Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis

Author(s): Loganayaki Periyasamy, Bharathi Muruganantham, Woo-Yoon Park and Sridhar Muthusami*

Volume 28, Issue 11, 2022

Published on: 09 May, 2022

Page: [922 - 946] Pages: 25

DOI: 10.2174/1381612828666220302153201

Price: $65

Abstract

Introduction: Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC.

Methods: The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals.

Results: Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools.

Conclusion: The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.

Keywords: Pancreatic cancer, CEMIP, KM plotter analysis, GEPIA, metastasis, phytocomponents, signaling.

« Previous
[1]
Busnardo AC, DiDio LJ, Tidrick RT, Thomford NR. History of the pancreas. Am J Surg 1983; 146(5): 539-50.
[http://dx.doi.org/10.1016/0002-9610(83)90286-6] [PMID: 6356946]
[2]
Sakula A. Paul Langerhans (1847-1888): A centenary tribute. J R Soc Med 1988; 81(7): 414-5.
[http://dx.doi.org/10.1177/014107688808100718] [PMID: 3045317]
[3]
Slack JM. Developmental biology of the pancreas. Development 1995; 121(6): 1569-80.
[http://dx.doi.org/10.1242/dev.121.6.1569] [PMID: 7600975]
[4]
Zhou Q, Melton DA. Pancreas regeneration. Nature 2018; 557(7705): 351-8.
[http://dx.doi.org/10.1038/s41586-018-0088-0] [PMID: 29769672]
[5]
Quilichini E, Haumaitre C. Implication of epigenetics in pancreas development and disease. Best Pract Res Clin Endocrinol Metab 2015; 29(6): 883-98.
[http://dx.doi.org/10.1016/j.beem.2015.10.010] [PMID: 26696517]
[6]
Wolfgang CL, Herman JM, Laheru DA, et al. Recent progress in pancreatic cancer. CA Cancer J Clin 2013; 63(5): 318-48.
[http://dx.doi.org/10.3322/caac.21190] [PMID: 23856911]
[7]
Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet 2016; 388(10039): 73-85.
[http://dx.doi.org/10.1016/S0140-6736(16)00141-0] [PMID: 26830752]
[8]
Veenstra VL, Garcia-Garijo A, van Laarhoven HW, Bijlsma MF. Extracellular influences: Molecular subclasses and the microenvironment in pancreatic cancer. Cancers 2018; 10(2): 34.
[http://dx.doi.org/10.3390/cancers10020034] [PMID: 29382042]
[9]
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers 2016; 2(1): 16022.
[http://dx.doi.org/10.1038/nrdp.2016.22] [PMID: 27158978]
[10]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[11]
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74(11): 2913-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[12]
Pereira SP, Oldfield L, Ney A, et al. Early detection of pancreatic cancer. Lancet Gastroenterol Hepatol 2020; 5(7): 698-710.
[http://dx.doi.org/10.1016/S2468-1253(19)30416-9] [PMID: 32135127]
[13]
Goral V. Pancreatic cancer: pathogenesis and diagnosis. Asian Pac J Cancer Prev 2015; 16(14): 5619-24.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5619] [PMID: 26320426]
[14]
Ansari D, Tingstedt B, Andersson B, et al. Pancreatic cancer: Yesterday, today and tomorrow. Future Oncol 2016; 12(16): 1929-46.
[http://dx.doi.org/10.2217/fon-2016-0010] [PMID: 27246628]
[15]
Pernick NL, Sarkar FH, Philip PA, et al. Clinicopathologic analysis of pancreatic adenocarcinoma in African Americans and Caucasians. Pancreas 2003; 26(1): 28-32.
[http://dx.doi.org/10.1097/00006676-200301000-00006] [PMID: 12499914]
[16]
Yao W, Maitra A, Ying H. Recent insights into the biology of pancreatic cancer. EBioMedicine 2020; 53: 102655.
[http://dx.doi.org/10.1016/j.ebiom.2020.102655] [PMID: 32139179]
[17]
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019; 47(W1): W556-60.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[18]
Zhang N, Wang H, Xie Q, et al. Identification of potential diagnostic and therapeutic target genes for lung squamous cell carcinoma. Oncol Lett 2019; 18(1): 169-80.
[http://dx.doi.org/10.3892/ol.2019.10300] [PMID: 31289486]
[19]
Zheng H, Zhang G, Zhang L, et al. Comprehensive review of web servers and bioinformatics tools for cancer prognosis analysis. Front Oncol 2020; 10: 68.
[http://dx.doi.org/10.3389/fonc.2020.00068] [PMID: 32117725]
[20]
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet 2013; 45(6): 580-5.
[http://dx.doi.org/10.1038/ng.2653] [PMID: 23715323]
[21]
Aran D, Camarda R, Odegaard J, et al. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat Commun 2017; 8(1): 1077.
[http://dx.doi.org/10.1038/s41467-017-01027-z] [PMID: 29057876]
[22]
Russi S, Calice G, Ruggieri V, et al. Gastric normal adjacent mucosa versus healthy and cancer tissues: Distinctive transcriptomic profiles and biological features. Cancers 2019; 11(9): 1248.
[http://dx.doi.org/10.3390/cancers11091248] [PMID: 31454993]
[23]
Chen B, Ma L, Paik H, et al. Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets. Nat Commun 2017; 8(1): 16022.
[http://dx.doi.org/10.1038/ncomms16022] [PMID: 28699633]
[24]
Li L, Yan LH, Manoj S, Li Y, Lu L. Central role of CEMIP in tumorigenesis and its potential as therapeutic target. J Cancer 2017; 8(12): 2238-46.
[http://dx.doi.org/10.7150/jca.19295] [PMID: 28819426]
[25]
Lee HS, Jang CY, Kim SA, et al. Combined use of CEMIP and CA 19-9 enhances diagnostic accuracy for pancreatic cancer. Sci Rep 2018; 8(1): 3383.
[http://dx.doi.org/10.1038/s41598-018-21823-x] [PMID: 29467409]
[26]
Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2(5): 401-4.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[27]
Fink SP, Myeroff LL, Kariv R, et al. Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival. Oncotarget 2015; 6(31): 30500-15.
[http://dx.doi.org/10.18632/oncotarget.5921] [PMID: 26437221]
[28]
Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: Update 2019. Nucleic Acids Res 2019; 47(D1): D948-54.
[http://dx.doi.org/10.1093/nar/gky868] [PMID: 30247620]
[29]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[30]
Abe S, Usami S, Nakamura Y. Mutations in the gene encoding KIAA1199 protein, an inner-ear protein expressed in Deiters’ cells and the fibrocytes, as the cause of nonsyndromic hearing loss. J Hum Genet 2003; 48(11): 564-70.
[http://dx.doi.org/10.1007/s10038-003-0079-2] [PMID: 14577002]
[31]
Yoshida H, Nagaoka A, Kusaka-Kikushima A, et al. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci 2013; 110(14): 5612-7.
[http://dx.doi.org/10.1073/pnas.1215432110] [PMID: 23509262]
[32]
Nagaoka A, Yoshida H, Nakamura S, et al. Regulation of hyaluronan (HA) metabolism mediated by HYBID (hyaluronan-binding protein involved in HA depolymerization, KIAA1199) and HA synthases in growth factor-stimulated fibroblasts. J Biol Chem 2015; 290(52): 30910-23.
[http://dx.doi.org/10.1074/jbc.M115.673566] [PMID: 26518873]
[33]
Yoshida H, Aoki M, Komiya A, et al. HYBID (alias KIAA1199/CEMIP) and hyaluronan synthase coordinately regulate hyaluronan metabolism in histamine-stimulated skin fibroblasts. J Biol Chem 2020; 295(8): 2483-94.
[http://dx.doi.org/10.1074/jbc.RA119.010457] [PMID: 31949043]
[34]
Xu J, Liu Y, Wang X, et al. Association between KIAA1199 overexpression and tumor invasion, TNM stage, and poor prognosis in colorectal cancer. Int J Clin Exp Pathol 2015; 8(3): 2909-18.
[PMID: 26045799]
[35]
Birkenkamp-Demtroder K, Maghnouj A, Mansilla F, et al. Repression of KIAA1199 attenuates Wnt-signalling and decreases the proliferation of colon cancer cells. Br J Cancer 2011; 105(4): 552-61.
[http://dx.doi.org/10.1038/bjc.2011.268] [PMID: 21772334]
[36]
Liang G, Fang X, Yang Y, Song Y. Silencing of CEMIP suppresses Wnt/β-catenin/Snail signaling transduction and inhibits EMT program of colorectal cancer cells. Acta Histochem 2018; 120(1): 56-63.
[http://dx.doi.org/10.1016/j.acthis.2017.11.002] [PMID: 29173982]
[37]
Jia S, Qu T, Wang X, et al. KIAA1199 promotes migration and invasion by Wnt/β-catenin pathway and MMPs mediated EMT progression and serves as a poor prognosis marker in gastric cancer. PLoS One 2017; 12(4): e0175058.
[http://dx.doi.org/10.1371/journal.pone.0175058] [PMID: 28422983]
[38]
Liang G, Fang X, Yang Y, Song Y. Knockdown of CEMIP suppresses proliferation and induces apoptosis in colorectal cancer cells: downregulation of GRP78 and attenuation of unfolded protein response. Biochem Cell Biol 2018; 96(3): 332-41.
[http://dx.doi.org/10.1139/bcb-2017-0151] [PMID: 29024602]
[39]
Evensen NA, Li Y, Kuscu C, et al. Hypoxia promotes colon cancer dissemination through up-regulation of cell migration-inducing protein (CEMIP). Oncotarget 2015; 6(24): 20723-39.
[http://dx.doi.org/10.18632/oncotarget.3978] [PMID: 26009875]
[40]
Banach A, Jiang YP, Roth E, Kuscu C, Cao J, Lin RZ. CEMIP upregulates BiP to promote breast cancer cell survival in hypoxia. Oncotarget 2019; 10(42): 4307-20.
[http://dx.doi.org/10.18632/oncotarget.27036] [PMID: 31303964]
[41]
Zhao L, Zhang D, Shen Q, et al. KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway. Oncogene 2019; 38(7): 935-49.
[http://dx.doi.org/10.1038/s41388-018-0493-8] [PMID: 30202098]
[42]
Tiwari A, Schneider M, Fiorino A, et al. Early insights into the function of KIAA1199, a markedly overexpressed protein in human colorectal tumors. PLoS One 2013; 8(7): e69473.
[http://dx.doi.org/10.1371/journal.pone.0069473] [PMID: 23936024]
[43]
Evensen NA, Kuscu C, Nguyen HL, et al. Unraveling the role of KIAA1199, a novel endoplasmic reticulum protein, in cancer cell migration. J Natl Cancer Inst 2013; 105(18): 1402-16.
[http://dx.doi.org/10.1093/jnci/djt224] [PMID: 23990668]
[44]
Kuscu C, Evensen N, Kim D, Hu YJ, Zucker S, Cao J. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer. PLoS One 2012; 7(9): e44661.
[http://dx.doi.org/10.1371/journal.pone.0044661] [PMID: 22970280]
[45]
Jami MS, Hou J, Liu M, et al. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness. BMC Cancer 2014; 14(1): 194.
[http://dx.doi.org/10.1186/1471-2407-14-194] [PMID: 24628760]
[46]
Matsuzaki S, Tanaka F, Mimori K, Tahara K, Inoue H, Mori M. Clinicopathologic significance of KIAA1199 overexpression in human gastric cancer. Ann Surg Oncol 2009; 16(7): 2042-51.
[http://dx.doi.org/10.1245/s10434-009-0469-6] [PMID: 19434458]
[47]
Terashima M, Fujita Y, Togashi Y, et al. KIAA1199 interacts with glycogen phosphorylase kinase β-subunit (PHKB) to promote glycogen breakdown and cancer cell survival. Oncotarget 2014; 5(16): 7040-50.
[http://dx.doi.org/10.18632/oncotarget.2220] [PMID: 25051373]
[48]
Oneyama M, Sakamoto N, Oue N, et al. Clinical Significance of KIAA1199 as a Novel Target for Gastric Cancer Drug Therapy. Anticancer Res 2019; 39(12): 6567-73.
[http://dx.doi.org/10.21873/anticanres.13872] [PMID: 31810922]
[49]
Shen F, Zong ZH, Liu Y, Chen S, Sheng XJ, Zhao Y. CEMIP promotes ovarian cancer development and progression via the PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 114: 108787.
[http://dx.doi.org/10.1016/j.biopha.2019.108787] [PMID: 30925458]
[50]
Gu CJ, Ni QC, Ni K, Zhang S, Qian HX. Expression and clinical significance of KIAA1199 in primary hepatocellular carcinoma. Zhonghua Yi Xue Za Zhi 2018; 98(20): 1609-13.
[PMID: 29886655]
[51]
Xu Y, Xu H, Li M, et al. KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular carcinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition program. Cancer Lett 2019; 454: 78-89.
[http://dx.doi.org/10.1016/j.canlet.2019.03.049] [PMID: 30980868]
[52]
Zhang P, Song Y, Sun Y, et al. AMPK/GSK3β/β-catenin cascade-triggered overexpression of CEMIP promotes migration and invasion in anoikis-resistant prostate cancer cells by enhancing metabolic reprogramming. FASEB J 2018; 32(7): 3924-35.
[http://dx.doi.org/10.1096/fj.201701078R] [PMID: 29505302]
[53]
Shostak K, Zhang X, Hubert P, et al. NF-κB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun 2014; 5: 5232.
[http://dx.doi.org/10.1038/ncomms6232] [PMID: 25366117]
[54]
Jiao X, Ye J, Wang X, Yin X, Zhang G, Cheng X. KIAA1199, a target of MicoRNA-486-5p, promotes papillary thyroid Cancer invasion by influencing epithelial-mesenchymal transition (EMT). Med Sci Monit 2019; 25: 6788-96.
[http://dx.doi.org/10.12659/MSM.918682] [PMID: 31501407]
[55]
Tang Z, Ding Y, Shen Q, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl) 2019; 97(1): 127-40.
[http://dx.doi.org/10.1007/s00109-018-1721-y] [PMID: 30478628]
[56]
Suh HN, Jun S, Oh AY, et al. Identification of KIAA1199 as a biomarker for pancreatic intraepithelial neoplasia. Sci Rep 2016; 6: 38273.
[http://dx.doi.org/10.1038/srep38273] [PMID: 27922049]
[57]
Koga A, Sato N, Kohi S, et al. KIAA1199/CEMIP/HYBID overexpression predicts poor prognosis in pancreatic ductal adenocarcinoma. Pancreatology 2017; 17(1): 115-22.
[http://dx.doi.org/10.1016/j.pan.2016.12.007] [PMID: 28012880]
[58]
Greten FR, Grivennikov SI. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019; 51(1): 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[59]
Kohi S, Sato N, Koga A, Matayoshi N, Hirata K. KIAA1199 is induced by inflammation and enhances malignant phenotype in pancreatic cancer. Oncotarget 2017; 8(10): 17156-63.
[http://dx.doi.org/10.18632/oncotarget.15052] [PMID: 28179576]
[60]
Wang XD, Lu J, Lin YS, Gao C, Qi F. Functional role of long non-coding RNA CASC19/miR-140-5p/CEMIP axis in colorectal cancer progression in vitro. World J Gastroenterol 2019; 25(14): 1697-714.
[http://dx.doi.org/10.3748/wjg.v25.i14.1697] [PMID: 31011255]
[61]
Zhang D, Zhao L, Shen Q, et al. Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer. Int J Cancer 2017; 140(10): 2298-309.
[http://dx.doi.org/10.1002/ijc.30656] [PMID: 28213952]
[62]
Sun J, Hu J, Wang G, et al. LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. J Exp Clin Cancer Res 2018; 37(1): 106.
[http://dx.doi.org/10.1186/s13046-018-0771-x] [PMID: 29776371]
[63]
Wang L, Yu T, Li W, et al. The miR-29c-KIAA1199 axis regulates gastric cancer migration by binding with WBP11 and PTP4A3. Oncogene 2019; 38(17): 3134-50.
[http://dx.doi.org/10.1038/s41388-018-0642-0] [PMID: 30626935]
[64]
Hu R, Lu Z. Long non-coding RNA HCP5 promotes prostate cancer cell proliferation by acting as the sponge of miR-4656 to modulate CEMIP expression. Oncol Rep 2020; 43(1): 328-36.
[PMID: 31746434]
[65]
Fang DZ, Wang YP, Liu J, et al. MicroRNA-129-3p suppresses tumor growth by targeting E2F5 in glioblastoma. Eur Rev Med Pharmacol Sci 2018; 22(4): 1044-50.
[PMID: 29509253]
[66]
Li SL, Sui Y, Sun J, Jiang TQ, Dong G. Identification of tumor suppressive role of microRNA-132 and its target gene in tumorigenesis of prostate cancer. Int J Mol Med 2018; 41(4): 2429-33.
[http://dx.doi.org/10.3892/ijmm.2018.3421] [PMID: 29393367]
[67]
Liu ZP, Wu C, Miao H, Wu H. RegNetwork: An integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford) 2015; 2015: bav095.
[http://dx.doi.org/10.1093/database/bav095] [PMID: 26424082]
[68]
McDonald JA, Camenisch TD. Hyaluronan: Genetic insights into the complex biology of a simple polysaccharide. Glycoconj J 2002; 19(4-5): 331-9.
[http://dx.doi.org/10.1023/A:1025369004783] [PMID: 12975613]
[69]
Doherty GJ, Tempero M, Corrie PG. HALO-109-301: A Phase III trial of PEGPH20 (with gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage IV pancreatic cancer. Future Oncol 2018; 14(1): 13-22.
[http://dx.doi.org/10.2217/fon-2017-0338] [PMID: 29235360]
[70]
Ramanathan RK, McDonough SL, Philip PA, et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol 2019; 37(13): 1062-9.
[http://dx.doi.org/10.1200/JCO.18.01295] [PMID: 30817250]
[71]
Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem 2002; 277(7): 4589-92.
[http://dx.doi.org/10.1074/jbc.R100038200] [PMID: 11717317]
[72]
Itano N. Simple primary structure, complex turnover regulation and multiple roles of hyaluronan. J Biochem 2008; 144(2): 131-7.
[http://dx.doi.org/10.1093/jb/mvn046] [PMID: 18390876]
[73]
Lee JE, Kim YA, Yu S, Park SY, Kim KH, Kang NJ. 3,6-anhydro-L-galactose increases hyaluronic acid production via the EGFR and AMPKα signaling pathway in HaCaT keratinocytes. J Dermatol Sci 2019; 96(2): 90-8.
[http://dx.doi.org/10.1016/j.jdermsci.2019.10.005] [PMID: 31718895]
[74]
Passi A, Vigetti D. Hyaluronan as tunable drug delivery system. Adv Drug Deliv Rev 2019; 146: 83-96.
[http://dx.doi.org/10.1016/j.addr.2019.08.006] [PMID: 31421148]
[75]
Spicer AP, Seldin MF, Olsen AS, et al. Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 1997; 41(3): 493-7.
[http://dx.doi.org/10.1006/geno.1997.4696] [PMID: 9169154]
[76]
Itano N, Kimata K. Mammalian hyaluronan synthases. IUBMB Life 2002; 54(4): 195-9.
[http://dx.doi.org/10.1080/15216540214929] [PMID: 12512858]
[77]
Stern R. Hyaluronan catabolism: A new metabolic pathway. Eur J Cell Biol 2004; 83(7): 317-25.
[http://dx.doi.org/10.1078/0171-9335-00392] [PMID: 15503855]
[78]
Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol 2014; 5: 101.
[http://dx.doi.org/10.3389/fimmu.2014.00101] [PMID: 24653726]
[79]
Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002; 195(1): 99-111.
[http://dx.doi.org/10.1084/jem.20001858] [PMID: 11781369]
[80]
Sironen RK, Tammi M, Tammi R, Auvinen PK, Anttila M, Kosma VM. Hyaluronan in human malignancies. Exp Cell Res 2011; 317(4): 383-91.
[http://dx.doi.org/10.1016/j.yexcr.2010.11.017] [PMID: 21134368]
[81]
Tammi MI, Oikari S, Pasonen-Seppänen S, Rilla K, Auvinen P, Tammi RH. Activated hyaluronan metabolism in the tumor matrix - Causes and consequences. Matrix Biol 2019; 78-79: 147-64.
[http://dx.doi.org/10.1016/j.matbio.2018.04.012] [PMID: 29709595]
[82]
Mahlbacher V, Sewing A, Elsässer HP, Kern HF. Hyaluronan is a secretory product of human pancreatic adenocarcinoma cells. Eur J Cell Biol 1992; 58(1): 28-34.
[PMID: 1644063]
[83]
Theocharis AD, Tsara ME, Papageorgacopoulou N, Karavias DD, Theocharis DA. Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition. Biochim Biophys Acta 2000; 1502(2): 201-6.
[http://dx.doi.org/10.1016/S0925-4439(00)00051-X] [PMID: 11040445]
[84]
Junliang L, Lili W, Xiaolong L, Xuguang L, Huanwen W, Zhiyong L. High-molecular-weight hyaluronan produced by activated pancreatic stellate cells promotes pancreatic cancer cell migration via paracrine signaling. Biochem Biophys Res Commun 2019; 515(3): 493-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.167] [PMID: 31171359]
[85]
Cheng XB, Sato N, Kohi S, Yamaguchi K. Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma. PLoS One 2013; 8(11): e80765.
[http://dx.doi.org/10.1371/journal.pone.0080765] [PMID: 24244714]
[86]
Cheng XB, Kohi S, Koga A, Hirata K, Sato N. Hyaluronan stimulates pancreatic cancer cell motility. Oncotarget 2016; 7(4): 4829-40.
[http://dx.doi.org/10.18632/oncotarget.6617] [PMID: 26684359]
[87]
Larson BK, Guan M, Placencio V, Tuli R, Hendifar AE. Stromal hyaluronan accumulation is associated with low tumor grade and nodal metastases in pancreatic ductal adenocarcinoma. Hum Pathol 2019; 90: 37-44.
[http://dx.doi.org/10.1016/j.humpath.2019.05.004] [PMID: 31121193]
[88]
Chen IM, Willumsen N, Dehlendorff C, et al. Clinical value of serum hyaluronan and propeptide of type III collagen in patients with pancreatic cancer. Int J Cancer 2020; 146(10): 2913-22.
[http://dx.doi.org/10.1002/ijc.32751] [PMID: 31642523]
[89]
Kohi S, Sato N, Cheng XB, Koga A, Hirata K. Increased expression of HYAL1 in pancreatic ductal adenocarcinoma. Pancreas 2016; 45(10): 1467-73.
[http://dx.doi.org/10.1097/MPA.0000000000000670] [PMID: 27622341]
[90]
Nagase H, Kudo D, Suto A, et al. 4-Methylumbelliferone suppresses hyaluronan synthesis and tumor progression in SCID mice intra-abdominally inoculated with pancreatic cancer cells. Pancreas 2017; 46(2): 190-7.
[http://dx.doi.org/10.1097/MPA.0000000000000741] [PMID: 27846148]
[91]
Cheng XB, Sato N, Kohi S, Koga A, Hirata K. 4-Methylumbelliferone inhibits enhanced hyaluronan synthesis and cell migration in pancreatic cancer cells in response to tumor-stromal interactions. Oncol Lett 2018; 15(5): 6297-301.
[http://dx.doi.org/10.3892/ol.2018.8147] [PMID: 29725394]
[92]
Kultti A, Zhao C, Singha NC, et al. Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. BioMed Res Int 2014; 2014: 817613.
[http://dx.doi.org/10.1155/2014/817613] [PMID: 25147816]
[93]
Teranishi F, Takahashi N, Gao N, et al. Phosphoinositide 3-kinase inhibitor (wortmannin) inhibits pancreatic cancer cell motility and migration induced by hyaluronan in vitro and peritoneal metastasis in vivo. Cancer Sci 2009; 100(4): 770-7.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01084.x] [PMID: 19469020]
[94]
Kohi S, Sato N, Cheng XB, Koga A, Higure A, Hirata K. A novel epigenetic mechanism regulating hyaluronan production in pancreatic cancer cells. Clin Exp Metastasis 2016; 33(3): 225-30.
[http://dx.doi.org/10.1007/s10585-015-9771-9] [PMID: 26589701]
[95]
Shea DJ, Li YW, Stebe KJ, Konstantopoulos K. E-selectin-mediated rolling facilitates pancreatic cancer cell adhesion to hyaluronic acid. FASEB J 2017; 31(11): 5078-86.
[http://dx.doi.org/10.1096/fj.201700331R] [PMID: 28765175]
[96]
Jacobetz MA, Chan DS, Neesse A, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 2013; 62(1): 112-20.
[http://dx.doi.org/10.1136/gutjnl-2012-302529] [PMID: 22466618]
[97]
Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 2006; 66(5): 2500-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3636] [PMID: 16510563]
[98]
Vu HA, Beppu Y, Chi HT, et al. Green tea epigalocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via inhibition of both FAK and IGF-1R. The Third International Conference on the Development of Biomedical Engineering in Vietnam Springer,Berlin, Heidelberg 2010; 223-6.
[http://dx.doi.org/10.1007/978-3-642-12020-6_56]
[99]
Wei R, Hackman RM, Wang Y, Mackenzie GG. Targeting glycolysis with epigallocatechin-3-gallate enhances the efficacy of chemotherapeutics in pancreatic cancer cells and xenografts. Cancers 2019; 11(10): 1496.
[http://dx.doi.org/10.3390/cancers11101496] [PMID: 31590367]
[100]
Shankar S, Marsh L, Srivastava RK. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol Cell Biochem 2013; 372(1-2): 83-94.
[http://dx.doi.org/10.1007/s11010-012-1448-y] [PMID: 22971992]
[101]
Liu S, Wang XJ, Liu Y, Cui YF. PI3K/AKT/mTOR signaling is involved in (-)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells. Am J Chin Med 2013; 41(3): 629-42.
[http://dx.doi.org/10.1142/S0192415X13500444] [PMID: 23711146]
[102]
Liu S, Xu ZL, Sun L, et al. (-)-Epigallocatechin-3-gallate induces apoptosis in human pancreatic cancer cells via PTEN. Mol Med Rep 2016; 14(1): 599-605.
[http://dx.doi.org/10.3892/mmr.2016.5277] [PMID: 27176210]
[103]
Kim SO, Kim MR. (-)-Epigallocatechin 3-gallate inhibits invasion by inducing the expression of Raf kinase inhibitor protein in AsPC-1 human pancreatic adenocarcinoma cells through the modulation of histone deacetylase activity. Int J Oncol 2013; 42(1): 349-58.
[http://dx.doi.org/10.3892/ijo.2012.1686] [PMID: 23135610]
[104]
Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 2005; 26(5): 958-67.
[http://dx.doi.org/10.1093/carcin/bgi040] [PMID: 15705601]
[105]
Zhu Z, Wang Y, Liu Z, Wang F, Zhao Q. Inhibitory effects of epigallocatechin-3-gallate on cell proliferation and the expression of HIF-1α and P-gp in the human pancreatic carcinoma cell line PANC-1. Oncol Rep 2012; 27(5): 1567-72.
[http://dx.doi.org/10.3892/or.2012.1697] [PMID: 22367292]
[106]
Hsieh CH, Lu CH, Chen WT, Ma BL, Chao CY. Application of non-invasive low strength pulsed electric field to EGCG treatment synergistically enhanced the inhibition effect on PANC-1 cells. PLoS One 2017; 12(11): e0188885.
[http://dx.doi.org/10.1371/journal.pone.0188885] [PMID: 29186186]
[107]
Imran M, Aslam Gondal T, Atif M, et al. Apigenin as an anticancer agent. Phytother Res 2020; 34(8): 1812-28.
[http://dx.doi.org/10.1002/ptr.6647] [PMID: 32059077]
[108]
Mrazek AA, Porro LJ, Bhatia V, Falzon M, et al. Apigenin inhibits pancreatic stellate cell activity in pancreatitis. J Surg Res 2015; 196(1): 8-16.
[PMID: 25799526]
[109]
Wu DG, Yu P, Li JW, et al. Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-κB activation in pancreatic cancer cells. Toxicol Lett 2014; 224(1): 157-64.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.007] [PMID: 24148603]
[110]
Liu T, Zhang L, Joo D, Sun SC NF. -ĸB signaling in inflammation. Signal Transduct Target Ther 2017; 2.
[111]
Nelson N, Szekeres K, Iclozan C, et al. Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One 2017; 12(2): e0170197.
[http://dx.doi.org/10.1371/journal.pone.0170197] [PMID: 28152014]
[112]
Melstrom LG, Salabat MR, Ding XZ, et al. Apigenin down-regulates the hypoxia response genes: HIF-1α GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res 2011; 167(2): 173-81.
[http://dx.doi.org/10.1016/j.jss.2010.10.041] [PMID: 21227456]
[113]
Gašić U, Ćirić I, Pejčić T, etal Polyphenols as possible agents for pancreatic diseases. Antioxidants 2020; 9(6): 547.
[http://dx.doi.org/10.3390/antiox9060547] [PMID: 32585831]
[114]
Lee JH, Lee HB, Jung GO, Oh JT, Park DE, Chae KM. Effect of quercetin on apoptosis of PANC-1 cells. J Korean Surg Soc 2013; 85(6): 249-60.
[http://dx.doi.org/10.4174/jkss.2013.85.6.249] [PMID: 24368982]
[115]
Yu D, Ye T, Xiang Y, et al. Quercetin inhibits epithelial-mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial-mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells. OncoTargets Ther 2017; 10: 4719-29.
[http://dx.doi.org/10.2147/OTT.S136840] [PMID: 29026320]
[116]
Serri C, Quagliariello V, Iaffaioli RV, et al. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid-decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. J Cell Physiol 2019; 234(4): 4959-69.
[http://dx.doi.org/10.1002/jcp.27297] [PMID: 30334571]
[117]
Lan CY, Chen SY, Kuo CW, Lu CC, Yen GC. Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. J Food Drug Anal 2019; 27(4): 887-96.
[http://dx.doi.org/10.1016/j.jfda.2019.07.001] [PMID: 31590760]
[118]
Hoca M, Becer E. Kabadayi H, Yücecan S, Vatansever HS. The effect of resveratrol and quercetin on epithelial-mesenchymal transition in pancreatic cancer stem cell. Nutr Cancer 2020; 72(7): 1231-42.
[http://dx.doi.org/10.1080/01635581.2019.1670853] [PMID: 31595775]
[119]
Devi KP, Malar DS, Nabavi SF, et al. Kaempferol and inflammation: From chemistry to medicine. Pharmacol Res 2015; 99: 1-10.
[http://dx.doi.org/10.1016/j.phrs.2015.05.002] [PMID: 25982933]
[120]
Nöthlings U, Murphy SP, Wilkens LR, et al. A food pattern that is predictive of flavonol intake and risk of pancreatic cancer. Am J Clin Nutr 2008; 88(6): 1653-62.
[http://dx.doi.org/10.3945/ajcn.2008.26398] [PMID: 19064528]
[121]
Lin F, Luo X, Tsun A, Li Z, Li D, Li B. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. Int Immunopharmacol 2015; 28(2): 859-65.
[http://dx.doi.org/10.1016/j.intimp.2015.03.044] [PMID: 25870037]
[122]
Lee J, Kim JH. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One 2016; 11(5): e0155264.
[http://dx.doi.org/10.1371/journal.pone.0155264] [PMID: 27175782]
[123]
Zeng J, Xu H, Fan PZ, et al. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS-PAD4 pathway. J Cell Mol Med 2020; 24(13): 7590-9.
[http://dx.doi.org/10.1111/jcmm.15394] [PMID: 32427405]
[124]
Semwal DK, Semwal RB, Combrinck S, Viljoen A. Myricetin: A dietary molecule with diverse biological activities. Nutrients 2016; 8(2): 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[125]
Phillips PA, Sangwan V, Borja-Cacho D, Dudeja V, Vickers SM, Saluja AK. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett 2011; 308(2): 181-8.
[http://dx.doi.org/10.1016/j.canlet.2011.05.002] [PMID: 21676539]
[126]
Jiang M, Zhu M, Wang L, Yu S. Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed Pharmacother 2019; 120: 109506.
[http://dx.doi.org/10.1016/j.biopha.2019.109506] [PMID: 31586904]
[127]
Afroze N, Pramodh S, Hussain A, Waleed M, Vakharia K. A review on myricetin as a potential therapeutic candidate for cancer prevention.3 Biotech 2020; 10: 1-12.
[PMID: 32351869]
[128]
Kang HR, Moon JY, Ediriweera MK, et al. Dietary flavonoid myricetin inhibits invasion and migration of radioresistant lung cancer cells (A549-IR) by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway. Food Sci Nutr 2020; 8(4): 2059-67.
[http://dx.doi.org/10.1002/fsn3.1495] [PMID: 32328272]
[129]
Angeloni C, Barbalace MC, Hrelia S. Icariin and its metabolites as potential protective phytochemicals against Alzheimer’s disease. Front Pharmacol 2019; 10: 271.
[http://dx.doi.org/10.3389/fphar.2019.00271] [PMID: 30941046]
[130]
Tan HL, Chan KG, Pusparajah P, et al. Anti-cancer properties of the naturally occurring aphrodisiacs: Icariin and its derivatives. Front Pharmacol 2016; 7: 191.
[http://dx.doi.org/10.3389/fphar.2016.00191] [PMID: 27445824]
[131]
Zheng X, Li D, Li J, et al. Optimization of the process for purifying icariin from Herba epimedii by macroporous resin and the regulatory role of icariin in the tumor immune microenvironment. Biomed Pharmacother 2019; 118: 109275.
[http://dx.doi.org/10.1016/j.biopha.2019.109275] [PMID: 31382128]
[132]
He W, Sun H, Yang B, Zhang D, Kabelitz D. Immunoregulatory effects of the Herba epimediia glycoside icariin. Arzneimittelforschung 1995; 45(8): 910-3.
[PMID: 7575760]
[133]
Kim DU, Bae GS, Kim MJ, et al. Icariin attenuates the severity of cerulein-induced acute pancreatitis by inhibiting p38 activation in mice. Int J Mol Med 2019; 44(4): 1563-73.
[http://dx.doi.org/10.3892/ijmm.2019.4312] [PMID: 31432106]
[134]
Salehi B, Fokou PVT, Sharifi-Rad M, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel) 2019; 12(1): 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[135]
Lin CY, Ni CC, Yin MC, Lii CK. Flavonoids protect pancreatic beta-cells from cytokines mediated apoptosis through the activation of PI3-kinase pathway. Cytokine 2012; 59(1): 65-71.
[http://dx.doi.org/10.1016/j.cyto.2012.04.011] [PMID: 22579112]
[136]
Lou C, Zhang F, Yang M, et al. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells. PLoS One 2012; 7(12): e50956.
[http://dx.doi.org/10.1371/journal.pone.0050956] [PMID: 23300530]
[137]
Park HJ, Choi YJ, Lee JH, Nam MJ. Naringenin causes ASK1-induced apoptosis via reactive oxygen species in human pancreatic cancer cells. Food Chem Toxicol 2017; 99: 1-8.
[http://dx.doi.org/10.1016/j.fct.2016.11.008] [PMID: 27838343]
[138]
Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. Phytomedicine 2019; 58: 152762.
[http://dx.doi.org/10.1016/j.phymed.2018.11.022] [PMID: 31005717]
[139]
Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 2004; 24(10): 851-74.
[http://dx.doi.org/10.1016/j.nutres.2004.07.005]
[140]
Nurhayati IP, Khumaira A, Ilmawati GPN, Meiyanto E, Hermawan A. Cytotoxic and antimetastatic activity of hesperetin and doxorubicin combination toward Her2 expressing breast cancer cells. Asian Pac J Cancer Prev 2020; 21(5): 1259-67.
[http://dx.doi.org/10.31557/APJCP.2020.21.5.1259] [PMID: 32458631]
[141]
Choi D, Kim CL, Kim JE, Mo JS, Jeong HS. Hesperetin inhibit EMT in TGF-β treated podocyte by regulation of mTOR pathway. Biochem Biophys Res Commun 2020; 528(1): 154-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.087] [PMID: 32451085]
[142]
Büchler P, Gukovskaya AS, Mouria M, et al. Prevention of metastatic pancreatic cancer growth in vivo by induction of apoptosis with genistein, a naturally occurring isoflavonoid. Pancreas 2003; 26(3): 264-73.
[http://dx.doi.org/10.1097/00006676-200304000-00010] [PMID: 12657953]
[143]
Sawai H, Okada Y, Funahashi H, et al. Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol Cancer 2005; 4(1): 37.
[http://dx.doi.org/10.1186/1476-4598-4-37] [PMID: 16209712]
[144]
Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. Inhibition of nuclear factor kappa b activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer 2006; 15(1): 1930-6.
[PMID: 16284950]
[145]
Mohammad RM, Banerjee S, Li Y, Aboukameel A, Kucuk O, Sarkar FH. Cisplatin-induced antitumor activity is potentiated by the soy isoflavone genistein in BxPC-3 pancreatic tumor xenografts. Cancer 2006; 106(6): 1260-8.
[http://dx.doi.org/10.1002/cncr.21731] [PMID: 16475211]
[146]
El-Rayes BF, Philip PA, Sarkar FH, et al. A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Invest New Drugs 2011; 29(4): 694-9.
[http://dx.doi.org/10.1007/s10637-010-9386-6] [PMID: 20107864]
[147]
Han L, Zhang HW, Zhou WP, Chen GM, Guo KJ. The effects of genistein on transforming growth factor-β1-induced invasion and metastasis in human pancreatic cancer cell line Panc-1 in vitro. Chin Med J (Engl) 2012; 125(11): 2032-40.
[PMID: 22884073]
[148]
Ma J, Cao T, Cui Y, et al. miR-223 regulates cell proliferation and invasion via targeting pds5b in pancreatic cancer cells. Mol Ther Nucleic Acids 2019; 14: 583-92.
[http://dx.doi.org/10.1016/j.omtn.2019.01.009] [PMID: 30776580]
[149]
Ma J, Cheng L, Liu H, et al. Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets 2013; 14(10): 1150-6.
[http://dx.doi.org/10.2174/13894501113149990187] [PMID: 23834147]
[150]
Xia J, Cheng L, Mei C, et al. Genistein inhibits cell growth and invasion through regulation of miR-27a in pancreatic cancer cells. Curr Pharm Des 2014; 20(33): 5348-53.
[http://dx.doi.org/10.2174/1381612820666140128215756] [PMID: 24479798]
[151]
Ma J, Zeng F, Ma C, et al. Synergistic reversal effect of epithelial-to-mesenchymal transition by miR-223 inhibitor and genistein in gemcitabine-resistant pancreatic cancer cells. Am J Cancer Res 2016; 6(6): 1384-95.
[PMID: 27429851]
[152]
Suzuki R, Kang Y, Li X, Roife D, Zhang R, Fleming JB. Genistein potentiates the antitumor effect of 5-fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res 2014; 34(9): 4685-92.
[PMID: 25202045]
[153]
Löhr JM, Karimi M, Omazic B, et al. A phase I dose escalation trial of AXP107-11, a novel multi-component crystalline form of genistein, in combination with gemcitabine in chemotherapy-naive patients with unresectable pancreatic cancer. Pancreatology 2016; 16(4): 640-5.
[http://dx.doi.org/10.1016/j.pan.2016.05.002] [PMID: 27234064]
[154]
Bi YL, Min M, Shen W, Liu Y. Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine 2018; 39: 10-6.
[http://dx.doi.org/10.1016/j.phymed.2017.12.001] [PMID: 29433670]
[155]
Fu J, Shrivastava A, Shrivastava SK, Srivastava RK, Shankar S. Triacetyl resveratrol upregulates miRNA-200 and suppresses the Shh pathway in pancreatic cancer: A potential therapeutic agent. Int J Oncol 2019; 54(4): 1306-16.
[http://dx.doi.org/10.3892/ijo.2019.4700] [PMID: 30720134]
[156]
Srivani G, Behera SK, Dariya B, Aliya S, Alam A, Nagaraju GP. Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer. Exp Cell Res 2020; 394(1): 112126.
[http://dx.doi.org/10.1016/j.yexcr.2020.112126] [PMID: 32485183]
[157]
Xu Q, Zong L, Chen X, et al. Resveratrol in the treatment of pancreatic cancer. Ann N Y Acad Sci 2015; 1348(1): 10-9.
[http://dx.doi.org/10.1111/nyas.12837] [PMID: 26284849]
[158]
Li W, Ma J, Ma Q, et al. Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr Med Chem 2013; 20(33): 4185-94.
[http://dx.doi.org/10.2174/09298673113209990251] [PMID: 23992306]
[159]
Qian W, Xiao Q, Wang L, et al. Resveratrol slows the tumourigenesis of pancreatic cancer by inhibiting NFκB activation. Biomed Pharmacother 2020; 127: 110116.
[http://dx.doi.org/10.1016/j.biopha.2020.110116] [PMID: 32428833]
[160]
Ma J, Xue M, Zhang S, et al. Resveratrol inhibits the growth of tumor cells under chronic stress via the ADRB-2-HIF-1α axis. Oncol Rep 2019; 41(2): 1051-8.
[PMID: 30535465]
[161]
Diaz-Riascos ZV, Ginesta MM, Fabregat J, et al. Expression and role of microRNAs from the miR-200 family in the tumor formation and metastatic propensity of pancreatic cancer. Mol Ther Nucleic Acids 2019; 17: 491-503.
[http://dx.doi.org/10.1016/j.omtn.2019.06.015] [PMID: 31336236]
[162]
Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. Ann N Y Acad Sci 2011; 1215(1): 161-9.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05853.x] [PMID: 21261655]
[163]
Vendrely V, Amintas S, Noel C, et al. Combination treatment of resveratrol and capsaicin radiosensitizes pancreatic tumor cells by unbalancing DNA repair response to radiotherapy towards cell death. Cancer Lett 2019; 451: 1-10.
[http://dx.doi.org/10.1016/j.canlet.2019.02.038] [PMID: 30849482]
[164]
Zhu M, Zhang Q, Wang X, et al. Metformin potentiates anti-tumor effect of resveratrol on pancreatic cancer by down-regulation of VEGF-B signaling pathway. Oncotarget 2016; 7(51): 84190-200.
[http://dx.doi.org/10.18632/oncotarget.12391] [PMID: 27705937]
[165]
Harikumar KB, Kunnumakkara AB, Sethi G, et al. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer 2010; 127(2): 257-68.
[PMID: 19908231]
[166]
Mikuia-Pietrasik J, Sosinska P, Ksiazek K. Resveratrol inhibits ovarian cancer cell adhesion to peritoneal mesothelium in vitro by modulating the production of α5β1 integrins and hyaluronic acid. Gynecol Oncol 2014; 134(3): 624-30.
[http://dx.doi.org/10.1016/j.ygyno.2014.06.022] [PMID: 24995580]
[167]
Ohkawara T, Takeda H, Nishihira J. Protective effect of chlorogenic acid on the inflammatory damage of pancreas and lung in mice with l-arginine-induced pancreatitis. Life Sci 2017; 190: 91-6.
[http://dx.doi.org/10.1016/j.lfs.2017.09.015] [PMID: 28919396]
[168]
Lu CH, Chen WT, Hsieh CH, Kuo YY, Chao CY. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLoS One 2019; 14(5): e0217676.
[http://dx.doi.org/10.1371/journal.pone.0217676] [PMID: 31150487]
[169]
Lu CH, Kuo YY, Lin GB, Chen WT, Chao CY. Application of non-invasive low-intensity pulsed electric field with thermal cycling-hyperthermia for synergistically enhanced anticancer effect of chlorogenic acid on PANC-1 cells. PLoS One 2020; 15(1): e0222126.
[http://dx.doi.org/10.1371/journal.pone.0222126] [PMID: 31995555]
[170]
Vallée A, Lecarpentier Y, Vallée JN. Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res 2019; 38(1): 323.
[http://dx.doi.org/10.1186/s13046-019-1320-y] [PMID: 31331376]
[171]
Bahrami A, Majeed M, Sahebkar A. Curcumin: A potent agent to reverse epithelial-to-mesenchymal transition. Cell Oncol (Dordr) 2019; 42(4): 405-21.
[http://dx.doi.org/10.1007/s13402-019-00442-2] [PMID: 30980365]
[172]
Sun XD, Liu XE, Huang DS. Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncol Rep 2013; 29(6): 2401-7.
[http://dx.doi.org/10.3892/or.2013.2385] [PMID: 23563640]
[173]
Li W, Wang Z, Xiao X, et al. Curcumin attenuates hyperglycemia-driven EGF-induced invasive and migratory abilities of pancreatic cancer via suppression of the ERK and AKT pathways. Oncol Rep 2019; 41(1): 650-8.
[PMID: 30542713]
[174]
Cao L, Liu J, Zhang L, Xiao X, Li W. Curcumin inhibits H2O2-induced invasion and migration of human pancreatic cancer via suppression of the ERK/NF-κB pathway. Oncol Rep 2016; 36(4): 2245-51.
[http://dx.doi.org/10.3892/or.2016.5044] [PMID: 27572503]
[175]
Cao L, Xiao X, Lei J, Duan W, Ma Q, Li W. Curcumin inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway. Oncol Rep 2016; 35(6): 3728-34.
[http://dx.doi.org/10.3892/or.2016.4709] [PMID: 27035865]
[176]
Wang Q, Qu C, Xie F, et al. Curcumin suppresses epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells by inhibiting cancer-associated fibroblasts. Am J Cancer Res 2017; 7(1): 125-33.
[PMID: 28123853]
[177]
Li W, Jiang Z, Xiao X, et al. Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-κB pathway in pancreatic cancer cells. Int J Oncol 2018; 52(5): 1593-602.
[http://dx.doi.org/10.3892/ijo.2018.4295] [PMID: 29512729]
[178]
Li W, Sun L, Lei J, Wu Z, Ma Q, Wang Z. Curcumin inhibits pancreatic cancer cell invasion and EMT by interfering with tumor-stromal crosstalk under hypoxic conditions via the IL-6/ERK/NF-κB axis. Oncol Rep 2020; 44(1): 382-92.
[http://dx.doi.org/10.3892/or.2020.7600] [PMID: 32377752]
[179]
Kesharwani P, Xie L, Banerjee S, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces 2015; 136: 413-23.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[180]
Parasramka MA, Gupta SV. Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cells. Nutr Cancer 2011; 63(3): 456-65.
[http://dx.doi.org/10.1080/01635581.2011.535962] [PMID: 21462088]
[181]
Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14(14): 4491-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[182]
Kanai M, Yoshimura K, Asada M, et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 2011; 68(1): 157-64.
[http://dx.doi.org/10.1007/s00280-010-1470-2] [PMID: 20859741]
[183]
Pastorelli D, Fabricio ASC, Giovanis P, et al. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol Res 2018; 132: 72-9.
[http://dx.doi.org/10.1016/j.phrs.2018.03.013] [PMID: 29614381]
[184]
Zou G, Zhang X, Wang L, et al. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription. Theranostics 2020; 10(15): 6839-53.
[http://dx.doi.org/10.7150/thno.43622] [PMID: 32550907]
[185]
Liu A, Sha L, Shen Y, Huang L, Tang X, Lin S. Experimental study on anti-metastasis effect of emodin on human pancreatic cancer. Zhongguo Zhongyao Zazhi 2011; 36(22): 3167-71.
[PMID: 22375400]
[186]
Liu A, Chen H, Wei W, et al. Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol Rep 2011; 26(1): 81-9.
[PMID: 21491088]
[187]
Wang CH, Gao ZQ, Ye B, et al. Effect of emodin on pancreatic fibrosis in rats. World J Gastroenterol 2007; 13(3): 378-82.
[http://dx.doi.org/10.3748/wjg.v13.i3.378] [PMID: 17230605]
[188]
Shrimali D, Shanmugam MK, Kumar AP, et al. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 2013; 341(2): 139-49.
[http://dx.doi.org/10.1016/j.canlet.2013.08.023] [PMID: 23962559]
[189]
Li N, Wang C, Zhang P, You S. Emodin inhibits pancreatic cancer EMT and invasion by up-regulating microRNA-1271. Mol Med Rep 2018; 18(3): 3366-74.
[http://dx.doi.org/10.3892/mmr.2018.9304] [PMID: 30066876]
[190]
Xie F, Huang Q, Liu CH, et al. MiR-1271 negatively regulates AKT/MTOR signaling and promotes apoptosis via targeting PDK1 in pancreatic cancer. Eur Rev Med Pharmacol Sci 2018; 22(3): 678-86.
[PMID: 29461595]
[191]
Wang Z, Chen H, Chen J, et al. Emodin sensitizes human pancreatic cancer cells to EGFR inhibitor through suppressing Stat3 signaling pathway. Cancer Manag Res 2019; 11: 8463-73.
[http://dx.doi.org/10.2147/CMAR.S221877] [PMID: 31572001]
[192]
Wei WT, Chen H, Ni ZL, et al. Antitumor and apoptosis-promoting properties of emodin, an anthraquinone derivative from Rheum officinale baill, against pancreatic cancer in mice via inhibition of Akt activation. Int J Oncol 2011; 39(6): 1381-90.
[PMID: 21805032]
[193]
Gao R, Chen R, Cao Y, et al. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through notch signaling pathway. Toxicol Appl Pharmacol 2017; 318: 1-7.
[http://dx.doi.org/10.1016/j.taap.2016.12.009] [PMID: 27989784]
[194]
Sanders B, Ray AM, Goldberg S, et al. Anti-cancer effects of aloe-emodin: A systematic review. J Clin Transl Res 2017; 3(3): 283-96.
[PMID: 30895270]
[195]
Guo JM, Xiao BX, Liu Q, Zhang S, Liu DH, Gong ZH. Anticancer effect of aloe-emodin on cervical cancer cells involves G2/M arrest and induction of differentiation. Acta Pharmacol Sin 2007; 28(12): 1991-5.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00707.x] [PMID: 18031614]
[196]
Lin JG, Chen GW, Li TM, Chouh ST, Tan TW, Chung JG. Aloe-emodin induces apoptosis in T24 human bladder cancer cells through the p53 dependent apoptotic pathway. J Urol 2006; 175(1): 343-7.
[http://dx.doi.org/10.1016/S0022-5347(05)00005-4] [PMID: 16406939]
[197]
Suboj P, Babykutty S, Valiyaparambil Gopi DR, Nair RS, Srinivas P, Gopala S. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB. Eur J Pharm Sci 2012; 45(5): 581-91.
[http://dx.doi.org/10.1016/j.ejps.2011.12.012] [PMID: 22227305]
[198]
Chen SH, Lin KY, Chang CC, Fang CL, Lin CP. Aloe-emodin-induced apoptosis in human gastric carcinoma cells. Food Chem Toxicol 2007; 45(11): 2296-303.
[http://dx.doi.org/10.1016/j.fct.2007.06.005] [PMID: 17637488]
[199]
Lee HZ, Hsu SL, Liu MC, Wu CH. Effects and mechanisms of aloe-emodin on cell death in human lung squamous cell carcinoma. Eur J Pharmacol 2001; 431(3): 287-95.
[http://dx.doi.org/10.1016/S0014-2999(01)01467-4] [PMID: 11730720]
[200]
Jeon W, Jeon YK, Nam MJ. Apoptosis by aloe-emodin is mediated through down-regulation of calpain-2 and ubiquitin-protein ligase E3A in human hepatoma Huh-7 cells. Cell Biol Int 2012; 36(2): 163-7.
[http://dx.doi.org/10.1042/CBI20100723] [PMID: 21861846]
[201]
He TP, Yan WH, Mo LE, Liang NC. Inhibitory effect of aloe-emodin on metastasis potential in HO-8910PM cell line. J Asian Nat Prod Res 2008; 10(5-6): 383-90.
[http://dx.doi.org/10.1080/10286020801966609] [PMID: 18464074]
[202]
Liu K, Park C, Li S, et al. Aloe-emodin suppresses prostate cancer by targeting the mTOR complex 2. Carcinogenesis 2012; 33(7): 1406-11.
[http://dx.doi.org/10.1093/carcin/bgs156] [PMID: 22532249]
[203]
Du Y, Zhang J, Tao Z, et al. Aloe emodin exerts potent anticancer effects in MIAPaCa-2 and PANC-1 human pancreatic adenocarcinoma cell lines through activation of both apoptotic and autophagic pathways, sub-G1 cell cycle arrest and disruption of mitochondrial membrane potential (Λѱm). J BUON 2019; 24(2): 746-53.
[PMID: 31128032]
[204]
Alshatwi AA, Subash-Babu P. Aloe-emodin protects RIN-5F (pancreatic β-cell) cell from glucotoxicity via regulation of pro-inflammatory cytokine and downregulation of Bax and caspase 3. Biomol Ther (Seoul) 2016; 24(1): 49-56.
[http://dx.doi.org/10.4062/biomolther.2015.056] [PMID: 26759701]
[205]
Jamal MS, Parveen S, Beg MA, et al. Anticancer compound plumbagin and its molecular targets: A structural insight into the inhibitory mechanisms using computational approaches. PLoS One 2014; 9(2): e87309.
[http://dx.doi.org/10.1371/journal.pone.0087309] [PMID: 24586269]
[206]
Chen CA, Chang HH, Kao CY, Tsai TH, Chen YJ. Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology 2009; 9(6): 797-809.
[http://dx.doi.org/10.1159/000210028] [PMID: 20110748]
[207]
Hafeez BB, Jamal MS, Fischer JW, Mustafa A, Verma AK. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF-κB signaling pathways. Int J Cancer 2012; 131(9): 2175-86.
[http://dx.doi.org/10.1002/ijc.27478] [PMID: 22322442]
[208]
Wang F, Wang Q, Zhou ZW, et al. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells. Drug Des Devel Ther 2015; 9: 537-60.
[PMID: 25632222]
[209]
Wang H, Zhang H, Zhang Y, et al. Plumbagin protects liver against fulminant hepatic failure and chronic liver fibrosis via inhibiting inflammation and collagen production. Oncotarget 2016; 7(50): 82864-75.
[http://dx.doi.org/10.18632/oncotarget.12655] [PMID: 27756878]
[210]
Pandey K, Tripathi SK, Panda M, Biswal BK. Prooxidative activity of plumbagin induces apoptosis in human pancreatic ductal adenocarcinoma cells via intrinsic apoptotic pathway. Toxicol In Vitro 2020; 65: 104788.
[http://dx.doi.org/10.1016/j.tiv.2020.104788] [PMID: 32027944]
[211]
Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 2009; 11(5): 373-81.
[http://dx.doi.org/10.1111/j.1477-2574.2009.00059.x] [PMID: 19768141]
[212]
Woo CC, Loo SY, Gee V, et al. Anticancer activity of thymoquinone in breast cancer cells: Possible involvement of PPAR-γ pathway. Biochem Pharmacol 2011; 82(5): 464-75.
[http://dx.doi.org/10.1016/j.bcp.2011.05.030] [PMID: 21679698]
[213]
Torres MP, Ponnusamy MP, Chakraborty S, et al. Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: Implications for the development of novel cancer therapies. Mol Cancer Ther 2010; 9(5): 1419-31.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0075] [PMID: 20423995]
[214]
Wu ZH, Chen Z, Shen Y, Huang LL, Jiang P. Anti-metastasis effect of thymoquinone on human pancreatic cancer. Yao Xue Xue Bao 2011; 46(8): 910-4.
[PMID: 22007514]
[215]
Wang YM. Inhibitory effects of thymoquinone on human pancreatic carcinoma orthotopically implanted in nude mice. Zhonghua Yi Xue Za Zhi 2011; 91(44): 3111-4.
[PMID: 22340651]
[216]
Yusufi M, Banerjee S, Mohammad M, et al. Synthesis, characterization and anti-tumor activity of novel thymoquinone analogs against pancreatic cancer. Bioorg Med Chem Lett 2013; 23(10): 3101-4.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.003] [PMID: 23562242]
[217]
Pandita A, Kumar B, Manvati S, Vaishnavi S, Singh SK, Bamezai RN. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression. PLoS One 2014; 9(9): e107154.
[http://dx.doi.org/10.1371/journal.pone.0107154] [PMID: 25197966]
[218]
Mu GG, Zhang LL, Li HY, Liao Y, Yu HG. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of Notch1, PI3K/Akt/mTOR regulated signaling pathways in pancreatic cancer. Dig Dis Sci 2015; 60(4): 1067-80.
[http://dx.doi.org/10.1007/s10620-014-3394-x] [PMID: 25344906]
[219]
Relles D, Chipitsyna GI, Gong Q, Yeo CJ, Arafat HA. Thymoquinone promotes pancreatic cancer cell death and reduction of tumor size through combined inhibition of histone deacetylation and induction of histone acetylation. Adv Prev Med 2016; 2016: 1407840.
[http://dx.doi.org/10.1155/2016/1407840] [PMID: 28105374]
[220]
Karki N, Aggarwal S, Laine RA, Greenway F, Losso JN. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. Chem Biol Interact 2020; 327: 109142.
[http://dx.doi.org/10.1016/j.cbi.2020.109142] [PMID: 32610056]
[221]
An T, Zha W, Zi J. Biotechnological production of betulinic acid and derivatives and their applications. Appl Microbiol Biotechnol 2020; 104(8): 3339-48.
[http://dx.doi.org/10.1007/s00253-020-10495-1] [PMID: 32112133]
[222]
Jiang M, Zhou Y, Yang M, et al. Influence of betulinic acid on proliferation, migration, cell cycle and apoptosis of pancreatic cancer cells. Zhongguo Zhongyao Zazhi 2010; 35(22): 3056-9.
[PMID: 21355282]
[223]
Gao Y, Jia Z, Kong X, et al. Combining betulinic acid and mithramycin a effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis. Cancer Res 2011; 71(15): 5182-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2016] [PMID: 21673052]
[224]
Li L, Du Y, Kong X, et al. Lamin B1 is a novel therapeutic target of betulinic acid in pancreatic cancer. Clin Cancer Res 2013; 19(17): 4651-61.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3630] [PMID: 23857605]
[225]
Kutkowska J, Strzadala L, Rapak A. Sorafenib in combination with betulinic acid synergistically induces cell cycle arrest and inhibits clonogenic activity in pancreatic ductal adenocarcinoma cells. Int J Mol Sci 2018; 19(10): 3234.
[http://dx.doi.org/10.3390/ijms19103234] [PMID: 30347681]
[226]
Sun L, Cao J, Chen K, et al. Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. Int J Oncol 2019; 54(1): 98-110.
[PMID: 30365057]
[227]
Guo Y, Zhu H, Weng M, Wang C, Sun L. Chemopreventive effect of betulinic acid via mTOR-Caspases/Bcl2/Bax apoptotic signaling in pancreatic cancer. BMC Complementary Medicine and Therapies 2020; 20(1): 1-11.
[http://dx.doi.org/10.1186/s12906-020-02976-7] [PMID: 32020859]
[228]
Li X, Roginsky AB, Ding XZ, et al. Review of the apoptosis pathways in pancreatic cancer and the anti-apoptotic effects of the novel sea cucumber compound, Frondoside A. Ann N Y Acad Sci 2008; 1138(1): 181-98.
[http://dx.doi.org/10.1196/annals.1414.025] [PMID: 18837899]
[229]
Sajwani FH. Frondoside A is a potential anticancer agent from sea cucumbers. J Cancer Res Ther 2019; 15(5): 953-60.
[http://dx.doi.org/10.4103/jcrt.JCRT_1427_16] [PMID: 31603094]
[230]
Park SY, Kim YH, Kim Y, Lee SJ. Frondoside A has an anti-invasive effect by inhibiting TPA-induced MMP-9 activation via NF-κB and AP-1 signaling in human breast cancer cells. Int J Oncol 2012; 41(3): 933-40.
[http://dx.doi.org/10.3892/ijo.2012.1518] [PMID: 22710811]
[231]
Attoub S, Arafat K, Gélaude A, et al. Frondoside a suppressive effects on lung cancer survival, tumor growth, angiogenesis, invasion, and metastasis. PLoS One 2013; 8(1): e53087.
[http://dx.doi.org/10.1371/journal.pone.0053087] [PMID: 23308143]
[232]
Al Shemaili J, Mensah-Brown E, Parekh K, et al. Frondoside A enhances the antiproliferative effects of gemcitabine in pancreatic cancer. Eur J Cancer 2014; 50(7): 1391-8.
[http://dx.doi.org/10.1016/j.ejca.2014.01.002] [PMID: 24462376]
[233]
Al Shemaili J, Parekh KA, Newman RA, et al. Pharmacokinetics in mouse and comparative effects of frondosides in pancreatic cancer. Mar Drugs 2016; 14(6): 115.
[http://dx.doi.org/10.3390/md14060115] [PMID: 27322291]
[234]
Ruhee RT, Suzuki K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical. Antioxidants 2020; 9(6): 521.
[http://dx.doi.org/10.3390/antiox9060521] [PMID: 32545803]
[235]
Pham NA, Jacobberger JW, Schimmer AD, Cao P, Gronda M, Hedley DW. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol Cancer Ther 2004; 3(10): 1239-48.
[PMID: 15486191]
[236]
Rodova M, Fu J, Watkins DN, Srivastava RK, Shankar S. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One 2012; 7(9): e46083.
[http://dx.doi.org/10.1371/journal.pone.0046083] [PMID: 23029396]
[237]
Forster T, Rausch V, Zhang Y, et al. Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication. Oncotarget 2014; 5(6): 1621-34.
[http://dx.doi.org/10.18632/oncotarget.1764] [PMID: 24742583]
[238]
Naumann P, Liermann J, Fortunato F, et al. Sulforaphane enhances irradiation effects in terms of perturbed cell cycle progression and increased DNA damage in pancreatic cancer cells. PLoS One 2017; 12(7): e0180940.
[http://dx.doi.org/10.1371/journal.pone.0180940] [PMID: 28700650]
[239]
Chen X, Jiang Z, Zhou C, et al. Activation of Nrf2 by sulforaphane inhibits high glucose-induced progression of pancreatic cancer via AMPK dependent signaling. Cell Physiol Biochem 2018; 50(3): 1201-15.
[http://dx.doi.org/10.1159/000494547] [PMID: 30355942]
[240]
Desai P, Thakkar A, Ann D, Wang J, Prabhu S. Loratadine self-microemulsifying drug delivery systems (SMEDDS) in combination with sulforaphane for the synergistic chemoprevention of pancreatic cancer. Drug Deliv Transl Res 2019; 9(3): 641-51.
[http://dx.doi.org/10.1007/s13346-019-00619-0] [PMID: 30706304]
[241]
Yin L, Xiao X, Georgikou C, et al. MicroRNA-365a-3p inhibits c-Rel-mediated NF-κB signaling and the progression of pancreatic cancer. Cancer Lett 2019; 452: 203-12.
[http://dx.doi.org/10.1016/j.canlet.2019.03.025] [PMID: 30910589]
[242]
Georgikou C, Yin L, Gladkich J, et al. Inhibition of miR30a-3p by sulforaphane enhances gap junction intercellular communication in pancreatic cancer. Cancer Lett 2020; 469: 238-45.
[http://dx.doi.org/10.1016/j.canlet.2019.10.042] [PMID: 31678166]
[243]
Georgikou C, Buglioni L, Bremerich M, et al. Novel broccoli sulforaphane-based analogues inhibit the progression of pancreatic cancer without side effects. Biomolecules 2020; 10(5): 769.
[http://dx.doi.org/10.3390/biom10050769] [PMID: 32429039]
[244]
Nkondjock A, Ghadirian P, Johnson KC, Krewski D. Dietary intake of lycopene is associated with reduced pancreatic cancer risk. J Nutr 2005; 135(3): 592-7.
[http://dx.doi.org/10.1093/jn/135.3.592] [PMID: 15735099]
[245]
Jeong Y, Lim JW, Kim H. Lycopene inhibits reactive oxygen species-mediated NF-κB signaling and induces apoptosis in pancreatic cancer cells. Nutrients 2019; 11(4): 762.
[http://dx.doi.org/10.3390/nu11040762] [PMID: 30939781]
[246]
Huang X, Gao Y, Zhi X, Ta N, Jiang H, Zheng J. Association between vitamin A, retinol and carotenoid intake and pancreatic cancer risk: Evidence from epidemiologic studies. Sci Rep 2016; 6: 38936.
[http://dx.doi.org/10.1038/srep38936] [PMID: 27941847]
[247]
Wang R, Lu X, Yu R. Lycopene inhibits epithelial-mesenchymal transition and promotes apoptosis in oral cancer via PI3K/AKT/m-TOR signal pathway. Drug Des Devel Ther 2020; 14: 2461-71.
[http://dx.doi.org/10.2147/DDDT.S251614] [PMID: 32606612]
[248]
Jhou BY, Song TY, Lee I, Hu ML, Yang NC. Lycopene inhibits metastasis of human liver adenocarcinoma SK-Hep-1 cells by down regulation of NADPH oxidase 4 protein expression. J Agric Food Chem 2017; 65(32): 6893-903.
[http://dx.doi.org/10.1021/acs.jafc.7b03036] [PMID: 28723216]
[249]
Padhye S, Ahmad A, Oswal N, Sarkar FH. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2009; 2(1): 38.
[http://dx.doi.org/10.1186/1756-8722-2-38] [PMID: 19725977]
[250]
Ahmad A, Wang Z, Wojewoda C, et al. Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kappaB signaling. Front Biosci 2011; 3: 1483-92.
[PMID: 21622152]
[251]
Parasramka MA, Gupta SV. Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells. J Oncol 2012; 2012: 709739.
[http://dx.doi.org/10.1155/2012/709739] [PMID: 22685460]
[252]
Ahmad A, Sarkar SH, Aboukameel A, et al. Anticancer action of garcinol in vitro and in vivo is in part mediated through inhibition of STAT-3 signaling. Carcinogenesis 2012; 33(12): 2450-6.
[http://dx.doi.org/10.1093/carcin/bgs290] [PMID: 22971573]
[253]
Parasramka MA, Ali S, Banerjee S, Deryavoush T, Sarkar FH, Gupta S. Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures. Mol Nutr Food Res 2013; 57(2): 235-48.
[http://dx.doi.org/10.1002/mnfr.201200297] [PMID: 23293055]
[254]
Kapoor S. Emerging antineoplastic effects of garcinol besides role in inhibiting growth in pancreatic carcinomas. Nutr Cancer 2013; 65(4): 623-3.
[http://dx.doi.org/10.1080/01635581.2013.776695] [PMID: 23659454]
[255]
Huang CC, Lin CM, Huang YJ, et al. Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells. Biotechnol Appl Biochem 2017; 64(2): 165-73.
[http://dx.doi.org/10.1002/bab.1446] [PMID: 26400206]
[256]
Saadat N, Akhtar S, Goja A, et al. Dietary garcinol arrests pancreatic cancer in p53 and K-ras conditional mutant mouse model. Nutr Cancer 2018; 70(7): 1075-87.
[http://dx.doi.org/10.1080/01635581.2018.1502327] [PMID: 30273070]
[257]
Díaz-Laviada I, Rodríguez-Henche N. The potential antitumor effects of capsaicin Capsaicin as a Therapeutic Molecule. Basel: Springer 2014; pp. 181-208.
[http://dx.doi.org/10.1007/978-3-0348-0828-6_8]
[258]
Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK. In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 2008; 13(12): 1465-78.
[http://dx.doi.org/10.1007/s10495-008-0278-6] [PMID: 19002586]
[259]
Pramanik KC, Boreddy SR, Srivastava SK. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 2011; 6(5): e20151.
[http://dx.doi.org/10.1371/journal.pone.0020151] [PMID: 21647434]
[260]
Bai H, Li H, Zhang W, et al. Inhibition of chronic pancreatitis and pancreatic intraepithelial neoplasia (PanIN) by capsaicin in LSL-KrasG12D/Pdx1-Cre mice. Carcinogenesis 2011; 32(11): 1689-96.
[http://dx.doi.org/10.1093/carcin/bgr191] [PMID: 21859833]
[261]
Pramanik KC, Srivastava SK. Apoptosis signal-regulating kinase 1-thioredoxin complex dissociation by capsaicin causes pancreatic tumor growth suppression by inducing apoptosis. Antioxid Redox Signal 2012; 17(10): 1417-32.
[http://dx.doi.org/10.1089/ars.2011.4369] [PMID: 22530568]
[262]
Zhang JH, Lai FJ, Chen H, et al. Involvement of the phosphoinositide 3-kinase/Akt pathway in apoptosis induced by capsaicin in the human pancreatic cancer cell line PANC-1. Oncol Lett 2013; 5(1): 43-8.
[http://dx.doi.org/10.3892/ol.2012.991] [PMID: 23255891]
[263]
Lin S, Zhang J, Chen H, et al. Involvement of endoplasmic reticulum stress in capsaicin-induced apoptosis of human pancreatic cancer cells. Evid Based Complement Alternat Med 2013; 2013: 629750.
[http://dx.doi.org/10.1155/2013/629750] [PMID: 23781265]
[264]
Vendrely V, Peuchant E, Buscail E, et al. Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett 2017; 390: 91-102.
[http://dx.doi.org/10.1016/j.canlet.2017.01.002] [PMID: 28089829]
[265]
Samadi P, Sarvarian P, Gholipour E, et al. Berberine: A novel therapeutic strategy for cancer. IUBMB Life 2020; 72(10): 2065-79.
[http://dx.doi.org/10.1002/iub.2350] [PMID: 32735398]
[266]
Pinto-Garcia L, Efferth T, Torres A, Hoheisel JD, Youns M. Berberine inhibits cell growth and mediates caspase-independent cell death in human pancreatic cancer cells. Planta Med 2010; 76(11): 1155-61.
[http://dx.doi.org/10.1055/s-0030-1249931] [PMID: 20455200]
[267]
Park SH, Sung JH, Chung N. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2. Mol Cell Biochem 2014; 394(1-2): 209-15.
[http://dx.doi.org/10.1007/s11010-014-2096-1] [PMID: 24894821]
[268]
Ming M, Sinnett-Smith J, Wang J, et al. Dose-dependent AMPK-dependent and independent mechanisms of berberine and metformin inhibition of mTORC1, ERK, DNA synthesis and proliferation in pancreatic cancer cells. PLoS One 2014; 9(12): e114573.
[http://dx.doi.org/10.1371/journal.pone.0114573] [PMID: 25493642]
[269]
Park SH, Sung JH, Kim EJ, Chung N. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines. Braz J Med Biol Res 2015; 48(2): 111-9.
[http://dx.doi.org/10.1590/1414-431x20144293] [PMID: 25517919]
[270]
Abrams SL, Follo MY, Steelman LS, et al. Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Adv Biol Regul 2019; 71: 172-82.
[http://dx.doi.org/10.1016/j.jbior.2018.10.003] [PMID: 30361003]
[271]
Akula SM, Candido S, Libra M, et al. Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells. Adv Biol Regul 2019; 73: 100633.
[http://dx.doi.org/10.1016/j.jbior.2019.04.003] [PMID: 31047842]
[272]
Gu S, Song X, Xie R, et al. Berberine inhibits cancer cells growth by suppressing fatty acid synthesis and biogenesis of extracellular vesicles. Life Sci 2020; 257: 118122.
[http://dx.doi.org/10.1016/j.lfs.2020.118122] [PMID: 32702446]
[273]
Liu J, Luo X, Guo R, Jing W, Lu H. Cell Metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism. J Proteome Res 2020; 19(9): 3825-36.
[http://dx.doi.org/10.1021/acs.jproteome.0c00394] [PMID: 32692565]
[274]
Liu R, Yang YN, Yi L, et al. Diallyl disulfide effect on the invasion and migration ability of HL-60 cells with a high expression of DJ-1 in the nucleus through the suppression of the Src signaling pathway. Oncol Lett 2018; 15(5): 6377-85.
[http://dx.doi.org/10.3892/ol.2018.8139] [PMID: 29725397]
[275]
Ma HB, Huang S, Yin XR, Zhang Y, Di ZL. Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells. World J Gastroenterol 2014; 20(1): 193-203.
[http://dx.doi.org/10.3748/wjg.v20.i1.193] [PMID: 24415872]
[276]
Mathan Kumar M, Tamizhselvi R. Protective effect of diallyl disulfide against cerulein-induced acute pancreatitis and associated lung injury in mice. Int Immunopharmacol 2020; 80: 106136.
[http://dx.doi.org/10.1016/j.intimp.2019.106136] [PMID: 31991372]
[277]
Nagaraj NS, Anilakumar KR, Singh OV. Diallyl disulfide causes caspase-dependent apoptosis in human cancer cells through a Bax-triggered mitochondrial pathway. J Nutr Biochem 2010; 21(5): 405-12.
[http://dx.doi.org/10.1016/j.jnutbio.2009.01.015] [PMID: 19423321]
[278]
Xia L, Lin J, Su J, et al. Diallyl disulfide inhibits colon cancer metastasis by suppressing Rac1-mediated epithelial-mesenchymal transition. OncoTargets Ther 2019; 12: 5713-28.
[http://dx.doi.org/10.2147/OTT.S208738] [PMID: 31410018]
[279]
Das B, Sinha D. Diallyl disulphide suppresses the cannonical Wnt signaling pathway and reverses the fibronectin-induced epithelial mesenchymal transition of A549 lung cancer cells. Food Funct 2019; 10(1): 191-202.
[http://dx.doi.org/10.1039/C8FO00246K] [PMID: 30516195]
[280]
Chen XX, Liu XW, Zhou ZG, et al. Diallyl disulfide inhibits invasion and metastasis of MCF-7 breast cancer cells in vitro by down-regulating p38 activity. Nan Fang Yi Ke Da Xue Xue Bao 2016; 36(6): 814-8.
[PMID: 27320884]
[281]
Park HS, Kim GY, Choi IW, et al. Inhibition of matrix metalloproteinase activities and tightening of tight junctions by diallyl disulfide in AGS human gastric carcinoma cells. J Food Sci 2011; 76(4): T105-11.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02114.x] [PMID: 22417372]
[282]
Chen L, Cheng CS, Gao H, et al. Natural compound methyl protodioscin suppresses proliferation and inhibits glycolysis in pancreatic cancer. Evid Based Complement Alternat Med 2018; 2018: 7343090.
[http://dx.doi.org/10.1155/2018/7343090] [PMID: 29736179]
[283]
Zhang R, Gilbert S, Yao X, et al. Natural compound methyl protodioscin protects against intestinal inflammation through modulation of intestinal immune responses. Pharmacol Res Perspect 2015; 3(2): e00118.
[http://dx.doi.org/10.1002/prp2.118] [PMID: 26038694]
[284]
Stan SD, Singh SV, Brand RE. Chemoprevention strategies for pancreatic cancer. Nat Rev Gastroenterol Hepatol 2010; 7(6): 347-56.
[http://dx.doi.org/10.1038/nrgastro.2010.61] [PMID: 20440279]
[285]
Ying JE, Zhu LM, Liu BX. Developments in metastatic pancreatic cancer: is gemcitabine still the standard? World J Gastroenterol 2012; 18(8): 736-45.
[http://dx.doi.org/10.3748/wjg.v18.i8.736] [PMID: 22371633]
[286]
Akinleye A, Iragavarapu C, Furqan M, Cang S, Liu D. Novel agents for advanced pancreatic cancer. Oncotarget 2015; 6(37): 39521-37.
[http://dx.doi.org/10.18632/oncotarget.3999] [PMID: 26369833]
[287]
Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol 2005; 1(1): 7-17.
[http://dx.doi.org/10.1517/14796694.1.1.7] [PMID: 16555971]
[288]
Yue Q, Gao G, Zou G, Yu H, Zheng X. Natural products as adjunctive treatment for pancreatic cancer: Recent Trends and Advancements. BioMed Res Int 2017; 2017: 8412508.
[http://dx.doi.org/10.1155/2017/8412508] [PMID: 28232946]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy