Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Bioactive Compounds from Plants and their Immune Potential against Corona Virus

Author(s): Jagan Mohan Rao Tingirikari* and Anjaneyulu Musini

Volume 18, Issue 5, 2022

Published on: 06 April, 2022

Page: [432 - 440] Pages: 9

DOI: 10.2174/1573401318666220308155721

Price: $65

Abstract

Background: Corona virus is a contagious single-strand RNA virus affecting majorly the lungs causing severe acute respiratory disease. The viral pandemic has affected the world economy and posed new challenges to the scientific community. Due to high mutation rate, a lot of variants are occurring and persons who are vaccinated are also getting affected. In addition, vaccination trials for children aged below 18 are still going on. Moreover, the cost, shelf-life, success rate, no booster dose required, and the long-term complications associated with the vaccine are yet to be studied. Preservation and transportation of vaccines are another big challenge.

Objective: Despite vaccination, the best alternative is to boost our immune system by administration of bioactive compounds which are safe and effective. Bioactive compounds have been found to be effective against several viral infections.

Methods: Literature review has been performed using recently published research and review articles pertaining to the role of plant-derived bioactive compounds in regulating COVID-19 infection.

Result: The current review will describe the role and mechanism of bioactive compounds derived from natural sources in disease management and boosting the immune system against COVID-19.

Conclusion: In addition to vaccination, the administration of plant-derived bioactive compounds will help in regulating viral infection and boosting the immune response during COVID-19 infection.

Keywords: Anti-viral agents, bioactive compounds, COVID-19, immunity, infection, virus.

Graphical Abstract

[1]
Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014; 4(1): 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[2]
Denaro M, Smeriglio A, Barreca D, et al. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res 2019; 1-27.
[http://dx.doi.org/10.1002/ptr.6575] [PMID: 31858645]
[3]
Dhama K, Sharun K, Tiwari R, et al. COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother 2020; 16(6): 1232-8.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[4]
Antonio AD, Wiedemann LSM, Veiga-Junior VF. Natural products role against COVID-19. RSC Advances 2020; 10(39): 23379-93.
[http://dx.doi.org/10.1039/D0RA03774E]
[5]
Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382: 16.
[6]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[7]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[8]
Hussain W, Haleem KS, Khan I, et al. Medicinal plants: A repository of antiviral metabolites. Future Virol 2017; 12(6): 299-308.
[http://dx.doi.org/10.2217/fvl-2016-0110]
[9]
Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582(7811): 289-93.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[10]
Sampangi-Ramaiah MH, Vishwakarma R, Shanker RU. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr Sci 2020; 118(7): 1087.
[http://dx.doi.org/10.18520/cs/v118/i7/1087-1092]
[11]
Hui DS, Memish ZA, Zumla A. Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med 2014; 20(3): 233-41.
[http://dx.doi.org/10.1097/MCP.0000000000000046] [PMID: 24626235]
[12]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[13]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[14]
Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006; 66: 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[15]
Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 2015; 4(1): 27-30.
[PMID: 28197471]
[16]
Di Sotto A, Vitalone A, Di Giacomo S. Plant derived nutraceuticals and immune system modulation: An evidence-based overview. Vaccines (Basel) 2020; 8(3): 468.
[http://dx.doi.org/10.3390/vaccines8030468] [PMID: 32842641]
[17]
Alamgir ANM. .In Chapter 7: Biotechnology, in vitro production of natural bioactive compounds, herbal preparation, and disease management (treatment and prevention).In Therapeutic use of medicinal plants and their extracts. Springer International Publishing 2018; 74: pp. (2)585-664.
[18]
Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st Century: Innovations for novel drug discovery. Int J Mol Sci 2018; 19(6): 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[19]
Radulović NS, Blagojević PD, Stojanovi;ć-Radić ZZ, Stojanović NM. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr Med Chem 2013; 20(7): 932-52.
[PMID: 23210781]
[20]
Astuti I. Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[21]
Droebner K, Ehrhardt C, Poetter A, Ludwig S, Planz O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antiviral Res 2007; 76(1): 1-10.
[http://dx.doi.org/10.1016/j.antiviral.2007.04.001] [PMID: 17573133]
[22]
Alfajaro MM, Kim HJ, Park JG, et al. Anti-rotaviral effects of Glycyrrhiza uralensis extract in piglets with rotavirus diarrhea. Virol J 2012; 9(1): 310.
[http://dx.doi.org/10.1186/1743-422X-9-310] [PMID: 23244491]
[23]
Karasawa K, Uzuhashi Y, Hirota M, Otani H. A matured fruit extract of date palm tree (Phoenix dactylifera L.) stimulates the cellular immune system in mice. J Agric Food Chem 2011; 59(20): 11287-93.
[http://dx.doi.org/10.1021/jf2029225] [PMID: 21936496]
[24]
John CM, Sandrasaigaran P, Tong CK, Adam A, Ramasamy R. Immunomodulatory activity of polyphenols derived from Cassia auriculata flowers in aged rats. Cell Immunol 2011; 271(2): 474-9.
[http://dx.doi.org/10.1016/j.cellimm.2011.08.017] [PMID: 21924708]
[25]
Monnerat JADS, Pedro Ribeiro de Souza PRD, Letícia Monteiro da Fonseca Cardoso LMDF, et al. Micronutrients and bioactive compounds in the immunological pathways related to SARS-CoV-2 (adults and elderly). Eur J Nutr 2021; 60(2): 559-79.
[http://dx.doi.org/10.1007/s00394-020-02410-1]
[26]
Ding S, Jiang H, Fang J. Regulation of immune function by polyphenols. J Immunol Res 2018; 20181264074
[http://dx.doi.org/10.1155/2018/1264074] [PMID: 29850614]
[27]
Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10(7): 490-500.
[http://dx.doi.org/10.1038/nri2785] [PMID: 20559327]
[28]
Robinson DS, Larché M, Durham SR. Tregs and allergic disease. J Clin Invest 2004; 114(10): 1389-97.
[http://dx.doi.org/10.1172/JCI200423595] [PMID: 15545986]
[29]
Wang J, Pae M, Meydani SN, Wu D. Green tea epigallocatechin-3-gallate modulates differentiation of naïve CD4 T cells into specific lineage effector cells. J Mol Med (Berl) 2013; 91(4): 485-95.
[http://dx.doi.org/10.1007/s00109-012-0964-2] [PMID: 23064699]
[30]
Chairman K, Jeyamala M, Sankar S, Murugan A, Ranjit Singh AJA. Immunomodulating properties of bioactive compounds present in Aurora globostellata. Int J Mater Sci 2013; 3: 151-7.
[31]
Xagorari A, Roussos C, Papapetropoulos A. Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. Br J Pharmacol 2002; 136(7): 1058-64.
[http://dx.doi.org/10.1038/sj.bjp.0704803] [PMID: 12145106]
[32]
Liu T, Zhang L, Joo D, Sun SC NF. -κB signalling in inflammation Signal Transduct Target Ther 2017; 2: 1-9.
[33]
Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006; 72(11): 1439-52.
[http://dx.doi.org/10.1016/j.bcp.2006.07.004] [PMID: 16920072]
[34]
Rahman I, Marwick J, Kirkham P. Redox modulation of chromatin remodeling: Impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol 2004; 68(6): 1255-67.
[http://dx.doi.org/10.1016/j.bcp.2004.05.042] [PMID: 15313424]
[35]
Cao X. COVID-19: Immunopathology and its implications for therapy. Nat Rev Immunol 2020; 20(5): 269-70.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[36]
Shi Y, Wang Y, Shao C, et al. COVID-19 infection: The perspectives on immune responses. Cell Death Differ 2020; 27(5): 1451-4.
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[37]
Thevarajan I, Nguyen THO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat Med 2020; 26(4): 453-5.
[http://dx.doi.org/10.1038/s41591-020-0819-2] [PMID: 32284614]
[38]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[39]
Wang F, Hou H, Luo Y, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight 2020; 5(10)137799
[http://dx.doi.org/10.1172/jci.insight.137799] [PMID: 32324595]
[40]
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1): 1-9.
[PMID: 32105090]
[41]
Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytother Res 2020; 34(12): 3137-47.
[http://dx.doi.org/10.1002/ptr.6781] [PMID: 32613637]
[42]
Alberca RW, Teixeira FME, Beserra DR, et al. Perspective: The potential effects of naringenin in COVID-19. Front Immunol 2020; 11570919
[http://dx.doi.org/10.3389/fimmu.2020.570919] [PMID: 33101291]
[43]
Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 1999; 47(6): 2274-9.
[http://dx.doi.org/10.1021/jf9811065] [PMID: 10794622]
[44]
Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005; 81(1): 243S-55S.
[http://dx.doi.org/10.1093/ajcn/81.1.243S] [PMID: 15640487]
[45]
Wiczkowski W, Romaszko J, Bucinski A, et al. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides. J Nutr 2008; 138(5): 885-8.
[http://dx.doi.org/10.1093/jn/138.5.885] [PMID: 18424596]
[46]
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 2020; 11: 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[47]
Yang W-C, Hwang Y-S, Chen Y-Y, et al. Interleukin-4 supports the suppressive immune response elicited by regulatory T cells. Front Immunol 2017; 8: 1508.
[http://dx.doi.org/10.3389/fimmu.2017.01508] [PMID: 29184551]
[48]
Alvarez P, Alvarado C, Puerto M, Schlumberger A, Jiménez L, De la Fuente M. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition 2006; 22(9): 913-21.
[http://dx.doi.org/10.1016/j.nut.2005.12.012] [PMID: 16809023]
[49]
Exon JH, Magnuson BA, South EH, Hendrix K. Effect of dietary chlorogenic acid on multiple immune functions and formation of aberrant crypt foci in rats. J Toxicol Environ Health A 1998; 53(5): 375-84.
[http://dx.doi.org/10.1080/009841098159231] [PMID: 9515940]
[50]
Semwal DK, Semwal RB, Combrinck S, Viljoen A. Myricetin: A dietary molecule with diverse biological activities. Nutrients 2016; 8(2): 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[51]
Ortega JT, Suárez AI, Serrano ML, et al. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res Ther 2017; 14(1): 57.
[http://dx.doi.org/10.1186/s12981-017-0183-6] [PMID: 29025433]
[52]
Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL. Roles of flavonoids against coronavirus infection. Chem Biol Interact 2020; 328109211
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[53]
Singh RP, Raina K, Deep G, Chan D, Agarwal R. Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clin Cancer Res 2009; 15(2): 613-21.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1846] [PMID: 19147767]
[54]
Bosch-Barrera J, Sais E, Cañete N, et al. Response of brain metastasis from lung cancer patients to an oral nutraceutical product containing silibinin. Oncotarget 2016; 7(22): 32006-14.
[http://dx.doi.org/10.18632/oncotarget.7900] [PMID: 26959886]
[55]
Rendina M, D’Amato M, Castellaneta A, et al. Antiviral activity and safety profile of silibinin in HCV patients with advanced fibrosis after liver transplantation: A randomized clinical trial. Transpl Int 2014; 27(7): 696-704.
[http://dx.doi.org/10.1111/tri.12324] [PMID: 24673819]
[56]
Zheng R, Ma J, Wang D, et al. Chemo preventive effects of Silibinin on colitis-associated tumorigenesis by inhibiting IL-6/STAT3 signalling pathway. Mediators Inflamm 2018; 20181562010
[http://dx.doi.org/10.1155/2018/1562010] [PMID: 30498394]
[57]
Ikejima T, Hayashi T. Silibinin protects ultraviolet B-Irradiated skin by balancing apoptosis and autophagy in epidermis and dermis. Autophagy 2017; 12: 401-18.
[58]
Thanacoody R. Quinine and chloroquine. J Med 2016; 44: 197-8.
[59]
Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[60]
Suwannarach N, Kumla J, Sujarit K, Pattananandecha T, Saenjum C, Lumyong S. Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for Corona viruses. Molecules 2020; 25(8): 1800.
[http://dx.doi.org/10.3390/molecules25081800] [PMID: 32295300]
[61]
Joshi T, Joshi T, Sharma P, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci 2020; 24(8): 4529-36.
[PMID: 32373991]
[62]
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S. 2020.Potential inhibitor of COVID-19 main Protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020.
[http://dx.doi.org/10.20944/journals202003.0226.v1]
[63]
Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017; 9(4): 1-19.
[http://dx.doi.org/10.3390/nu9040316] [PMID: 28333109]
[64]
Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Review of evidence available on Hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes (Basel) 2020; 8(5): 549.
[http://dx.doi.org/10.3390/pr8050549]
[65]
Gazák R, Walterová D, Kren V. Silybin and silymarin-new and emerging applications in medicine. Curr Med Chem 2007; 14(3): 315-38.
[http://dx.doi.org/10.2174/092986707779941159] [PMID: 17305535]
[66]
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: Promising natural compounds against viral infections. Arch Virol 2017; 162(9): 2539-51.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[67]
Alisha K, Tripti S. Computational screening of phytochemicals from medicinal plants as COVID-19 inhibitors. Chem Rxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12320273.v1]
[68]
Cheng J, Tang Y, Bao B, Zhang P. Exploring the active compounds of traditional Mongolian medicine agsirga in intervention of novel coronavirus. Chem Rxiv 2020; p. 2.
[http://dx.doi.org/10.26434/chemrxiv.11955273]
[69]
Minatani T, Ohta H, Sakai E, et al. Analysis of toxic veratrum alkaloids in plant samples from an accidental poisoning case. Forensic Toxicol 2018; 36(1): 200-10.
[http://dx.doi.org/10.1007/s11419-017-0386-5]
[70]
Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[71]
Schwarz S, Wang K, Yu W, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res 2011; 90(1): 64-9.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[72]
Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2006; 33(7): 612-6.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[73]
Kim DE, Min JS, Jang MS, et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules 2019; 9(11): 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[74]
Durai P, Batool M, Shah M, Choi S. Middle East respiratory syndrome coronavirus: Transmission, virology and therapeutic targeting to aid in outbreak control. Exp Mol Med 2015; 47(8)e181
[http://dx.doi.org/10.1038/emm.2015.76] [PMID: 26315600]
[75]
Ratia K, Kilianski A, Baez-Santos YM, Baker SC, Mesecar A. Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog 2014; 10(5)e1004113
[http://dx.doi.org/10.1371/journal.ppat.1004113] [PMID: 24854014]
[76]
Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[77]
Ryu YB, Park SJ, Kim YM, et al. SARSCoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bio-org Med Chem Lett 2010; 20: 1873e6.
[78]
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci 2020; 255117831
[http://dx.doi.org/10.1016/j.lfs.2020.117831] [PMID: 32450166]
[79]
Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar Drugs 2020; 18(4): 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[80]
Rane JS, Chattterjee A, Kumar A. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silco study for drug development. Chem Rxiv 2021; 39(16): 630-16.
[http://dx.doi.org/10.26434/chemrxiv.12094203.v1]
[81]
Owis AI, El-Hawary MS, Amir DE, Aly OM, Abdelmonhsen UR, Kamel MS. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances 2020; 10(33): 16570.
[http://dx.doi.org/10.1039/D0RA03582C]
[82]
Park JY, Jeong HJ, Kim JH, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull 2012; 35(11): 2036-42. a
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[83]
Park JY, Kim JH, Kim YM, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem 2012; 20(19): 5928-35. b
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[84]
Silva JKRD, Figueiredo PLB, Byler KG, Setzer WN. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: An in-silico investigation. Int J Mol Sci 2020; 21(10): 3426.
[http://dx.doi.org/10.3390/ijms21103426] [PMID: 32408699]
[85]
Hermann T. Viral RNA targets and their small molecule ligands RNA therapeutics: Topics in medicinal chemistry. Springer International Publishing 2017; pp. 111-34.
[86]
Lau KM, Lee KM, Koon CM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol 2008; 118(1): 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[87]
Ganeshpurkar A, Gutti G, Singh SK. RNA-dependent RNA polymerases and their emerging roles in antiviral therapyViral polymerases: Structures, functions, and roles as antiviral drug targets. New York: Academic Press 2019; pp. 1-42.
[http://dx.doi.org/10.1016/B978-0-12-815422-9.00001-2]
[88]
Abd El-Aziz NM, Shehata MG, Eldin AOM, El-Sohaimy SA. Inhibition of COVID-19 RNA dependent RNA polymerase by natural bioactive compounds: Molecular docking analysis. Pharmacodyn 2020.
[http://dx.doi.org/10.21203/rs.3.rs-25850/v1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy