Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

Sarcopenia: An Age-Related Multifactorial Disorder

Author(s): Nibedita Priyadarsini*, Pranati Nanda, Sujata Devi and Subarna Mohapatra

Volume 15, Issue 3, 2022

Published on: 26 April, 2022

Page: [209 - 217] Pages: 9

DOI: 10.2174/1874609815666220304194539

Price: $65

Abstract

Sarcopenia is a disease characterized by a gradual decline in skeletal muscle mass and strength that accompanies the normal aging process. The disease is associated with various adverse health outcomes in the geriatric population, such as prolonged hospital admission, disability, poor quality of life, frailty, and mortality. Factors involved in the development of age-related sarcopenia include anorexia, hormone level alterations, decreased neural innervation, low muscular blood flow, cytokine dysregulation, altered mitochondrial activity, genomic instability, intracellular proteolysis, and insulin resistance. Understanding the underlying mechanisms may facilitate the development of efficient prophylactic and therapeutic strategies to improve the quality of life in elderly individuals. Thus, the present review highlights literature regarding the mechanism of sarcopenia development in elderly patients.

Keywords: Sarcopenia, aging, skeletal muscle, anorexia, insulin resistance, frailty.

Graphical Abstract

[1]
Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clini-cal modification (ICD-10-CM) code. J Am Med Dir Assoc 2016; 17(8): 675-7.
[http://dx.doi.org/10.1016/j.jamda.2016.06.001] [PMID: 27470918]
[2]
Rosenberg IH. Sarcopenia: Origins and clinical relevance. J Nutr 1997; 127(5)(Suppl.): 990S-1S.
[http://dx.doi.org/10.1093/jn/127.5.990S] [PMID: 9164280]
[3]
Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998; 147(8): 755-63.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009520] [PMID: 9554417]
[4]
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European work-ing group on sarcopenia in older people. Age Ageing 2010; 39(4): 412-23.
[http://dx.doi.org/10.1093/ageing/afq034] [PMID: 20392703]
[5]
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019; 48(1): 16-31.
[http://dx.doi.org/10.1093/ageing/afy169] [PMID: 30312372]
[6]
Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011; 12(4): 249-56.
[http://dx.doi.org/10.1016/j.jamda.2011.01.003] [PMID: 21527165]
[7]
Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by special interest groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010; 29(2): 154-9.
[http://dx.doi.org/10.1016/j.clnu.2009.12.004] [PMID: 20060626]
[8]
Morley JE, Abbatecola AM, Argiles JM, et al. Sarcopenia with limited mobility: An international consensus. J Am Med Dir Assoc 2011; 12(6): 403-9.
[http://dx.doi.org/10.1016/j.jamda.2011.04.014] [PMID: 21640657]
[9]
Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J Gerontol Ser A 2014; 69(5): 547-58.
[http://dx.doi.org/10.1093/gerona/glu010] [PMID: 24737557]
[10]
Berridge BR, Bolon B, Herman E. Skeletal muscle system. In: Wallig MA, Haschek WM, Bolon B fundamentals of toxicologic pathology. Elsevier 2018; 195-212.
[http://dx.doi.org/10.1016/B978-0-12-809841-7.00010-1]
[11]
Soylu G, Çakmak G, Yalvaç Y. Yakaryılmaz FD, Öztürk ZA. Relationship between age-related postural hyperkyphosis and sarcopenia. Curr Aging Sci 2021; 14(2): 133-8.
[http://dx.doi.org/10.2174/1874609814666210322114500] [PMID: 34225641]
[12]
World Population Ageing. New York: United Nations 2019.
[13]
Grimby G, Saltin B. The ageing muscle. Clin Physiol 1983; 3(3): 209-18.
[http://dx.doi.org/10.1111/j.1475-097X.1983.tb00704.x] [PMID: 6347501]
[14]
Morley JE. Anorexia of aging: A true geriatric syndrome. J Nutr Health Aging 2012; 16(5): 422-5.
[http://dx.doi.org/10.1007/s12603-012-0061-9] [PMID: 22555783]
[15]
Donini LM, Poggiogalle E, Piredda M, et al. Anorexia and eating patterns in the elderly. PLoS One 2013; 8(5): e63539.
[http://dx.doi.org/10.1371/journal.pone.0063539] [PMID: 23658838]
[16]
Morley JE, Silver AJ. Anorexia in the elderly. Neurobiol Aging 1988; 9(1): 9-16.
[http://dx.doi.org/10.1016/S0197-4580(88)80004-6] [PMID: 2898107]
[17]
Morley JE. Anorexia, sarcopenia, and aging. Nutrition 2001; 17(7-8): 660-3.
[http://dx.doi.org/10.1016/S0899-9007(01)00574-3] [PMID: 11448592]
[18]
Gosnell BA, Levine AS, Morley JE. The effects of aging on opioid modulation of feeding in rats. Life Sci 1983; 32(24): 2793-9.
[http://dx.doi.org/10.1016/0024-3205(83)90401-0] [PMID: 6855472]
[19]
Morley JE. Neuropeptides, behavior, and aging. J Am Geriatr Soc 1986; 34(1): 52-62.
[http://dx.doi.org/10.1111/j.1532-5415.1986.tb06340.x] [PMID: 3001165]
[20]
Gruenewald DA, Marck BT, Matsumoto AM. Fasting-induced increases in food intake and neuropeptide Y gene expression are attenuated in aging male brown Norway rats. Endocrinology 1996; 137(10): 4460-7.
[http://dx.doi.org/10.1210/endo.137.10.8828508] [PMID: 8828508]
[21]
Wolden-Hanson T, Marck BT, Matsumoto AM. Blunted hypothalamic neuropeptide gene expression in response to fasting, but preserva-tion of feeding responses to AgRP in aging male brown Norway rats. Am J Physiol Regul Integr Comp Physiol 2004; 287(1): R138-46.
[http://dx.doi.org/10.1152/ajpregu.00465.2003] [PMID: 15001433]
[22]
Takano S, Kanai S, Hosoya H, Ohta M, Uematsu H, Miyasaka K. Orexin-A does not stimulate food intake in old rats. Am J Physiol Gastrointest Liver Physiol 2004; 287(6): G1182-7.
[http://dx.doi.org/10.1152/ajpgi.00218.2004] [PMID: 15271651]
[23]
Morley JE, Flood JF, Silver AJ. Opioid peptides and aging. Ann N Y Acad Sci 1990; 579(1 A Decade of N): 123-32.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb48355.x] [PMID: 2159741]
[24]
Martin FC, Yeo A-LL, Sonksen PH. Growth hormone secretion in the elderly: Ageing and the somatopause. Baillieres Clin Endocrinol Metab 1997; 11(2): 223-50.
[http://dx.doi.org/10.1016/S0950-351X(97)80257-1] [PMID: 9403121]
[25]
Priego T, Martín AI, González-Hedström D, Granado M, López-Calderón A. Role of hormones in sarcopenia. Vitam Horm 2021; 115: 535-70.
[http://dx.doi.org/10.1016/bs.vh.2020.12.021] [PMID: 33706961]
[26]
van Nieuwpoort IC, Vlot MC, Schaap LA, Lips P, Drent ML. The relationship between serum IGF-1, handgrip strength, physical perfor-mance and falls in elderly men and women. Eur J Endocrinol 2018; 179(2): 73-84.
[http://dx.doi.org/10.1530/EJE-18-0076] [PMID: 29789408]
[27]
Hoffman AR, Lieberman SA, Ceda GP. Growth hormone therapy in the elderly: Implications for the aging brain. Psychoneuroendocrinology 1992; 17(4): 327-33.
[http://dx.doi.org/10.1016/0306-4530(92)90038-9] [PMID: 1438653]
[28]
Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 1999; 107(2): 123-36.
[http://dx.doi.org/10.1016/S0047-6374(98)00130-4] [PMID: 10220041]
[29]
Taaffe DR, Newman AB, Haggerty CL, et al. Estrogen replacement, muscle composition, and physical function: The health ABC study. Med Sci Sports Exerc 2005; 37(10): 1741-7.
[http://dx.doi.org/10.1249/01.mss.0000181678.28092.31] [PMID: 16260975]
[30]
Westbury LD, Fuggle NR, Syddall HE, et al. Relationships between markers of inflammation and muscle mass, strength and function: Findings from the hertfordshire cohort study. Calcif Tissue Int 2018; 102(3): 287-95.
[http://dx.doi.org/10.1007/s00223-017-0354-4] [PMID: 29101476]
[31]
McInnes KJ, Andersson TC, Simonytė K, et al. Association of 11β-hydroxysteroid dehydrogenase type I expression and activity with estrogen receptor β in adipose tissue from postmenopausal women. Menopause 2012; 19(12): 1347-52.
[http://dx.doi.org/10.1097/gme.0b013e318258aad7] [PMID: 23190557]
[32]
Schakman O, Kalista S, Barbé C, Loumaye A, Thissen JP. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 2013; 45(10): 2163-72.
[http://dx.doi.org/10.1016/j.biocel.2013.05.036] [PMID: 23806868]
[33]
Unger RH. Longevity, lipotoxicity and leptin: The adipocyte defense against feasting and famine. Biochimie 2005; 87(1): 57-64.
[http://dx.doi.org/10.1016/j.biochi.2004.11.014] [PMID: 15733738]
[34]
Bucci L, Yani SL, Fabbri C, et al. Circulating levels of adipokines and IGF-1 are associated with skeletal muscle strength of young and old healthy subjects. Biogerontology 2013; 14(3): 261-72.
[http://dx.doi.org/10.1007/s10522-013-9428-5] [PMID: 23666343]
[35]
Biercewicz M, Slusarz R, Kedziora-Kornatowska K, Filipska K, Bielawski K, Ruszkowska-Ciastek B. Assessment of leptin-to-adiponectin ratio in prediction of insulin resistance and nutrition status in a geriatric female population. J Physiol Pharmacol 2020; 71(1): 26402.
[http://dx.doi.org/10.26402/jpp.2020.1.02] [PMID: 32350147]
[36]
Sheng CH, Du ZW, Song Y, et al. Human resistin inhibits myogenic differentiation and induces insulin resistance in myocytes. BioMed Res Int 2013; 2013: 804632.
[http://dx.doi.org/10.1155/2013/804632] [PMID: 23509781]
[37]
O’Leary MF, Wallace GR, Davis ET, et al. Obese subcutaneous adipose tissue impairs human myogenesis, particularly in old skeletal muscle, via resistin-mediated activation of NFκB. Sci Rep 2018; 8(1): 15360.
[http://dx.doi.org/10.1038/s41598-018-33840-x] [PMID: 30337633]
[38]
Visser M, Deeg DJH, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): The Longitudinal aging study Amsterdam. J Clin Endocrinol Metab 2003; 88(12): 5766-72.
[http://dx.doi.org/10.1210/jc.2003-030604] [PMID: 14671166]
[39]
Girgis CM. Vitamin D and skeletal muscle: Emerging roles in development, anabolism and repair. Calcif Tissue Int 2020; 106(1): 47-57.
[http://dx.doi.org/10.1007/s00223-019-00583-4] [PMID: 31312865]
[40]
Bloise FF, Oliveira TS, Cordeiro A, Ortiga-Carvalho TM. Thyroid hormones play role in sarcopenia and myopathies. Front Physiol 2018; 9: 560.
[http://dx.doi.org/10.3389/fphys.2018.00560] [PMID: 29910736]
[41]
Sheng Y, Ma D, Zhou Q, et al. Association of thyroid function with sarcopenia in elderly Chinese euthyroid subjects. Aging Clin Exp Res 2019; 31(8): 1113-20.
[http://dx.doi.org/10.1007/s40520-018-1057-z] [PMID: 30367448]
[42]
Dietze GJ, Henriksen EJ. Angiotensin-converting enzyme in skeletal muscle: Sentinel of blood pressure control and glucose homeostasis. J Renin Angiotensin Aldosterone Syst 2008; 9(2): 75-88.
[http://dx.doi.org/10.3317/jraas.2008.011] [PMID: 18584583]
[43]
Delafontaine P, Yoshida T. The renin-angiotensin system and the biology of skeletal muscle: Mechanisms of muscle wasting in chronic disease states. Trans Am Clin Climatol Assoc 2016; 127: 245-58.
[PMID: 28066057]
[44]
Burks TN, Andres-Mateos E, Marx R, et al. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcope-nia. Sci Transl Med 2011; 3(82): 82ra37.
[http://dx.doi.org/10.1126/scitranslmed.3002227] [PMID: 21562229]
[45]
Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 2016; 594(8): 1965-78.
[http://dx.doi.org/10.1113/JP270561] [PMID: 26437581]
[46]
Lexell J. Evidence for nervous system degeneration with advancing age. J Nutr 1997; 127(5)(Suppl.): 1011S-3S.
[http://dx.doi.org/10.1093/jn/127.5.1011S] [PMID: 9164286]
[47]
Rolland Y, Czerwinski S, Abellan Van Kan G, et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspec-tives. J Nutr Health Aging 2008; 12(7): 433-50.
[http://dx.doi.org/10.1007/BF02982704] [PMID: 18615225]
[48]
McComas AJ. 1998 ISEK congress keynote lecture: Motor units: How many, how large, what kind? J Electromyogr Kinesiol 1998; 8(6): 391-402.
[http://dx.doi.org/10.1016/S1050-6411(98)00020-0] [PMID: 9840894]
[49]
Doherty TJ, Vandervoort AA, Taylor AW, Brown WF. Effects of motor unit losses on strength in older men and women. J Appl Physiol 1993; 74(2): 868-74.
[http://dx.doi.org/10.1152/jappl.1993.74.2.868] [PMID: 8458808]
[50]
Sakita M, Murakami S, Fujino H. Age-related morphological regression of myelinated fibers and capillary architecture of distal peripheral nerves in rats. BMC Neurosci 2016; 17(1): 39.
[http://dx.doi.org/10.1186/s12868-016-0277-4] [PMID: 27342571]
[51]
Drey M, Krieger B, Sieber CC, et al. Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc 2014; 15(6): 435-9.
[http://dx.doi.org/10.1016/j.jamda.2014.02.002] [PMID: 24656689]
[52]
Prior SJ, Ryan AS, Blumenthal JB, Watson JM, Katzel LI, Goldberg AP. Sarcopenia is associated with lower skeletal muscle capillarization and exercise capacity in older adults. J Gerontol A Biol Sci Med Sci 2016; 71(8): 1096-101.
[http://dx.doi.org/10.1093/gerona/glw017] [PMID: 26888434]
[53]
Groen BBL, Hamer HM, Snijders T, et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol 2014; 116(8): 998-1005.
[http://dx.doi.org/10.1152/japplphysiol.00919.2013] [PMID: 24577061]
[54]
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A Biol Sci Med Sci 2014; 69(Suppl. 1): S4-9.
[http://dx.doi.org/10.1093/gerona/glu057]
[55]
Sansoni P, Vescovini R, Fagnoni F, et al. The immune system in extreme longevity. Exp Gerontol 2008; 43(2): 61-5.
[http://dx.doi.org/10.1016/j.exger.2007.06.008] [PMID: 17870272]
[56]
Maggio M, Guralnik JM, Longo DL, Ferrucci L. Interleukin-6 in aging and chronic disease: A magnificent pathway. J Gerontol A Biol Sci Med Sci 2006; 61(6): 575-84.
[http://dx.doi.org/10.1093/gerona/61.6.575] [PMID: 16799139]
[57]
Haran PH, Rivas DA, Fielding RA. Role and potential mechanisms of anabolic resistance in sarcopenia. J Cachexia Sarcopenia Muscle 2012; 3(3): 157-62.
[http://dx.doi.org/10.1007/s13539-012-0068-4] [PMID: 22589021]
[58]
Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 1996; 335(25): 1897-905.
[http://dx.doi.org/10.1056/NEJM199612193352507] [PMID: 8948566]
[59]
Frost RA, Lang CH. Protein kinase B/Akt: A nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol 2007; 103(1): 378-87.
[http://dx.doi.org/10.1152/japplphysiol.00089.2007] [PMID: 17332274]
[60]
Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α myokines and exercise. Bone 2015; 80: 115-25.
[http://dx.doi.org/10.1016/j.bone.2015.02.008] [PMID: 26453501]
[61]
Rong Y-D, Bian A-L, Hu H-Y, Ma Y, Zhou X-Z. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr 2018; 18(1): 308.
[http://dx.doi.org/10.1186/s12877-018-1007-9] [PMID: 30541467]
[62]
Ticinesi A, Nouvenne A, Cerundolo N, et al. Gut microbiota, muscle mass and function in aging: A focus on physical frailty and sarcope-nia. Nutrients 2019; 11(7): E1633.
[http://dx.doi.org/10.3390/nu11071633] [PMID: 31319564]
[63]
Sakuma K, Yamaguchi A. Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 2010; 3(2): 90-101.
[http://dx.doi.org/10.2174/1874609811003020090] [PMID: 20158492]
[64]
Wiedmer P, Jung T, Castro JP, et al. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev 2021; 65: 101200.
[http://dx.doi.org/10.1016/j.arr.2020.101200] [PMID: 33130247]
[65]
Trompier D, Vejux A, Zarrouk A, et al. Brain peroxisomes. Biochimie 2014; 98: 102-10.
[http://dx.doi.org/10.1016/j.biochi.2013.09.009] [PMID: 24060512]
[66]
Fransen M, Nordgren M, Wang B, Apanasets O, Van Veldhoven PP. Aging, age-related diseases and peroxisomes. Subcell Biochem 2013; 45-65.
[67]
Terlecky SR, Koepke JI, Walton PA. Peroxisomes and aging. Biochim Biophys Acta 2006; 1763(12): 1749-54.
[http://dx.doi.org/10.1016/j.bbamcr.2006.08.017] [PMID: 17027095]
[68]
Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 2014; 18: 148-62.
[http://dx.doi.org/10.1016/j.arr.2014.09.006] [PMID: 25305550]
[69]
Adachi J, Kudo R, Asano M, et al. Skeletal muscle and liver oxysterols during fasting and alcohol exposure. Metabolism 2006; 55(1): 119-27.
[http://dx.doi.org/10.1016/j.metabol.2005.08.003] [PMID: 16324930]
[70]
Carmelli D, Reed T. Stability and change in genetic and environmental influences on hand-grip strength in older male twins. J Appl Physiol 2000; 89(5): 1879-83.
[http://dx.doi.org/10.1152/jappl.2000.89.5.1879] [PMID: 11053339]
[71]
Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: A twin study. J Bone Miner Res 1997; 12(12): 2076-81.
[http://dx.doi.org/10.1359/jbmr.1997.12.12.2076] [PMID: 9421240]
[72]
Christensen K, McGue M, Yashin A, Iachine I, Holm NV, Vaupel JW. Genetic and environmental influences on functional abilities in Danish twins aged 75 years and older. J Gerontol A Biol Sci Med Sci 2000; 55(8): M446-52.
[http://dx.doi.org/10.1093/gerona/55.8.M446] [PMID: 10952367]
[73]
Huygens W, Thomis MA, Peeters MW, et al. Linkage of myostatin pathway genes with knee strength in humans. Physiol Genomics 2004; 17(3): 264-70.
[http://dx.doi.org/10.1152/physiolgenomics.00224.2003] [PMID: 15026560]
[74]
Huygens W, Thomis MAI, Peeters MW, Aerssens J, Vlietinck R, Beunen GP. Quantitative trait loci for human muscle strength: Linkage analysis of myostatin pathway genes. Physiol Genomics 2005; 22(3): 390-7.
[http://dx.doi.org/10.1152/physiolgenomics.00010.2005] [PMID: 15914581]
[75]
Herndon LA, Schmeissner PJ, Dudaronek JM, et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002; 419(6909): 808-14.
[http://dx.doi.org/10.1038/nature01135] [PMID: 12397350]
[76]
Edström E, Altun M, Hägglund M, Ulfhake B. Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci 2006; 61(7): 663-74.
[http://dx.doi.org/10.1093/gerona/61.7.663] [PMID: 16870627]
[77]
Shafiee G, Asgari Y, Soltani A, Larijani B, Heshmat R. Identification of candidate genes and proteins in aging skeletal muscle (sarcopenia) using gene expression and structural analysis. PeerJ 2018; 6: e5239.
[http://dx.doi.org/10.7717/peerj.5239] [PMID: 30202641]
[78]
Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: Re-dox homoeostasis to regulation of gene expression. Mamm Genome 2016; 27(7-8): 341-57.
[http://dx.doi.org/10.1007/s00335-016-9643-x] [PMID: 27215643]
[79]
Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. J Biol Rhythms 2015; 30(2): 84-94.
[http://dx.doi.org/10.1177/0748730414561638] [PMID: 25512305]
[80]
Hu Z, Klein JD, Mitch WE, Zhang L, Martinez I, Wang XH. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging (Albany NY) 2014; 6(3): 160-75.
[http://dx.doi.org/10.18632/aging.100643] [PMID: 24659628]
[81]
Rusanova I, Diaz-Casado ME, Fernández-Ortiz M, et al. Analysis of plasma MicroRNAs as predictors and biomarkers of aging and frailty in humans. Oxid Med Cell Longev 2018; 2018: 7671850.
[http://dx.doi.org/10.1155/2018/7671850] [PMID: 30116492]
[82]
Shamseer L. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015; 349: g7647.
[http://dx.doi.org/10.1136/bmj.g7647]
[83]
Yanai K, Kaneko S, Ishii H, et al. MicroRNAs in sarcopenia: A systematic review. Front Med (Lausanne) 2020; 7: 180.
[http://dx.doi.org/10.3389/fmed.2020.00180] [PMID: 32549041]
[84]
Combaret L, Dardevet D, Béchet D, Taillandier D, Mosoni L, Attaix D. Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care 2009; 12(1): 37-41.
[http://dx.doi.org/10.1097/MCO.0b013e32831b9c31] [PMID: 19057185]
[85]
Müller S, Dennemärker J, Reinheckel T. Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochim Biophys Acta 2012; 1824(1): 34-43.
[http://dx.doi.org/10.1016/j.bbapap.2011.07.003] [PMID: 21767668]
[86]
Xilouri M, Stefanis L. Chaperone mediated autophagy in aging: Starve to prosper. Ageing Res Rev 2016; 32: 13-21.
[http://dx.doi.org/10.1016/j.arr.2016.07.001] [PMID: 27484893]
[87]
Morley JE. Diabetes, sarcopenia, and frailty. Clin Geriatr Med 2008; 24(3): 455-69.
[http://dx.doi.org/10.1016/j.cger.2008.03.004]
[88]
DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009; 32(Suppl. 2): S157-63.
[http://dx.doi.org/10.2337/dc09-S302]
[89]
Khamseh ME, Malek M, Aghili R, Emami Z. Sarcopenia and diabetes: Pathogenesis and consequences. Br J Diabetes Vasc Dis 2011; 11(5): 230-4.
[http://dx.doi.org/10.1177/1474651411413644]
[90]
Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes 2003; 27(Suppl. 3): S53-5.
[http://dx.doi.org/10.1038/sj.ijo.0802502] [PMID: 14704746]
[91]
Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001; 3(11): 1014-9.
[http://dx.doi.org/10.1038/ncb1101-1014] [PMID: 11715023]
[92]
Yoon M-S. The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients 2017; 9(11): 1176.
[http://dx.doi.org/10.3390/nu9111176] [PMID: 29077002]
[93]
Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipopro-teins: Evidence for independent roles of age and sex. Diabetologia 2003; 46(4): 459-69.
[http://dx.doi.org/10.1007/s00125-003-1074-z] [PMID: 12687327]
[94]
Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8(11): 1288-95.
[http://dx.doi.org/10.1038/nm788] [PMID: 12368907]
[95]
Zoico E, Di Francesco V, Mazzali G, et al. Adipocytokines, fat distribution, and insulin resistance in elderly men and women. J Gerontol A Biol Sci Med Sci 2004; 59(9): M935-9.
[http://dx.doi.org/10.1093/gerona/59.9.M935] [PMID: 15472159]
[96]
Davies J. In a map for human life, count the microbes, too. Science 2001; 291(5512): 2316.
[http://dx.doi.org/10.1126/science.291.5512.2316b]
[97]
Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 2013; 28(Suppl. 4): 9-17.
[http://dx.doi.org/10.1111/jgh.12294] [PMID: 24251697]
[98]
Hill CJ, Lynch DB, Murphy K, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 2017; 5(1): 4.
[http://dx.doi.org/10.1186/s40168-016-0213-y] [PMID: 28095889]
[99]
Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 2017; 21(4): 455-466.e4.
[http://dx.doi.org/10.1016/j.chom.2017.03.002] [PMID: 28407483]
[100]
Banerjee A, Marotta F, Sriramulu S, et al. Beyond physical exercise: The role of nutrition, gut microbiota and nutraceutical supplementa-tion in reducing age-related sarcopenia. Curr Aging Sci 2021; 14(2): 94-104.
[http://dx.doi.org/10.2174/1874609814666210203090458] [PMID: 33535963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy