J.; Ma, J.L.; Wang, F.J.; Shen, G.M. Understanding the signaling pathways related to the mechanism and treatment of diabetic peripheral neuropathy. Endocrinology, 2019, 160(9), 2119-2127.
[http://dx.doi.org/10.1210/en.2019-00311] [PMID: 31318414]
[148]
Pan, M.H.; Lai, C.S.; Ho, C.T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct., 2010, 1(1), 15-31.
[http://dx.doi.org/10.1039/c0fo00103a] [PMID: 21776454]
[149]
Sofroniew, M.V.; Howe, C.L.; Mobley, W.C. Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci., 2001, 24, 1217-1281.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1217] [PMID: 11520933]
[150]
Schmidt, R.E.; Dorsey, D.A.; Beaudet, L.N.; Parvin, C.A.; Escandon, E. Effect of NGF and neurotrophin-3 treatment on experimental diabetic autonomic neuropathy. J. Neuropathol. Exp. Neurol., 2001, 60(3), 263-273.
[http://dx.doi.org/10.1093/jnen/60.3.263] [PMID: 11245210]
[151]
Saudek, F.; Cahová, M.; Havrdová, T.; Zacharovová, K. Daňková, H.; Voska, L.; Lánská, V.; Üçeyler, N.; Sommer, C.; Danˇ kova´, H.; Voska, L.; La’nska´, V.; U¨ çeyler, N.; Sommer, C. Preserved expression of skin neurotrophic factors in advanced diabetic neuropathy does not lead to neural regeneration despite pancreas and kidney transplantation. J. Diabetes Res., 2018, 2018, 2309108.
[http://dx.doi.org/10.1155/2018/2309108] [PMID: 30648113]
[152]
Moosavi, F.; Hosseini, R.; Saso, L.; Firuzi, O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des. Devel. Ther., 2015, 10, 23-42.
[http://dx.doi.org/10.2147/DDDT.S96936] [PMID: 26730179]
[153]
Aziz, M.H.; Kumar, R.; Ahmad, N. Cancer chemoprevention by resveratrol: In vitro and in vivo studies and the underlying mechanisms (review). Int. J. Oncol., 2003, 23(1), 17-28.
[http://dx.doi.org/10.3892/ijo.23.1.17] [PMID: 12792772]
[154]
Alkhalidy, H.; Wang, Y.; Liu, D. Dietary flavonoids in the prevention of T2D: An overview. Nutrients, 2018, 10, 438.
[http://dx.doi.org/10.3390/nu10040438]
[155]
Bugel, S.M.; Bonventre, J.A.; Tanguay, R.L. Comparative developmental toxicity of flavonoids using an integrative zebrafish system. Toxicol. Sci., 2016, 154(1), 55-68.
[http://dx.doi.org/10.1093/toxsci/kfw139] [PMID: 27492224]
[156]
Dunnick, J.K.; Hailey, J.R. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam. Appl. Toxicol., 1992, 19(3), 423-431.
[http://dx.doi.org/10.1016/0272-0590(92)90181-G] [PMID: 1459373]
[157]
Shah, D.; Savaliya, R.; Patel, P.; Kansara, K.; Pandya, A.; Dhawan, A.; Singh, S. Curcumin Ag nanoconjugates for improved therapeutic effects in cancer. Int. J. Nanomedicine, 2018, 13(T-NANO 2014 Abstracts), 75-77.
[http://dx.doi.org/10.2147/IJN.S124696] [PMID: 29593400]
[158]
Vinayak, M.; Maurya, A.K. Quercetin loaded nanoparticles in targeting cancer: Recent development. Anticancer. Agents Med. Chem., 2019, 19(13), 1560-1576.
[http://dx.doi.org/10.2174/1871520619666190705150214] [PMID: 31284873]
[159]
Abdellah, A.M.; Sliem, M.A.; Bakr, M.; Amin, R.M. Green synthesis and biological activity of silver-curcumin nanoconjugates. Future Med. Chem., 2018, 10(22), 2577-2588.
[http://dx.doi.org/10.4155/fmc-2018-0152] [PMID: 30526035]
[160]
Gallelli, G.; Cione, E.; Serra, R.; Leo, A.; Citraro, R.; Matricardi, P.; Di Meo, C.; Bisceglia, F.; Caroleo, M.C.; Basile, S.; Gallelli, L. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int. Wound J., 2020, 17(2), 485-490.
[http://dx.doi.org/10.1111/iwj.13299] [PMID: 31876118]
[161]
Tong, F.; Liu, S.; Yan, B.; Li, X.; Ruan, S.; Yang, S. Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium. Int. J. Nanomedicine, 2017, 12, 7799-7813.
[http://dx.doi.org/10.2147/IJN.S146978] [PMID: 29123394]
[162]
Pinheiro, R.G.R.; Pinheiro, M.; Neves, A.R. Nanotechnology innovations to enhance the therapeutic efficacy of Quercetin. Nanomaterials (Basel), 2021, 11(10), 2658.
[http://dx.doi.org/10.3390/nano11102658] [PMID: 34685098]
[163]
Sharma, S.; Narang, J.K.; Ali, J.; Baboota, S. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson’s disease model. Nanotechnology, 2016, 27(37), 375101.
[http://dx.doi.org/10.1088/0957-4484/27/37/375101] [PMID: 27491690]
[164]
Kumar, R. P.; Abraham, A. Inhibition of LPS induced pro-inflammatory responses in RAW 264.7 macrophage cells by PVP-coated narin-genin nanoparticle via down regulation of NF-κB/P38MAPK mediated stress signaling. Pharmacol. Rep., 2017, 69(5), 908-915.
[http://dx.doi.org/10.1016/j.pharep.2017.04.002] [PMID: 28624598]
[165]
Chitkara, D.; Nikalaje, S.K.; Mittal, A.; Chand, M.; Kumar, N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv. Transl. Res., 2012, 2(2), 112-123.
[http://dx.doi.org/10.1007/s13346-012-0063-5] [PMID: 25786720]
[166]
Alam, M.M.; Abdullah, K.; Singh, B.R.; Naqvi, A.H.; Naseem, I. Ameliorative effect of quercetin nanorods on diabetic mice: mechanistic and therapeutic strategies. RSC Advances, 2016, 6, 55092-55103.
[http://dx.doi.org/10.1039/C6RA04821H]
[167]
Bunkar, N.; Shandilya, R.; Bhargava, A.; Samarth, R.M.; Tiwari, R.; Mishra, D.K.; Srivastava, R.K.; Sharma, R.S.; Lohiya, N.K.; Mishra, P.K. Nano-engineered flavonoids for cancer protection. Front. Biosci., 2019, 24, 1097-1157.
[http://dx.doi.org/10.2741/4771] [PMID: 30844733]
[168]
Amawi, H.; Ashby, C.R., Jr; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin. J. Cancer, 2017, 36(1), 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28629389]
[169]
Peng, J.; Fan, G.; Chai, Y.; Wu, Y. Efficient new method for extraction and isolation of three flavonoids from Patrinia villosa Juss. by supercritical fluid extraction and high-speed counter-current chromatography. J. Chromatogr. A, 2006, 1102(1-2), 44-50.
[http://dx.doi.org/10.1016/j.chroma.2005.10.045] [PMID: 16288764]
[170]
Hartonen, K.; Parshintsev, J.; Sandberg, K.; Bergelin, E.; Nisula, L.; Riekkola, M.L. Isolation of flavonoids from aspen knotwood by pres-surized hot water extraction and comparison with other extraction techniques. Talanta, 2007, 74(1), 32-38.
[http://dx.doi.org/10.1016/j.talanta.2007.05.040] [PMID: 18371609]
[171]
Wang, J.; Cao, F.; Su, E.; Wu, C.; Zhao, L.; Ying, R. Improving flavonoid extraction from Ginkgo biloba leaves by prefermentation proce-ssing. J. Agric. Food Chem., 2013, 61(24), 5783-5791.
[http://dx.doi.org/10.1021/jf400712n] [PMID: 23713789]
[172]
Zhang, H.F.; Zhang, X.; Yang, X.H.; Qiu, N.X.; Wang, Y.; Wang, Z.Z. Microwave assisted extraction of flavonoids from cultivated Epime-dium sagittatum: Extraction yield and mechanism, antioxidant activity and chemical composition. Ind. Crops Prod., 2013, 50, 857-865.
[http://dx.doi.org/10.1016/j.indcrop.2013.08.017]
[173]
Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[174]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy