Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, Assessment of Antineoplastic Activity, and Molecular Docking of Novel 2-Thioxo-oxazolidin-4-one Derivatives

Author(s): Eduardo Augusto Vasconcelos de Freitas Ramalho*, Douglas Carvalho Francisco Viana, Valécia de Cassia Mendonça da Costa, Maira Pitta, Moacyr Jesus Barreto de Melo Rêgo, Ivan da Rocha Pitta and Marina Galdino da Rocha Pitta

Volume 18, Issue 9, 2022

Published on: 29 April, 2022

Page: [980 - 989] Pages: 10

DOI: 10.2174/1573406418666220304221557

Price: $65

Abstract

Background: Oxazolidinones display several biological effects, including anticancer activity. The purpose of this present work was to investigate a series of novel oxazolidinone derivatives with potential antineoplastic activity. Their mechanisms of death induction and effects in the cell cycle were also evaluated. A molecular docking study was accomplished through proteins of the Cyclin-Dependent Kinases family (CDK). The new compound LPSF/NBM-2 was appeared to promote cell cycle arrest at the G2/M phase and increase the percentage of apoptotic cells.

Methods: Oxazolidinone derivatives were obtained through Knoevenagel condensation. The cytotoxic assay was evaluated through the MTT method. Moreover, flow cytometry was performed in order to investigate the effects of the new compounds on the cell cycle, induction of cell death, and apoptosis. A blind docking was performed through the SwissDock online server and the analysis of the results was performed using the UCSF Chimera and Biovia discovery studio software.

Results: LPSF/NBM-1 and LPSF/NBM-2 displayed the most cytotoxic activity against HL-60 (IC50 = 54.83 μM) and MOLT-4 (IC50 = 51.61 μM) cell lines. LPSF/NBM-2 showed an increased percentage of cell population at the G2/M phase. Molecular-docking results of LPSF/NBM-1 and LPSF/NBM-2 suggested a binding affinity with the evaluated CDK proteins.

Conclusion: LPSF/NBM-1 and LPSF/NBM-2 displayed cytotoxic profiles against Hl-60 and MOLT-4. LPSF/NBM-2 increased cell population percentage at the G2/M phase and promoted cell death compared to non-treated cells in the MOLT-4 cell line. Based on these findings, oxazolidinone derivatives could be highlighted as possible cytostatic agents against lymphoma cells. Molecular docking results suggested the action of LPSF/NBM-1 and LPSF/NBM-2 compounds on enzymes of cyclin-dependent kinases family, however, more studies are needed to establish this correlation.

Keywords: Oxazolidinone, anticancer activity, cell death, cell cycle arrest, antineoplastic, apoptosis, CDK.

« Previous
Graphical Abstract

[1]
Burkhardt, O.; Pletz, M.W.; Mertgen, C.P.; Welte, T. Linezolid - the first oxazolidinone in the treatment of nosocomial MRSA pneumonia. Recent Pat. Anti-Infect. Drug Disc., 2007, 2(2), 123-130.
[http://dx.doi.org/10.2174/157489107780832659] [PMID: 18221168]
[2]
Pandit, N.; Singla, R.K.; Shrivastava, B. Current updates on oxazolidinone and its significance. Int. J. Med. Chem., 2012, 2012, 159285.
[http://dx.doi.org/10.1155/2012/159285] [PMID: 25954524]
[3]
Armentano, B.; Curcio, R.; Brindisi, M.; Mancuso, R.; Rago, V.; Ziccarelli, I.; Frattaruolo, L.; Fiorillo, M.; Dolce, V.; Gabriele, B.; Cappel-lo, A.R. 5-(carbamoylmethylene)-oxazolidin-2-ones as a promising class of heterocycles inducing apoptosis triggered by increased ROS levels and mitochondrial dysfunction in breast and cervical cancer. Biomedicines, 2020, 8(2), 35.
[4]
Agrawal, A.K.; Hop, C.E.; Pang, J.; Silva Elipe, M.V.; Desai, R.C.; Leung, K.H.; Franklin, R.B. In vitro metabolism of a new oxazolidinedi-one hypoglycemic agent utilizing liver microsomes and recombinant human cytochrome P450 enzymes. J. Pharm. Biomed. Anal., 2005, 37(2), 351-358.
[http://dx.doi.org/10.1016/j.jpba.2004.10.036] [PMID: 15708677]
[5]
Devi, K.; Asmat, Y.; Jain, S.; Sharma, S.; Dwivedi, J. An efficient approach to the synthesis of novel oxazolidinones as potential antimi-crobial agents. J. Chem., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/252187]
[6]
Kombian, S.B.; Phillips, O.A. Novel actions of oxazolidinones: In vitro screening of a triazolyloxazolidinone for anticonvulsant activity. Med. Princ. Pract., 2013, 22(4), 340-345.
[http://dx.doi.org/10.1159/000346005] [PMID: 23257573]
[7]
Singh, A.; Ha, H.J.; Park, J.; Kim, J.H.; Lee, W.K. 3,4-Disubstituted oxazolidin-2-ones as constrained ceramide analogs with anticancer activities. Bioorg. Med. Chem., 2011, 19(21), 6174-6181.
[http://dx.doi.org/10.1016/j.bmc.2011.09.022] [PMID: 21978949]
[8]
Pal, T.; Joshi, H.; Ramaa, C.S. Design and development of oxazol-5-ones as potential partial PPAR-γ agonist against cancer cell lines. Anticancer. Agents Med. Chem., 2014, 14(6), 872-883.
[http://dx.doi.org/10.2174/1871520614666140528155118] [PMID: 24875128]
[9]
Harada, K.; Kubo, H.; Abe, J.; Haneta, M.; Conception, A.; Inoue, S.; Okada, S.; Nishioka, K. Discovery of potent and orally bioavailable 17β-hydroxysteroid dehydrogenase type 3 inhibitors. Bioorg. Med. Chem., 2012, 20(10), 3242-3254.
[http://dx.doi.org/10.1016/j.bmc.2012.03.052] [PMID: 22512907]
[10]
Patenaude, A.; Deschesnes, R.G.; Rousseau, J.L.C.; Petitclerc, E.; Lacroix, J.; Côté, M.F. C-Gaudreault, R. New soft alkylating agents with enhanced cytotoxicity against cancer cells resistant to chemotherapeutics and hypoxia. Cancer Res., 2007, 67(5), 2306-2316.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3824] [PMID: 17332362]
[11]
van Bokhoven, A.; Varella-Garcia, M.; Korch, C.; Johannes, W.U.; Smith, E.E.; Miller, H.L.; Nordeen, S.K.; Miller, G.J.; Lucia, M.S. Mo-lecular characterization of human prostate carcinoma cell lines. Prostate, 2003, 57(3), 205-225.
[http://dx.doi.org/10.1002/pros.10290] [PMID: 14518029]
[12]
Taylor, P.; Chauhan, S.; Paliwal, S.; Chauhan, R. Anticancer activity of pyrazole via different biological mechanisms. Synth. Commun., 2014, 37-41.
[13]
Pevarello, P.; Brasca, M.G.; Amici, R.; Orsini, P.; Traquandi, G.; Corti, L.; Piutti, C.; Sansonna, P.; Villa, M.; Pierce, B.S.; Pulici, M.; Giordano, P.; Martina, K.; Fritzen, E.L.; Nugent, R.A.; Casale, E.; Cameron, A.; Ciomei, M.; Roletto, F.; Isacchi, A.; Fogliatto, G.; Pesenti, E.; Pastori, W.; Marsiglio, A.; Leach, K.L.; Clare, P.M.; Fiorentini, F.; Varasi, M.; Vulpetti, A.; Warpehoski, M.A. 3-Aminopyrazole inhibi-tors of CDK2/cyclin A as antitumor agents. 1. Lead finding. J. Med. Chem., 2004, 47(13), 3367-3380.
[http://dx.doi.org/10.1021/jm031145u] [PMID: 15189033]
[14]
Morgan, D.O. Principles of CDK regulation. Nature, 1995, 374(6518), 131-134.
[http://dx.doi.org/10.1038/374131a0] [PMID: 7877684]
[15]
Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nat. Rev. Drug Discov., 2002, 1(4), 309-315.
[http://dx.doi.org/10.1038/nrd773] [PMID: 12120282]
[16]
Su, J.C.; Chen, K.F.; Chen, W.L.; Liu, C.Y.; Huang, J.W.; Tai, W.T.; Chen, P.J.; Kim, I.; Shiau, C.W. Synthesis and biological activity of obatoclax derivatives as novel and potent SHP-1 agonists. Eur. J. Med. Chem., 2012, 56(56), 127-133.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.024] [PMID: 22982119]
[17]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[18]
Navarro-Retamal, C.; Caballero, J. Flavonoids as CDK1 inhibitors: Insights in their binding orientations and structure-activity relationship. PLoS One, 2016, 11(8), e0161111.
[http://dx.doi.org/10.1371/journal.pone.0161111] [PMID: 27517610]
[19]
Dachineni, R.; Kumar, D.R.; Callegari, E.; Kesharwani, S.S.; Sankaranarayanan, R.; Seefeldt, T.; Tummala, H.; Bhat, G.J. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin’s chemopreventive effects against colorectal cancer. Int. J. Oncol., 2017, 51(6), 1661-1673.
[http://dx.doi.org/10.3892/ijo.2017.4167]
[20]
Sankaranarayanan, R.; Valiveti, C.K.; Kumar, D.R.; Van Slambrouck, S.; Kesharwani, S.S.; Seefeldt, T.; Scaria, J.; Tummala, H.; Bhat, G.J. The flavonoid metabolite 2,4,6-Trihydroxybenzoic acid is a CDK inhibitor and an anti-proliferative agent: A potential role in cancer pre-vention. Cancers (Basel), 2019, 11(3), 427.
[http://dx.doi.org/10.3390/cancers11030427]
[21]
Wu, S.Y.; McNae, I.; Kontopidis, G.; McClue, S.J.; McInnes, C.; Stewart, K.J.; Wang, S.; Zheleva, D.I.; Marriage, H.; Lane, D.P.; Taylor, P.; Fischer, P.M.; Walkinshaw, M.D. Discovery of a novel family of CDK inhibitors with the program LIDAEUS: Structural basis for lig-and-induced disordering of the activation loop. Structure, 2003, 11(4), 399-410.
[http://dx.doi.org/10.1016/S0969-2126(03)00060-1]
[22]
Jayaraman, A.; Jamil, K. Drug targets for cell cycle dysregulators in leukemogenesis: In silico docking studies. PLoS One, 2014, 9(1), e86310.
[http://dx.doi.org/10.1371/journal.pone.0086310]
[23]
Lankapalli, A.R.; Kannabiran, K. Interaction of marine streptomyces compounds with selected cancer drug target proteins by in silico molecular docking studies. Interdiscip. Sci., 2013, 5(5), 37-44.
[http://dx.doi.org/10.1007/s12539-013-0146-0]
[24]
Kumar, J.; Insititute, S.M.V. Disordered regions in cancer proteins exhibit potential drug binding properties. Int. J. Genomics Proteomics, 2013, 4(1), 76-83.
[http://dx.doi.org/10.9735/0976-4887.4.1.76-83]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy