Graphical Abstract
[1]
Bae, S.H.; Shin, H.; Koo, H.Y.; Lee, S.W.; Yang, J.M.; Yon, D.K. Asymptomatic transmission of SARS-CoV-2 on evacuation flight. Emerg. Infect. Dis., 2020, 26(11), 2705-2708.
[http://dx.doi.org/10.3201/eid2611.203353] [PMID: 32822289]
[http://dx.doi.org/10.3201/eid2611.203353] [PMID: 32822289]
[2]
Choi, E.M.; Chu, D.K.W.; Cheng, P.K.C.; Tsang, D.N.C.; Peiris, M.; Bausch, D.G.; Poon, L.L.M.; Watson-Jones, D. In-flight transmission of SARS-CoV-2. Emerg. Infect. Dis., 2020, 26(11), 2713-2716.
[http://dx.doi.org/10.3201/eid2611.203254] [PMID: 32946370]
[http://dx.doi.org/10.3201/eid2611.203254] [PMID: 32946370]
[3]
Khanh, N.C.; Thai, P.Q.; Quach, H.L.; Thi, N.H.; Dinh, P.C.; Duong, T.N.; Mai, L.T.Q.; Nghia, N.D.; Tu, T.A.; Quang, N.; Quang, T.D.; Nguyen, T.T.; Vogt, F.; Anh, D.D. Transmission of SARS-CoV 2 during long-haul Flight. Emerg. Infect. Dis., 2020, 26(11), 2617-2624.
[http://dx.doi.org/10.3201/eid2611.203299] [PMID: 32946369]
[http://dx.doi.org/10.3201/eid2611.203299] [PMID: 32946369]
[4]
Dhanasekaran, V.; Edwards, K.M.; Xie, R. Air travel-related outbreak of multiple SARS-CoV-2 variants. J. Travel Med., 2021, 28, taab149.
[5]
Rosca, E.C.; Heneghan, C. Spencer, EA Transmission of SARS-CoV-2 associated with aircraft travel: a systematic review. J. Travel Med., 2021, 28, taab133.
[6]
Eldin, C.; Lagier, J-C.; Mailhe, M.; Gautret, P. Probable aircraft transmission of Covid-19 in-flight from the Central African Republic to France. Travel Med. Infect. Dis., 2020, 35, 101643.
[http://dx.doi.org/10.1016/j.tmaid.2020.101643] [PMID: 32247016]
[http://dx.doi.org/10.1016/j.tmaid.2020.101643] [PMID: 32247016]
[7]
Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Wash-burne, A.D.; Wenseleers, T.; Gimma, A.; Waites, W.; Wong, K.L.M.; van Zandvoort, K.; Silverman, J.D.; Diaz-Ordaz, K.; Keogh, R.; Eggo, R.M.; Funk, S.; Jit, M.; Atkins, K.E.; Edmunds, W.J. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 2021, 372(6538), eabg3055.
[http://dx.doi.org/10.1126/science.abg3055] [PMID: 33658326]
[http://dx.doi.org/10.1126/science.abg3055] [PMID: 33658326]
[8]
Stöhr, K.; Cox, N. COVID-19 vaccines: call for global push to maintain efficacy. Nature, 2021, 590(7844), 36.
[http://dx.doi.org/10.1038/d41586-021-00273-y] [PMID: 33531701]
[http://dx.doi.org/10.1038/d41586-021-00273-y] [PMID: 33531701]
[9]
Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet, 2021, 398(10317), 2126-2128.
[http://dx.doi.org/10.1016/S0140-6736(21)02758-6] [PMID: 34871545]
[http://dx.doi.org/10.1016/S0140-6736(21)02758-6] [PMID: 34871545]
[10]
Brandal, L.T.; MacDonald, E.; Veneti, L.; Ravlo, T.; Lange, H.; Naseer, U.; Feruglio, S.; Bragstad, K.; Hungnes, O.; Ødeskaug, L.E.; Ha-gen, F.; Hanch-Hansen, K.E.; Lind, A.; Watle, S.V.; Taxt, A.M.; Johansen, M.; Vold, L.; Aavitsland, P.; Nygård, K.; Madslien, E.H. Out-break caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Euro Surveill., 2021, 26(50), 26.
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.50.2101147] [PMID: 34915975]
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.50.2101147] [PMID: 34915975]
[11]
Callaway, E. Omicron likely to weaken COVID vaccine protection. Nature, 2021, 600(7889), 367-368.
[http://dx.doi.org/10.1038/d41586-021-03672-3] [PMID: 34880488]
[http://dx.doi.org/10.1038/d41586-021-03672-3] [PMID: 34880488]
[12]
Ferrer, G.; Sanchez-Gonzalez, M.A. Effective nasal disinfection as an overlooked strategy in our fight against COVID-19. Ear Nose Throat J., 2021, 1455613211002929.
[http://dx.doi.org/10.1177/01455613211002929] [PMID: 33765853]
[http://dx.doi.org/10.1177/01455613211002929] [PMID: 33765853]
[13]
Figueroa, J.M.; Lombardo, M.E.; Dogliotti, A.; Flynn, L.P.; Giugliano, R.; Simonelli, G.; Valentini, R.; Ramos, A.; Romano, P.; Marcote, M.; Michelini, A.; Salvado, A.; Sykora, E.; Kniz, C.; Kobelinsky, M.; Salzberg, D.M.; Jerusalinsky, D.; Uchitel, O. Efficacy of a nasal spray containing iota-carrageenan in the postexposure prophylaxis of COVID-19 in hospital personnel dedicated to patients care with COVID-19 disease. Int. J. Gen. Med., 2021, 14, 6277-6286.
[http://dx.doi.org/10.2147/IJGM.S328486] [PMID: 34629893]
[http://dx.doi.org/10.2147/IJGM.S328486] [PMID: 34629893]
[14]
Shawon, J.; Akter, Z.; Hossen, M.M.; Akter, Y.; Sayeed, A.; Junaid, M.; Afrose, S.S.; Khan, M.A. Current landscape of natural products against coronaviruses: perspectives in COVID-19 treatment and anti-viral mechanism. Curr. Pharm. Des., 2020, 26(41), 5241-5260.
[http://dx.doi.org/10.2174/1381612826666201106093912] [PMID: 33155902]
[http://dx.doi.org/10.2174/1381612826666201106093912] [PMID: 33155902]
[15]
Sealy, R.; Jones, B.G.; Surman, S.L.; Hurwitz, J.L. Robust IgA and IgG-producing antibody forming cells in the diffuse-NALT and lungs of Sendai virus-vaccinated cotton rats associate with rapid protection against human parainfluenza virus-type 1. Vaccine, 2010, 28(41), 6749-6756.
[http://dx.doi.org/10.1016/j.vaccine.2010.07.068] [PMID: 20682364]
[http://dx.doi.org/10.1016/j.vaccine.2010.07.068] [PMID: 20682364]
[16]
Jang, Y.H.; Byun, Y.H.; Lee, Y.J.; Lee, Y.H.; Lee, K.H.; Seong, B.L. Cold-adapted pandemic 2009 H1N1 influenza virus live vaccine elic-its cross-reactive immune responses against seasonal and H5 influenza A viruses. J. Virol., 2012, 86(10), 5953-5958.
[http://dx.doi.org/10.1128/JVI.07149-11] [PMID: 22438541]
[http://dx.doi.org/10.1128/JVI.07149-11] [PMID: 22438541]
[17]
Jabbal-Gill, I. Nasal vaccine innovation. J. Drug Target., 2010, 18(10), 771-786.
[http://dx.doi.org/10.3109/1061186X.2010.523790] [PMID: 21047271]
[http://dx.doi.org/10.3109/1061186X.2010.523790] [PMID: 21047271]
[18]
Rahman, M.H.; Akter, R.; Behl, T.; Chowdhury, M.A.R.; Mohammed, M.; Bulbul, I.J.; Elshenawy, S.E.; Kamal, M.A. COVID-19 outbreak and emerging management through pharmaceutical therapeutic strategy. Curr. Pharm. Des., 2020, 26(41), 5224-5240.
[http://dx.doi.org/10.2174/1381612826666200713174140] [PMID: 32660401]
[http://dx.doi.org/10.2174/1381612826666200713174140] [PMID: 32660401]
[19]
van Doremalen, N.; Purushotham, J.N.; Schulz, J.E.; Holbrook, M.G.; Bushmaker, T.; Carmody, A.; Port, J.R.; Yinda, C.K.; Okumura, A.; Saturday, G.; Amanat, F.; Krammer, F.; Hanley, P.W.; Smith, B.J.; Lovaglio, J.; Anzick, S.L.; Barbian, K.; Martens, C.; Gilbert, S.C.; Lambe, T.; Munster, V.J. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G chal-lenge in preclinical models. Sci. Transl. Med., 2021, 13(607), eabh0755.
[http://dx.doi.org/10.1126/scitranslmed.abh0755] [PMID: 34315826]
[http://dx.doi.org/10.1126/scitranslmed.abh0755] [PMID: 34315826]
[20]
Zimmer, c; Corum, J; Wee, S-L. Coronavirus vaccine tracker. 2021. Available from: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html
[21]
Wang, P.; Zheng, M.; Lau, S-Y.; Chen, P.; Mok, B.W.; Liu, S.; Liu, H.; Huang, X.; Cremin, C.J.; Song, W.; Chen, Y.; Wong, Y.C.; Huang, H.; To, K.K.; Chen, Z.; Xia, N.; Yuen, K.Y.; Chen, H. Generation of DelNS1 influenza viruses: a strategy for optimizing live attenuated in-fluenza vaccines. MBio, 2019, 10(5), e02180.
[http://dx.doi.org/10.1128/mBio.02180-19] [PMID: 31530680]
[http://dx.doi.org/10.1128/mBio.02180-19] [PMID: 31530680]
[22]
King, R.G.; Silva-Sanchez, A.; Peel, J.N. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 in mice. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.10.10.331348]
[http://dx.doi.org/10.1101/2020.10.10.331348]
[23]
Hassan, A.O.; Kafai, N.M.; Dmitriev, I.P.; Fox, J.M.; Smith, B.K.; Harvey, I.B.; Chen, R.E.; Winkler, E.S.; Wessel, A.W.; Case, J.B.; Kashentseva, E.; McCune, B.T.; Bailey, A.L.; Zhao, H.; VanBlargan, L.A.; Dai, Y.N.; Ma, M.; Adams, L.J.; Shrihari, S.; Danis, J.E.; Gra-linski, L.E.; Hou, Y.J.; Schäfer, A.; Kim, A.S.; Keeler, S.P.; Weiskopf, D.; Baric, R.S.; Holtzman, M.J.; Fremont, D.H.; Curiel, D.T.; Dia-mond, M.S. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell, 2020, 183(1), 169-184.e13.
[http://dx.doi.org/10.1016/j.cell.2020.08.026] [PMID: 32931734]
[http://dx.doi.org/10.1016/j.cell.2020.08.026] [PMID: 32931734]
[24]
Palit, P.; Chattopadhyay, D.; Thomas, S.; Kundu, A.; Kim, H.S.; Rezaei, N. Phytopharmaceuticals mediated Furin and TMPRSS2 receptor blocking: can it be a potential therapeutic option for Covid-19? Phytomedicine, 2021, 85, 153396.
[http://dx.doi.org/10.1016/j.phymed.2020.153396] [PMID: 33380375]
[http://dx.doi.org/10.1016/j.phymed.2020.153396] [PMID: 33380375]
[25]
Wu, S.; Huang, J.; Zhang, Z.; Wu, J.; Zhang, J.; Hu, H.; Zhu, T.; Zhang, J.; Luo, L.; Fan, P.; Wang, B.; Chen, C.; Chen, Y.; Song, X.; Wang, Y.; Si, W.; Sun, T.; Wang, X.; Hou, L.; Chen, W. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect. Dis., 2021, 21(12), 1654-1664.
[http://dx.doi.org/10.1016/S1473-3099(21)00396-0] [PMID: 34324836]
[http://dx.doi.org/10.1016/S1473-3099(21)00396-0] [PMID: 34324836]
[26]
Go, C.C.; Pandav, K.; Sanchez-Gonzalez, M.A.; Ferrer, G. Potential role of Xylitol plus grapefruit seed extract nasal spray solution in COVID-19: Case Series. Cureus, 2020, 12(11), e11315.
[http://dx.doi.org/10.7759/cureus.11315] [PMID: 33173650]
[http://dx.doi.org/10.7759/cureus.11315] [PMID: 33173650]
[27]
Moakes, R.J.A.; Davies, S.P.; Stamataki, Z. Formulation of a composite nasal spray enabling enhanced surface coverage and prophylaxis of SARS-COV-2. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.11.18.388645]
[http://dx.doi.org/10.1101/2020.11.18.388645]
[28]
Schoof, M.; Faust, B.; Saunders, R.A. An ultra-high affinity synthetic nanobody blocks SARS-CoV-2 infection by locking Spike into an inactive conformation. BboRxiv, 2020.
[29]
Anderson, M. Engineered antibody mist blocks coronavirus: Will the first breakthrough COVID-19 treatment be an inhaler or nasal spray? IEEE Spectr., 2020, 57, 6-7.
[http://dx.doi.org/10.1109/MSPEC.2020.9205534]
[http://dx.doi.org/10.1109/MSPEC.2020.9205534]
[30]
Xiang, S.; Fu, J.; Ye, K.; Zheng, Y.; Zhu, X.; Chen, J.; Chen, Y. Effect of Lactobacillus gasseri PA3 on gut microbiota in an in vitro colonic simulation. Food Sci. Nutr., 2019, 7(12), 3883-3891.
[http://dx.doi.org/10.1002/fsn3.1236] [PMID: 31890166]
[http://dx.doi.org/10.1002/fsn3.1236] [PMID: 31890166]
[31]
Pamuru, R.R.; Ponneri, N.; Damu, A.G.; Vadde, R. Targeting natural products for the treatment of COVID-19 - an updated review. Curr. Pharm. Des., 2020, 26(41), 5278-5285.
[http://dx.doi.org/10.2174/1381612826666200903122536] [PMID: 32881659]
[http://dx.doi.org/10.2174/1381612826666200903122536] [PMID: 32881659]
[32]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[33]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[34]
Djupesland, P.G. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res., 2013, 3(1), 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[35]
Glezen, W.P. The new nasal spray influenza vaccine. Pediatr. Infect. Dis. J., 2001, 20(8), 731-732.
[http://dx.doi.org/10.1097/00006454-200108000-00002] [PMID: 11734731]
[http://dx.doi.org/10.1097/00006454-200108000-00002] [PMID: 11734731]
[36]
Cheng, Y.S.; Holmes, T.D.; Gao, J.; Guilmette, R.A.; Li, S.; Surakitbanharn, Y.; Rowlings, C. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J. Aerosol Med., 2001, 14(2), 267-280.
[http://dx.doi.org/10.1089/08942680152484199] [PMID: 11681658]
[http://dx.doi.org/10.1089/08942680152484199] [PMID: 11681658]
[37]
Si, X.A.; Sami, M.; Xi, J. Liquid film translocation significantly enhances nasal spray delivery to olfactory region: a numerical simulation study. Pharmaceutics, 2021, 13(6), 903.
[http://dx.doi.org/10.3390/pharmaceutics13060903] [PMID: 34207109]
[http://dx.doi.org/10.3390/pharmaceutics13060903] [PMID: 34207109]
[38]
Xi, J.; Yuan, J.E.; Alshaiba, M.; Cheng, D.; Firlit, Z.; Johnson, A.; Nolan, A.; Su, W.C. Design and testing of electric-guided delivery of charged particles to the olfactory region: experimental and numerical studies. Curr. Drug Deliv., 2016, 13(2), 265-274.
[http://dx.doi.org/10.2174/1567201812666150909093050] [PMID: 26362143]
[http://dx.doi.org/10.2174/1567201812666150909093050] [PMID: 26362143]
[39]
Kim, J.W.; Xi, J.; Si, X.A. Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5-year-old child. Int. J. Numer. Methods Biomed. Eng., 2013, 29(1), 17-39.
[http://dx.doi.org/10.1002/cnm.2490] [PMID: 23293067]
[http://dx.doi.org/10.1002/cnm.2490] [PMID: 23293067]
[40]
Mehring, C.; Xi, J.; Sirignano, W. Dynamic stretching of a planar liquid bridge. Phys. Fluids, 2004, 16, 728-747.
[http://dx.doi.org/10.1063/1.1644150]
[http://dx.doi.org/10.1063/1.1644150]
[41]
Martonen, T.B.; Musante, C.J. Importance of cloud motion on cigarette smoke deposition in lung airways. Inhal. Toxicol., 2000, 12(Suppl. 4), 261-280.
[http://dx.doi.org/10.1080/08958370050165120] [PMID: 12881896]
[http://dx.doi.org/10.1080/08958370050165120] [PMID: 12881896]
[42]
Xi, J.; Si, X.A.; Peters, S.; Nevorski, D.; Wen, T.; Lehman, M. Understanding the mechanisms underlying pulsating aerosol delivery to the maxillary sinus: In vitro tests and computational simulations. Int. J. Pharm., 2017, 520(1-2), 254-266.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.017] [PMID: 28189854]
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.017] [PMID: 28189854]
[43]
Xi, J.; Wang, Z.; Si, X.A.; Zhou, Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling. Eur. J. Pharm. Sci., 2018, 118, 113-123.
[http://dx.doi.org/10.1016/j.ejps.2018.03.027] [PMID: 29597042]
[http://dx.doi.org/10.1016/j.ejps.2018.03.027] [PMID: 29597042]
[44]
Si, X.A.; Xi, J.; Kim, J.; Zhou, Y.; Zhong, H. Modeling of release position and ventilation effects on olfactory aerosol drug delivery. Respir. Physiol. Neurobiol., 2013, 186(1), 22-32.
[http://dx.doi.org/10.1016/j.resp.2012.12.005] [PMID: 23313127]
[http://dx.doi.org/10.1016/j.resp.2012.12.005] [PMID: 23313127]
[45]
Romero Starke, K.; Petereit-Haack, G.; Schubert, M.; Kämpf, D.; Schliebner, A.; Hegewald, J.; Seidler, A. The age-related risk of severe outcomes due to COVID-19 infection: a rapid review, meta-analysis, and meta-regression. Int. J. Environ. Res. Public Health, 2020, 17(16), 17.
[http://dx.doi.org/10.3390/ijerph17165974] [PMID: 32824596]
[http://dx.doi.org/10.3390/ijerph17165974] [PMID: 32824596]
[46]
Bunyavanich, S.; Do, A.; Vicencio, A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA, 2020, 323(23), 2427-2429.
[http://dx.doi.org/10.1001/jama.2020.8707] [PMID: 32432657]
[http://dx.doi.org/10.1001/jama.2020.8707] [PMID: 32432657]
[47]
Farese, R.V., Jr; Yost, T.J.; Eckel, R.H. Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight hu-mans. Metabolism, 1991, 40(2), 214-216.
[http://dx.doi.org/10.1016/0026-0495(91)90178-Y] [PMID: 1988780]
[http://dx.doi.org/10.1016/0026-0495(91)90178-Y] [PMID: 1988780]
[48]
Brookman, S.; Cook, J.; Zucherman, M.; Broughton, S.; Harman, K.; Gupta, A. Effect of the new SARS-CoV-2 variant B.1.1.7 on children and young people. Lancet Child Adolesc. Health, 2021, 5(4), e9-e10.
[http://dx.doi.org/10.1016/S2352-4642(21)00030-4] [PMID: 33581054]
[http://dx.doi.org/10.1016/S2352-4642(21)00030-4] [PMID: 33581054]
[49]
Challen, R.; Brooks-Pollock, E.; Read, J.M.; Dyson, L.; Tsaneva-Atanasova, K.; Danon, L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ, 2021, 372(579), n579.
[http://dx.doi.org/10.1136/bmj.n579] [PMID: 33687922]
[http://dx.doi.org/10.1136/bmj.n579] [PMID: 33687922]