Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Mini-Review Article

Advances in Magnetic Polymeric Styrene-divinylbenzene Nanocomposites between Magnetite and Maghemite Nanoparticles: An Overview

Author(s): Matheus de Souza Lima Mendes, Ayla Bastos Araujo, Márcia Angelica Fernandes e Silva Neves* and Marcelo Sierpe Pedrosa

Volume 5, Issue 1, 2022

Published on: 20 May, 2022

Page: [3 - 14] Pages: 12

DOI: 10.2174/2452271605666220304091807

Price: $65

Abstract

Superparamagnetic nanoparticles, such as magnetite (Fe3O4) and maghemite (γ-Fe2O3), have been used to produce magnetic nanocomposites with several polymeric matrices including magnetic styrene-divinylbenzene nanocomposites. Through the incorporation of these nanoparticles, the nanocomposite presents superparamagnetism, low coercivity, and high magnetic susceptibility. Due to these features, magnetic nanomaterials can be removed from the site where they are inserted through an external magnetic field, thus distinguishing them from conventional systems such as those used to treat oily water, which require expensive chemical agents for removal. These properties depend directly on the size distribution of the nanoparticles and the presence or absence of interactions between the surface of the polymeric matrix and the contaminants. These materials have many applications. The objective of this article is to present a bibliographic review of the state-of-the-art evolution of magnetic styrene-divinylbenzene nanocomposites over the years. According to the reports in the literature, these systems are superior to those applied conventionally in the sectors of biotechnology, agriculture, oil/gas, and nuclear chemistry, mainly for the removal of toxic metals from aqueous media.

Keywords: Magnetic styrene-divinylbenzene, magnetic nanocomposites, nanocomposites, nanoparticles, superparamagnetic nanoparticles, magnetite, maghemite.

Graphical Abstract

[1]
Okpala CC. Nanocomposites-An overview. Inter J Eng Res Develop 2013; 8(11): 17-23.
[http://dx.doi.org/10.1680/jemmr.15.00025]
[2]
Bhateria R, Singh R. A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J Water Process Eng 2019; 31.
[http://dx.doi.org/10.1016/j.jwpe.2019.100845]
[3]
Behrens S, Appel I. Magnetic nanocomposites. Curr Opin Biotechnol 2016; 39: 89-96.
[http://dx.doi.org/10.1016/j.copbio.2016.02.005] [PMID: 26938504]
[4]
Pokropoviny VV, Skorokhod VV. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 2007; 27: 990-3.
[http://dx.doi.org/10.1016/j.msec.2006.09.023]
[5]
Rodriguez A, Faria FSEDV, Cunha RM, et al. Structural and magnetic investigation of styrene–divinylbenzene encapsulated iron oxide nanoparticles. Mater Lett 2014; 130: 135-8.
[http://dx.doi.org/10.1016/j.matlet.2014.04.085]
[6]
Singh H, Bhardwaj N, Arya SK, Khatri M. Environmental impacts of oil spills and their remediation by magnetic nano-materials. Environ Nanotechnol Monit Manag 2020; 14: 100305.
[http://dx.doi.org/10.1016/j.enmm.2020.100305]
[7]
Mao J, Jiang W, Gu J, Zhou S, Lu Y, Xie T. Synthesis of P(St-DVB)/Fe3O4 microspheres and application for oil removal in aqueous environment. Appl Surf Sci 2014; 317: 787-93.
[http://dx.doi.org/10.1016/j.apsusc.2014.08.191]
[8]
Ge F, Li MM, Ye H, Zhao BX. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 2012; 211-212: 366-72.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.013] [PMID: 22209322]
[9]
Tai Y, Wang Li, Gao J, Amer WA, Ding W, Yu H. Synthesis of Fe3O4@poly(methyl methacrylate-co-divinylbenzene) magnetic porous microspheres and their application in these parathion of phenol from aqueous solutions. J Colloid Interface Sci 2011; 360: 731-8.
[http://dx.doi.org/10.1016/j.jcis.2011.04.096] [PMID: 21601864]
[10]
Shirokikh SA, Koroleva MY, Montalvan-Estrada A, Yurtov EV. Highly porous polymeric composite with γ-Fe2O3 nano-particles for oil products sorption. Rev Cuba Quím 2020; 32(1): 104-16.
[11]
Rosen JE, Chan L, Shieh DB, Gu FX. Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 2012; 8(3): 275-90.
[http://dx.doi.org/10.1016/j.nano.2011.08.017] [PMID: 21930108]
[12]
Kun KA, Kunin R. The pore structure of macroreticular ion exchange resins. J Polym Sci 1967; 16(3): 1457-69.
[http://dx.doi.org/10.1002/polc.5070160323]
[13]
Svec F, Fréchet JMJ. New designs of macroporous polymers and supports: From separation to biocatalysis. Science 1996; 273(5272): 205-11.
[http://dx.doi.org/10.1126/science.273.5272.205] [PMID: 8662498]
[14]
Kun KA, Kunin R. Macroreticular resins. III. Formation of macroreticular styrene-divinylbenzene copolymers. J Polym Sci A1 1968; 6(10): 2689-701.
[http://dx.doi.org/10.1002/pol.1968.150061001]
[15]
Alexandratos DS. Ion-exchange resins: A retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 2009; 48: 88-398.
[http://dx.doi.org/10.1021/ie801242v]
[16]
Rabelo D, Coutinho FMB. Porous structure formation and swelling properties of styrene-divinylbenzene copolymers. Eur Polym J 1994; 30(6): 675-82.
[http://dx.doi.org/10.1016/0014-3057(94)90115-5]
[17]
Coutinho FMB, Neves MAFS, Dias ML. Porous structure and swelling properties of styrene-divinylbenzene copolymers for size exclusion chromatography. J Appl Polym Sci 1997; 65(7): 1257-61.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970815)65:7<1257::AID-APP3>3.0.CO;2-H]
[18]
Scharufangel RA, Rase HF. Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem 1975; 14: 40-4.
[http://dx.doi.org/10.1021/i360053a009]
[19]
Poinesecu IC, Vlad C, Beldie C. Styrene-divinylbenzene copolymers: influence of the diluent on network porosity. J Appl Polym Sci 1984; 29: 23-34.
[http://dx.doi.org/10.1002/app.1984.070290103]
[20]
Poinesecu IC, Vlad C, Carpov A, Ioanid A. On the structure of macroreticular styrene-divinylbenzene copolymers. Angew Makromol Chem 1988; 156: 105-21.
[http://dx.doi.org/10.1002/apmc.1988.051560110]
[21]
Neves MAFS, Dias ML, Coutinho FMB. Styrene-divinylbenzene copolymers for application in size exclusion chromatography. Polym: Sci Technol 1997; 7(3): 71-7.
[22]
Barbosa CCR, Cunha JWSD, Teixeira VG, Coutinho FMB. Copolímeros de estireno-divinilbenzeno impregnados com agentes complexantes organofosforados para separação de terras raras. Polímeros: Ciência e Tecnologia 1998; 8(4): 31-41.
[23]
Rezende SM, Soares BG, Coutinho FMB, et al. Aplicação de resinas sulfônicas como catalisadores em reações de transesterificação de óleos vegetais. Polímeros: Ciência e Tecnologia 2005; 15(3): 186-92.
[24]
Cunha L, Gomes AS, Coutinho FMB, Teixeira VG. Principais rotas de síntese de resinas complexantes de mercúrio. Polímeros: Ciência e Tecnologia 2007; 17(2): 145-57. 2007;
[25]
Hanemann T, Szabó DV. Polymer-nanoparticle composites: From synthesis to modern applications. Materials (Basel) 2010; 3(6): 3468-517.
[http://dx.doi.org/10.3390/ma3063468]
[26]
Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 2010; 7: 1-37.
[http://dx.doi.org/10.1007/BF03245856]
[27]
Majidi S, Sehrig FZ, Farkhani SM, Goloujeh MS, Akbarzadeh A. Current methods for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol 2016; 44(2): 722-34.
[http://dx.doi.org/10.3109/21691401.2014.982802] [PMID: 25435409]
[28]
García-Cerdal LA, Chapa-Rodríguez R, Bonilla-Ríos J. In situ synthesis of iron oxide nanoparticles in a styrene-divinylbenzene copolymer. Polym Bull 2007; 58: 989-94.
[http://dx.doi.org/10.1007/s00289-006-0715-z]
[29]
Weissleder R, Reimer P. Superparamegnetic iron oxides for MRI. Eur Radiol 1993; 3: 198-212.
[http://dx.doi.org/10.1007/BF00425895]
[30]
Lange J, Kotitz R, Haller A, Trahms L, Semmler W, Weitschies W. Magnetorelaxometry - a new binding specific detection method based on magnetic nanoparticles. J Magn Magn Mater 2002; 252: 381-3.
[http://dx.doi.org/10.1016/S0304-8853(02)00657-1]
[31]
Petr S, Daniel H, Michal B. PEG-modified magnetic hypercrosslinked poly(styrene-co-divinylbenzene) microspheres to minimize sorption of serum proteins. React Funct Polym 2013; 73(8): 1122-9.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2013.05.011]
[32]
Lai B-H, Chang C-H, Yeh C-C, Chen D-H. Direct binding of Concanvalin A onto iron oxide nanoparticles for fast magnetic selective separation of lactoferrin. Separ Purif Tech 2013; 108: 83-8.
[http://dx.doi.org/10.1016/j.seppur.2013.02.020]
[33]
Huang G, Sun Z, Qin H, et al. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides. Analyst (Lond) 2014; 139(9): 2199-206.
[http://dx.doi.org/10.1039/c4an00076e] [PMID: 24615010]
[34]
Bogoyevitch MA, Kendrick TS, Ng DCH, Barr RK. Taking the cell by stealth or storm? Protein transduction domains (PTDs) as versatile vectors for delivery. DNA Cell Biol 2002; 21(12): 879-94.
[http://dx.doi.org/10.1089/104454902762053846] [PMID: 12573048]
[35]
Yu W, Xu L, Graham N, Qu J. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pretreatment. Sci Rep 2015; 5: 13067. a
[http://dx.doi.org/10.1038/srep13067] [PMID: 26268589]
[36]
Pereira KAB, Aguiar KLNP, Pedrosa MS, Neves MAFS. Obtenção do reagente polimérico poli(acrilato de etila-co-divinilbenzeno) magnetizado modificado por hidrazina. Perspectivas da Ciência e Tecnologia 2018; 10: 126-34.
[http://dx.doi.org/10.22407/1984-5693.2018.v10.p.126-134]
[37]
Costa CN, Costa MAS, Maria Luiz C de S, Silva Manoel R, Souza Jr. Fernando G, Michel R. Síntese e Caracterização de Copolímeros à base de Metacrilato de Metila e Divinilbenzeno com Propriedades Magnéticas. Polímeros: Ciência e Tecnologia 2006; 9(3): 260-6.
[38]
Cardoso AM, Lucas EF, Barbosa CCR. Influência das condições reacionais nas características de copolímeros de metacrilato de metila e divinilbenzeno obtidos por polimerização em suspensão. Polímeros: Ciência e Tecnologia 2004; 14(3): 201-5.
[39]
Castanharo JA, Ferreira ILM, Costa MAS, Costa MR, Geraldo M, Oliveira MG. Microesferas magnéticas à base de poli(metacrilato de metila-co-divinilbenzeno) obtidas por polimerização em suspensão. Polímeros: Ciência e Tecnologia 2015; 25(2): 192-9.
[40]
Liu J, Qiao SZ, Hu QH, Lu GQ. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 2011; 7(4): 425-43.
[http://dx.doi.org/10.1002/smll.201001402] [PMID: 21246712]
[41]
Philippova O, Barabanova A, Molchanov V, Khokhlov A. Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J 2011; 47: 542-59.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.11.006]
[42]
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 2012; 7(1): 144.
[http://dx.doi.org/10.1186/1556-276X-7-144] [PMID: 22348683]
[43]
Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Chemically prepared magnetic nanoparticles. Int Mater Rev 2004; 49: 125-70.
[http://dx.doi.org/10.1179/095066004225021882]
[44]
Hu J, Lo I, Chen G. Performance and mechanism of chromate (VI) adsorption by γ -FeOOH-coated maghemite γ –Fe2O3) nanoparticles. Separ Purif Tech 2007; 58: 76-82.
[http://dx.doi.org/10.1016/j.seppur.2007.07.023]
[45]
Sharma S, Verma A, Kumar A, Kamyab H. Magnetic Nano-Composites and their Industrial Applications. Nano Hybrids and Composites 2018; 20: 149-72.
[http://dx.doi.org/10.4028/www.scientific.net/NHC.20.149]
[46]
Fabian K, Shcherbakov VP, McEnroe SA. Measuring the curie temperature. Geochem Geophys Geosyst 2013; 14(4): 947-61.
[http://dx.doi.org/10.1029/2012GC004440]
[47]
Shokrollahi H. A review of the magnetic properties, synthesis methods and applications of maghemite. J Magn Magn Mater 2017; 426: 74-81.
[http://dx.doi.org/10.1016/j.jmmm.2016.11.033]
[48]
Morup SMossbauer. Spectroscopy studies suspension of Fe3O4 microcrystals. J Magn Magn Mater 1983; 40: 163.
[http://dx.doi.org/10.1016/0304-8853(83)90394-3]
[49]
Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001; 11(11): 2319-31.
[http://dx.doi.org/10.1007/s003300100908] [PMID: 11702180]
[50]
Medeiros SF, Santos AM, Fessi H, Elaissari A. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 2011; 403(1-2): 139-61.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.011] [PMID: 20951779]
[51]
Yoon S. Preparation and physical characterizations of superparamagnetic maghemite nanoparticles. J Magn 2014; 19(4): 323-6.
[http://dx.doi.org/10.4283/JMAG.2014.19.4.323]
[52]
Schwaminger SP, Bauer D, Fraga-García P, Wagner FE, Berensmeier S. Oxidation of magnetite nanoparticles: Impact on surface and crystal properties. CrystEngComm 2007; 19(2): 246-55.
[http://dx.doi.org/10.1039/C6CE02421A]
[53]
Roca AG, Marco JF, Morales MP, Serna CJ. Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J Phys Chem C 2007; 111(50): 18577-84.
[http://dx.doi.org/10.1021/jp075133m]
[54]
Wallyn J, Anton N, Vandamme TF. Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications-a review. Pharmaceutics 2019; 11(11): 601.
[http://dx.doi.org/10.3390/pharmaceutics11110601] [PMID: 31726769]
[55]
Papaefthymiou GC. Nanoparticle magnetism. Nano Today 2009; 4(5): 438-47.
[http://dx.doi.org/10.1016/j.nantod.2009.08.006]
[56]
O’Handley RC. Modern Magnetic Materials, Principles and Applications. New York: John Wiley and Sons 2000; p. 768.
[57]
Mendes MSL, Ramos GSM, Neves MAFS, Pedrosa MS. Síntese e caracterização de material nanoparticulado a base de γ-Fe2O3 e Fe3O4. Perspectivas da Ciência e Tecnologia 2019; 11: 55-67.
[http://dx.doi.org/10.22407/1984-5693.2019.v11.p.55-67]
[58]
Salazar S, Perez L, Abril O, et al. Magnetic iron oxide nanoparticles in 10−40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem Mater 2011; 23: 1379-86.
[http://dx.doi.org/10.1021/cm103188a]
[59]
Frison R, Cernuto G, Cervellino A, et al. Magnetite-maghemite nanoparticles in the 5-15 nm range: correlating the core–shell composition and the surface structure to the magnetic properties. A total scattering study. Chem Mater 2013; 25(23): 4820-7.
[http://dx.doi.org/10.1021/cm403360f]
[60]
Yu P, Sun Q, Pan J, et al. Performance of poly(styrene-divinylbenzene) magnetic porous microspheres prepared by suspension polymerization for the adsorption of 2, 4-dichlorophenol and 2, 6-dichlorophenol from aqueous solutions. Adsorpt Sci Technol 2013; 31(7): 641-56.
[http://dx.doi.org/10.1260/0263-6174.31.7.641]
[61]
Yu L, Hao G, Gu J, Zhou S, Zhang N, Jiang W. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water. J Magn Magn Mater 2015; 394: 14-21.
[http://dx.doi.org/10.1016/j.jmmm.2015.06.045]
[62]
Avilés MO, Chen H, Ebner AD, Rosengart AJ, Kaminski MD, Ritter JA. In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting. J Magn Magn Mater 2007; 311(1): 306-11.
[http://dx.doi.org/10.1016/j.jmmm.2006.11.156]
[63]
Rodriguez C, Castro E, Martin A, Marín JR, Berganza J, Cuevas JM. Magnetic poly (styrene/divinylbenzene/acrylic acid)-based hybrid microspheres for bio-molecular recognition. Micro Nano Lett 2011; 6(6): 349-52.
[http://dx.doi.org/10.1049/mnl.2011.0098]
[64]
Bento HBS, Castro HF, Oliveira PC, Freitas L. Magnetized poly (STY-co-DVB) as a matrix for immobilizing microbial lipase to be used in biotransformation. J Magn Magn Mater 2017; 426: 95-101.
[http://dx.doi.org/10.1016/j.jmmm.2016.11.061]
[65]
Silva M V C, Aguiar LG, De Castro HF, Freitas L. Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases. World J Microbiol Biotechnol 2018; 34(11): 169.
[http://dx.doi.org/10.1007/s11274-018-2553-1]
[66]
Adelantado C, Murtada K, Ríos Á, Zougagh M. Magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) for propranolol extraction and separation by capillary electrophoresis. Bioanalysis 2018; 10(15): 1193-205.
[http://dx.doi.org/10.4155/bio-2018-0045] [PMID: 30033745]
[67]
Murtada K, de Andrés F, Ríos A, Zougagh M. Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly(styrene-co-divinylbenzene) composites and separation by capillary electrophoresis. J Electrophor 2018; 39(14): 1808-15.
[http://dx.doi.org/10.1002/elps.201700496]
[68]
Murtada K, de Andrés F, Galván I, Ríos Á, Zougagh M. LC-MS determination of catecholamines and related metabolites in red deer urine and hair extracted using magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1136: 121878.
[http://dx.doi.org/10.1016/j.jchromb.2019.121878] [PMID: 31812837]
[69]
Eskandari H, Naderi-Darehshori A. Preparation of magnetite/poly(styrene-divinylbenzene) nanoparticles for selective enrichment-determination of fenitrothion in environmental and biological samples. Anal Chim Acta 2012; 743: 137-44.
[http://dx.doi.org/10.1016/j.aca.2012.07.012] [PMID: 22882834]
[70]
Kermani M, Sereshti H, Nikfarjam N. Application of magnetic nanocomposite of cross-linked poly(styrene/divinylbenzene) as adsorbent for magnetic dispersive solid phase extraction-dispersive liquid-liquid micro-extraction of atrazine in soil and aqueous samples. Anal Methods 2020; 12: 1834-44.
[http://dx.doi.org/10.1039/D0AY00374C]
[71]
Huan W, Xian-Zhang S, Qing T, Ji Y. Synthesis of TBP-coated magnetic Pst-DVB particles for uranium separation. Nucl Sci Tech 2014; 5: 25(03)
[http://dx.doi.org/10.13538/j.1001-8042/nst.25.030301]
[72]
Sharafat MK, Ahmad H, Alam MA, Rahman MM. Preparation of highly cross-linked magnetic polymer composite particles and application in the separation of arsenic from water. Rajshahi Univ J Sci Eng 2016; 44: 67-74.
[http://dx.doi.org/10.3329/rujse.v44i0.30389]
[73]
Zhu H, Tan X, Tan L, et al. Magnetic porous polymers prepared via high internal phase emulsions for efficient removal of Pb2+ and Cd2. ACS Sustain Chem Eng 2018; 6(4): 5206-13.
[http://dx.doi.org/10.1021/acssuschemeng.7b04868]
[74]
Chang J, Guan X, Pan S, Jia M, Chen Y, Fan H. Sulfonated poly(styrene-divinylbenzene-glycidyl methacrylate)-capsulated magnetite nanoparticles as a recyclable catalyst for one-step biodiesel production from high free fatty acid-containing feedstocks. New J Chem 2018; 42: 13074-80.
[http://dx.doi.org/10.1039/C7NJ05075E]
[75]
Bassi JJ, Todero LM, Lage FAP, et al. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Int J Biol Macromol 2016; 92: 900-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.097] [PMID: 27477246]
[76]
Rodrigues RC, Virgen-Ortíz JJ, Dos Santos JCS, et al. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37(5): 746-70.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.003] [PMID: 30974154]
[77]
Oil tanker spill statistics. 50 years of data, 1970-2019. 2020. Available from: https://www.itopf.org/fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_brochure_2020_for_web.pdf
[78]
Fiocco RJ, Lewis A. Oil spill dispersants. Pure Appl Chem 1999; 71(1): 27-42.
[http://dx.doi.org/10.1351/pac199971010027]
[79]
Kujawinski EB, Kido MC, Valentine DL, et al. Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol 2011; 45(4): 1298-306.
[http://dx.doi.org/10.1021/es103838p] [PMID: 21265576]
[80]
Atlas RM. Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 1995; 31: 178-82.
[http://dx.doi.org/10.1016/0025-326X(95)00113-2]
[81]
Ali N, Dashti N, Khanafer M, Al-Awadhi H, Radwan S. Bioremediation of soils saturated with spilled crude oil. Sci Rep 2020; 10(1): 1116.
[http://dx.doi.org/10.1038/s41598-019-57224-x] [PMID: 31980664]
[82]
Bhardwaj N, Bhaskarwar A N. A review on sorbent devices for oil-spill control. Environ Pollut 2018; 243(Pt B): 1758-71.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy