Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

SEMCM: A Self-Expressive Matrix Completion Model for Anti-cancer Drug Sensitivity Prediction

Author(s): Lin Zhang, Yuwei Yuan, Jian Yu and Hui Liu*

Volume 17, Issue 5, 2022

Published on: 13 May, 2022

Page: [411 - 425] Pages: 15

DOI: 10.2174/1574893617666220302123118

Price: $65

Abstract

Background: Genomic data sets generated by several recent large scale high-throughput screening efforts pose a complex computational challenge for anticancer drug sensitivity prediction.

Objective: We aimed to design an algorithm model that would predict missing elements in incomplete matrices and could be applicable to drug response prediction programs.

Methods: We developed a novel self-expressive matrix completion model to improve the predictive performance of drug response prediction problems. The model is based on the idea of subspace clustering and as a convex problem, it can be solved by alternating direction method of multipliers. The original incomplete matrix can be filled through model training and parameters updated iteratively.

Results: We applied SEMCM to Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets to predict unknown response values. A large number of experiments have proved that the algorithm has good prediction results and stability, which are better than several existing advanced drug sensitivity prediction and matrix completion algorithms. Without modeling mutation information, SEMCM could correctly predict cell line-drug associations for mutated cell lines and wild cell lines. SEMCM can also be used for drug repositioning. The newly predicted drug responses of GDSC dataset suggest that TI-73 was sensitive to Erlotinib. Moreover, the sensitivity of A172 and NCIH1437 to Paclitaxel was roughly the same.

Conclusion: We report an efficient anticancer drug sensitivity prediction algorithm which is opensource and can predict the unknown responses of cancer cell lines to drugs. Experimental results prove that our method can not only improve the prediction accuracy but also can be applied to drug repositioning.

Keywords: Anti-cancer sensitivity, response prediction, self-expressive, matrix completion, CCLE, GDSC.

[1]
Jain KK. Personalized medicine. Curr Opin Mol Ther 2002; 4(6): 548-58.
[PMID: 12596356]
[2]
Carlos DN, Raziur R, Zhao X, Ranadip P. Algorithms for drug sensitivity prediction. Algorithms 2016; 9(4): 1-25.
[3]
Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483(7391): 603-7.
[http://dx.doi.org/10.1038/nature11003] [PMID: 22460905]
[4]
Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013; 41(Database issue): D955-61.
[PMID: 23180760]
[5]
Porta-Pardo E, Hrabe T, Godzik A. Cancer3D: Understanding cancer mutations through protein structures. Nucleic Acids Res 2015; 43(Database issue): D968-73.
[http://dx.doi.org/10.1093/nar/gku1140] [PMID: 25392415]
[6]
Jang IS, Neto EC, Guinney J, Friend SH, Margolin AA. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput 2014; 19: 63-74.
[PMID: 24297534]
[7]
Riddick G, Song H, Ahn S, et al. Predicting in vitro drug sensitivity using random forests. Bioinformatics 2011; 27(2): 220-4.
[http://dx.doi.org/10.1093/bioinformatics/btq628] [PMID: 21134890]
[8]
Rahman R, Matlock K, Ghosh S, Pal R. Heterogeneity aware random forest for drug sensitivity prediction. Sci Rep 2017; 7(1): 11347.
[http://dx.doi.org/10.1038/s41598-017-11665-4] [PMID: 28900181]
[9]
Betül GP, Hiroshi M, Samuel K. Improving drug response prediction by integrating multiple data sources: Matrix factorization, kernel and network-based approaches. Brief Bioinform 2019; 00(0): 1-14.
[10]
Ammad-Ud-Din M, Khan SA, Malani D, et al. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization. Bioinformatics 2016; 32(17): i455-63.
[http://dx.doi.org/10.1093/bioinformatics/btw433] [PMID: 27587662]
[11]
Wang L, Li X, Zhang L, Gao Q. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regu-larization. BMC Cancer 2017; 17(1): 513.
[http://dx.doi.org/10.1186/s12885-017-3500-5] [PMID: 28768489]
[12]
Brouwer T, Lio P. Bayesian hybrid matrix factorisation for data integration. PMLR 2017; 54: 557-66.
[13]
Guan NN, Zhao Y, Wang C-C, Li J-Q, Chen X, Piao X. Anticancer drug response prediction in cell lines using weighted graph regularized matrix factorization. Mol Ther Nucleic Acids 2019; 17: 164-74.
[http://dx.doi.org/10.1016/j.omtn.2019.05.017] [PMID: 31265947]
[14]
Cichonska A, Pahikkala T, Szedmak S, et al. Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics 2018; 34(13): i509-18.
[http://dx.doi.org/10.1093/bioinformatics/bty277] [PMID: 29949975]
[15]
Zhang N, Wang H, Fang Y, Wang J, Zheng X, Liu XS. Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLOS Comput Biol 2015; 11(9)e1004498
[http://dx.doi.org/10.1371/journal.pcbi.1004498] [PMID: 26418249]
[16]
Zhang F, Wang M, Xi J, Yang J, Li A. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Sci Rep 2018; 8(1): 3355.
[http://dx.doi.org/10.1038/s41598-018-21622-4] [PMID: 29463808]
[17]
Elhamifar E. High-rank matrix completion and clustering under self-expressive models. Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS) Advances in Neural Information Processing Systems. Barcelona, Spain. 2016.
[18]
Lin F, Jovanovic MR, Georgiou TT. An ADMM algorithm for matrix completion of partially known state covariances. Proceedings of the 52nd IEEE Annual Conference on Decision and Control (CDC) (CDC) 2013 10-13 Dec, Florence, Italy.
[http://dx.doi.org/10.1109/CDC.2013.6760124]
[19]
Stransky N, Ghandi M, Kryukov GV, et al. Pharmacogenomic agreement between two cancer cell line data sets. Nature 2015; 528(7580): 84-7.
[http://dx.doi.org/10.1038/nature15736] [PMID: 26570998]
[20]
Candès EJ, Recht B. Exact matrix completion via convex optimization. Found Comput Math 2009; 9(6): 717-72.
[http://dx.doi.org/10.1007/s10208-009-9045-5]
[21]
Liu Z, Hu Z, Nie F. Matrix completion and vector completion via robust subspace learning. Neurocomputing 2018; 306: 171-81.
[http://dx.doi.org/10.1016/j.neucom.2018.04.032]
[22]
Xu Y, Yin W, Wen Z, Zhang Y. An alternating direction algorithm for matrix completion with nonnegative factors. Front Math China 2012; 7(2): 365-84.
[http://dx.doi.org/10.1007/s11464-012-0194-5]
[23]
Balzano L, Nowak R, Recht B. Online identification and tracking of subspaces from highly incomplete information. arXiv 2011; 2011: 1006.4046.
[24]
Elhamifar E, Ed. High-Rank Matrix completion and clustering in self-expressive models.InNeurIPS Proceedings. NY, USA: Curran As-sociates, Inc. 2016.
[25]
Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 2013; 35(1): 171-84.
[http://dx.doi.org/10.1109/TPAMI.2012.88] [PMID: 22487984]
[26]
Gorski J, Pfeuffer F, Klamroth K. Biconvex sets and optimization with biconvex functions: a survey and extensions. Math Methods Oper Res 2007; 66(3): 373-407.
[http://dx.doi.org/10.1007/s00186-007-0161-1]
[27]
Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2009; 2(1): 183-202.
[http://dx.doi.org/10.1137/080716542]
[28]
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 2010; 3(1): 1-122.
[http://dx.doi.org/10.1561/2200000016]
[29]
Cai JF, Candès EJ, Shen Z. A singular value thresholding algorithm for matrix completion. SIAM J Optim 2010; 20(4): 1956-82.
[http://dx.doi.org/10.1137/080738970]
[30]
Ma AJ, Chan JCP, Chan FKS, et al. Temporal matrix completion with locally linear latent factors for medical applications. Artif Intell Med 2020; 107101883
[http://dx.doi.org/10.1016/j.artmed.2020.101883] [PMID: 32828441]
[31]
Tan M. Prediction of anti-cancer drug response by kernelized multi-task learning. Artif Intell Med 2016; 73(Oct): 70-7.
[http://dx.doi.org/10.1016/j.artmed.2016.09.004] [PMID: 27926382]
[32]
Li X, Xu Y, Cui H, Huang T, Xie L. Prediction of synergistic anticancer drug combinations based on drug target network and drug induced gene expression profiles Artif Intel Med 2017; 83(SI): 35- 43
[http://dx.doi.org/10.1016/j.artmed.2017.05.008]
[33]
Fan J, Chow TWS. Sparse subspace clustering for data with missing entries and high-rank matrix completion. Neural Netw 2017; 93: 36-44.
[http://dx.doi.org/10.1016/j.neunet.2017.04.005] [PMID: 28531874]
[34]
Elhamifar E, Vidal R. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 2013; 35(11): 2765-81.
[http://dx.doi.org/10.1109/TPAMI.2013.57] [PMID: 24051734]
[35]
Cortés-Ciriano I, van Westen GJ, Bouvier G, et al. Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel. Bioinformatics 2016; 32(1): 85-95.
[PMID: 26351271]
[36]
Ammad-ud-din M, Georgii E, Gönen M, et al. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factor-ization. J Chem Inf Model 2014; 54(8): 2347-59.
[http://dx.doi.org/10.1021/ci500152b] [PMID: 25046554]
[37]
Sako H, Fukuda K, Saikawa Y, et al. Antitumor effect of the tyrosine kinase inhibitor nilotinib on gastrointestinal stromal tumor (GIST) and imatinib-resistant GIST cells. PLoS One 2014; 9(9)e107613
[http://dx.doi.org/10.1371/journal.pone.0107613] [PMID: 25221952]
[38]
Dervis Hakim G, Soyturk M, Unlu M, et al. Mucosal healing effect of nilotinib in indomethacin-induced enterocolitis: A rat model. World J Gastroenterol 2015; 21(44): 12576-85.
[http://dx.doi.org/10.3748/wjg.v21.i44.12576] [PMID: 26640333]
[39]
Fujita KI, Masuo Y, Yamazaki E, et al. Involvement of the transporters P-Glycoprotein and breast cancer resistance protein in dermal distribution of the multikinase inhibitor regorafenib and its active metabolites. J Pharm Sci 2017; 106(9): 2632-41.
[http://dx.doi.org/10.1016/j.xphs.2017.04.064] [PMID: 28479358]
[40]
Meirson T, Genna A, Lukic N, et al. Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors. Oncotarget 2018; 9(31): 22158-83.
[http://dx.doi.org/10.18632/oncotarget.25243] [PMID: 29774130]
[41]
Weisberg E, Catley L, Wright RD, et al. Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leuke-mias. Blood 2007; 109(5): 2112-20.
[http://dx.doi.org/10.1182/blood-2006-06-026377] [PMID: 17068153]
[42]
Barrett SD, Bridges AJ, Dudley DT, et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett 2008; 18(24): 6501-4.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.054] [PMID: 18952427]
[43]
Sebolt-Leopold JS, Merriman R, Omer C, et al. The biological profile of PD 0325901: A second generation analog of CI-1040 with im-proved pharmaceutical potential. Cancer Res 2004; 64(1): 925.
[44]
Henderson YC, Chen Y, Frederick MJ, Lai SY, Clayman GL. MEK inhibitor PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Mol Cancer Ther 2010; 9(7): 1968-76.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0062] [PMID: 20587665]
[45]
Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997; 88(4): 435-7.
[http://dx.doi.org/10.1016/S0092-8674(00)81883-8] [PMID: 9038334]
[46]
Yuan TL, Cantley LC. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008; 27(41): 5497-510.
[http://dx.doi.org/10.1038/onc.2008.245] [PMID: 18794884]
[47]
Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 2009; 102(1): 19-65.
[http://dx.doi.org/10.1016/S0065-230X(09)02002-8] [PMID: 19595306]
[48]
Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296(5573): 1655-7.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[49]
Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa): An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 2002; 62(20): 5749-54.
[PMID: 12384534]
[50]
Pedersen MW, Pedersen N, Ottesen LH, Poulsen HS. Differential response to gefitinib of cells expressing normal EGFR and the mutant EGFRvIII. Br J Cancer 2005; 93(8): 915-23.
[http://dx.doi.org/10.1038/sj.bjc.6602793] [PMID: 16189524]
[51]
Crane EK, Kwan SY, Izaguirre DI, et al. Nutlin-3a: A potential therapeutic opportunity for TP53 wild-type ovarian carcinomas. PLoS One 2015; 10(8)e0135101
[http://dx.doi.org/10.1371/journal.pone.0135101] [PMID: 26248031]
[52]
Lau KS, Zhang T, Kendall KR, Lauffenburger D, Gray NS, Haigis KM. BAY61-3606 affects the viability of colon cancer cells in a geno-type-directed manner. PLoS One 2012; 7(7)e41343
[http://dx.doi.org/10.1371/journal.pone.0041343] [PMID: 22815993]
[53]
Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 2001; 1(2): 85-94.
[PMID: 12467226]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy