Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Trastuzumab in Breast Cancer Treatment: The Era of Biosimilars

Author(s): Bárbara Peliçário Vargas, Marcel Henrique Marcondes Sari and Luana Mota Ferreira*

Volume 22, Issue 14, 2022

Published on: 31 March, 2022

Page: [2507 - 2516] Pages: 10

DOI: 10.2174/1871520622666220302114313

Abstract

Background: The discovery of trastuzumab as anti-HER2 therapy has markedly improved disease control and the survival rates of patients with HER2+ breast cancer. However, as trastuzumab is considered a complex molecule, the cost of production is usually elevated, which significantly affects health budgets and limits the treatment access for patients who live in underdeveloped countries. Recently, trastuzumab production has become more accessible and sustainable due to the patents’ expiration, allowing biosimilar versions of trastuzumab to be developed.

Objective: Our main goal was to shed more light on the uses of biosimilars in breast cancer treatment, emphasizing trastuzumab.

Method: An integrative search was carried out on the PubMed, Scielo, Web of Science, and SCOPUS databases using the terms “biosimilar,” “breast cancer,” “monoclonal antibody,” and “trastuzumab.” The time range included scientific articles published from 2015 to 2021.

Results and Discussion: The bibliographic survey showed the complexities in biological medicine manufacturing and how the monoclonal antibody’s therapy with trastuzumab improved the patients’ life expectancy, revolutionizing HER2+ breast cancer treatment. Nonetheless, despite its benefits, trastuzumab generates certain restrictions, especially from the economic perspective. Trastuzumab biosimilars have high selectivity and rarely cause adverse effects compared to conventional chemotherapy.

Conclusion: This study shows that trastuzumab biosimilars improve patients’ accessibility to breast cancer treatment through a safe and effective therapy compared to the drug reference.

Keywords: Biological medicines, biosimilars, anti-HER2, trastuzumab biosimilar, immunobiological therapy, breast cancer.

Graphical Abstract

[1]
Barbier, L.; Declerck, P.; Simoens, S.; Neven, P.; Vulto, A.G.; Huys, I. The arrival of biosimilar monoclonal antibodies in oncology: clini-cal studies for trastuzumab biosimilars. Br. J. Cancer, 2019, 121(3), 199-210.
[http://dx.doi.org/10.1038/s41416-019-0480-z] [PMID: 31257362]
[2]
Zelenetz, A.D. The era of therapeutic biosimilars has arrived: What you need to know. J. Natl. Compr. Canc. Netw. 2019, 17(11.5), 1424-1426.
[http://dx.doi.org/10.6004/jnccn.2019.5036] [PMID: 31766021]
[3]
Verrill, M.; Declerck, P.; Loibl, S.; Lee, J.; Cortes, J. The rise of oncology biosimilars: from process to promise. Future Oncol., 2019, 15(28), 3255-3265.
[http://dx.doi.org/10.2217/fon-2019-0145] [PMID: 31441323]
[4]
Waller, C.F. Friganovi A. Biosimilars in oncology: key role of nurses in patient education. Future Oncol., 2020, 16(25), 1931-1939.
[http://dx.doi.org/10.2217/fon-2020-0486] [PMID: 32618476]
[5]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[6]
INCA. A situação do câncer de mama no Brasil: Síntese de dados dos Sistemas de Iformação. Inst Nac Câncer José Alencar Gomes da Silva - INCA Ministério da Saúde - Rio Janeiro, 85 2019,
[7]
INCA. Estimativas 2020: Incidência do Câncer no Brasil. Inst Nac Câncer José Alencar Gomes da Silva Ministério da Saúde - Rio Janeiro, 2019.
[8]
Cristina, I.; Ohl, B.; Isabel, R.; Ohl, B.; Regina, S.; Chavaglia, R. Ações publicas para o controle de cancer no Brasil. Rev. Bras. Enferm., 2016, 69(4), 793-803.
[http://dx.doi.org/10.1590/0034-7167.2016690424i] [PMID: 27508487]
[9]
Debiasi, M.; Reinert, T.; Kaliks, R.; Amorim, G.; Caleffi, M.; Sampaio, C.; Fernandes, G.D.S.; Barrios, C.H. Estimation of premature deaths from lack of access to anti-HER2 therapy for advanced breast cancer in the Brazilian public health system. J. Glob. Oncol., 2016, 3(3), 201-207.
[http://dx.doi.org/10.1200/JGO.2016.005678] [PMID: 28717761]
[10]
Kondov, B.; Milenkovikj, Z.; Kondov, G.; Petrushevska, G.; Basheska, N.; Bogdanovska-Todorovska, M.; Tolevska, N.; Ivkovski, L. Presentation of the molecular subtypes of breast cancer detected by immunohistochemistry in surgically treated patients. Open Access Maced. J. Med. Sci., 2018, 6(6), 961-967.
[http://dx.doi.org/10.3889/oamjms.2018.231] [PMID: 29983785]
[11]
Peckys, D.B.; Hirsch, D.; Gaiser, T.; de Jonge, N. Visualisation of HER2 homodimers in single cells from HER2 overexpressing primary formalin fixed paraffin embedded tumour tissue. Mol. Med., 2019, 25(1), 42.
[http://dx.doi.org/10.1186/s10020-019-0108-z] [PMID: 31455202]
[12]
Zhang, X.; Chen, J.; Weng, Z.; Li, Q.; Zhao, L.; Yu, N.; Deng, L.; Xu, W.; Yang, Y.; Zhu, Z.; Huang, H. A new anti-HER2 antibody that enhances the anti-tumor efficacy of trastuzumab and pertuzumab with a distinct mechanism of action. Mol. Immunol., 2020, 119, 48-58.
[http://dx.doi.org/10.1016/j.molimm.2020.01.009] [PMID: 31978707]
[13]
Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227.
[PMID: 29963498]
[14]
Pohlmann, P.R.; Mayer, I.A.; Mernaugh, R. Resistance to trastuzumab in breast cancer. Clin. Cancer Res., 2009, 15(24), 7479-7491.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0636] [PMID: 20008848]
[15]
Redman, J.M.; Hill, E.M.; AlDeghaither, D.; Weiner, L.M. Mechanisms of action of therapeutic antibodies for cancer. Mol. Immunol., 2015, 67(2 Pt A), 28-45.
[PMID: 25911943]
[16]
Nieto, C.; Vega, M.A.; Del Valle, E.M.M. Trastuzumab: More than a guide in her2-positive cancer nanomedicine. Nanomaterials (Basel), 2020, 10(9), 1674.
[PMID: 32859026]
[17]
Stewart, P.; Blanchette, P.; Shah, P.S.; Ye, X.Y.; Boldt, R.G.; Fernandes, R.; Vandenberg, T.; Raphael, J. Do all patients with HER2 positive breast cancer require one year of adjuvant trastuzumab? A systematic review and meta-analysis. Breast, 2020, 54, 203-210.
[http://dx.doi.org/10.1016/j.breast.2020.10.003] [PMID: 33130486]
[18]
Trapani, D.; Curigliano, G. How can biosimilars change the trajectory of breast cancer therapy? Expert Rev. Anticancer Ther., 2020, 20(5), 325-328.
[http://dx.doi.org/10.1080/14737140.2020.1757438] [PMID: 32298188]
[19]
Yakes, F.M.; Chinratanalab, W.; Ritter, C.A.; King, W.; Seelig, S.; Arteaga, C.L. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res., 2002, 62(14), 4132-4141.
[PMID: 12124352]
[20]
Maadi, H.; Soheilifar, M.H.; Choi, W.S.; Moshtaghian, A.; Wang, Z. Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers (Basel), 2021, 13(14), 1-17.
[http://dx.doi.org/10.3390/cancers13143540] [PMID: 34298754]
[21]
Bruno, R.; Washington, C.B.; Lu, J.F.; Lieberman, G.; Banken, L.; Klein, P. Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother. Pharmacol., 2005, 56(4), 361-369.
[http://dx.doi.org/10.1007/s00280-005-1026-z] [PMID: 15868146]
[22]
Levêque, D.; Gigou, L.; Bergerat, J.P. Clinical pharmacology of trastuzumab. Curr. Clin. Pharmacol., 2008, 3(1), 51-55.
[http://dx.doi.org/10.2174/157488408783329931] [PMID: 18690878]
[23]
ANVISA. Herceptin® sc - Bula atualizada 04/01/2021; Prod Roche Químicos e Farm SA, 2021, pp. 1-122.
[24]
Blackwell, K.; Gligorov, J.; Jacobs, I.; Twelves, C. The global need for a trastuzumab biosimilar for patients with HER2-positive breast cancer. Clin. Breast Cancer, 2018, 18(2), 95-113.
[http://dx.doi.org/10.1016/j.clbc.2018.01.006] [PMID: 29525430]
[25]
Maximiano, S.; Magalhães, P.; Guerreiro, M.P.; Morgado, M. Trastuzumab in the treatment of breast cancer. BioDrugs, 2016, 30(2), 75-86.
[http://dx.doi.org/10.1007/s40259-016-0162-9] [PMID: 26892619]
[26]
Cuellar, S.; McBride, A.; Medina, P. Pharmacist perspectives and considerations for implementation of therapeutic oncology biosimilars in practice. Am. J. Heal. Pharm., 2019, 76(21), 1725-1738.
[http://dx.doi.org/10.1093/ajhp/zxz190] [PMID: 31612935]
[27]
Kabir, E.R.; Moreino, S.S.; Sharif Siam, M.K. The breakthrough of biosimilars: A twist in the narrative of biological therapy. Biomolecules, 2019, 9(9), E410.
[http://dx.doi.org/10.3390/biom9090410] [PMID: 31450637]
[28]
Kirchhoff, C.F.; Wang, X.Z.M.; Conlon, H.D.; Anderson, S.; Ryan, A.M.; Bose, A. Biosimilars: Key regulatory considerations and similar-ity assessment tools. Biotechnol. Bioeng., 2017, 114(2), 2696-2705.
[PMID: 28842986]
[29]
Pimentel, F.F. Biossimilares em oncologia. In: Santos M, Corrêa TS, Faria LD. Diretrizes Oncológicas 2. São Paulo: Doctor Press Ed. Científica,, 2019. cap. 38. p.607-18.
[30]
EMA. Biosimilar medicines: Overview | European Medicines Agency 2021. Available from: 2021.https://www.ema.europa.eu/en/human-regulatory/overview/biosimilar-medicines-overview
[31]
Nixon, N.A.; Hannouf, M.B.; Verma, S. The evolution of biosimilars in oncology, with a focus on trastuzumab. Curr. Oncol., 2018, 25(Suppl. 1), S171-S179.
[http://dx.doi.org/10.3747/co.25.3942] [PMID: 29910660]
[32]
Lyman, G.H.; Zon, R.; Harvey, R.D.; Schilsky, R.L. Rationale, opportunities, and reality of biosimilar medications. N. Engl. J. Med., 2018, 378(21), 2036-2044.
[http://dx.doi.org/10.1056/NEJMhle1800125] [PMID: 29791832]
[33]
Beck, A.; Debaene, F.; Diemer, H.; Wagner-Rousset, E.; Colas, O.; Van Dorsselaer, A.; Cianférani, S. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. J. Mass Spectrom., 2015, 50(2), 285-297.
[http://dx.doi.org/10.1002/jms.3554] [PMID: 25800010]
[34]
D’Atri, V.; Fekete, S.; Beck, A.; Lauber, M.; Guillarme, D. Hydrophilic interaction chromatography hyphenated with mass spectrometry: A powerful analytical tool for the comparison of originator and biosimilar therapeutic monoclonal antibodies at the middle-up level of analy-sis. Anal. Chem., 2017, 89(3), 2086-2092.
[http://dx.doi.org/10.1021/acs.analchem.6b04726] [PMID: 28208257]
[35]
Joshi, S.; Rathore, A.S. Assessment of structural and functional comparability of biosimilar products: trastuzumab as a case study. BioDrugs, 2020, 34(2), 209-223.
[http://dx.doi.org/10.1007/s40259-020-00404-3] [PMID: 31975160]
[36]
Joshi, S.; Kumari, S.; Rathore, A.S. Identification and characterization of carbonylation sites in trastuzumab biosimilars. Int. J. Biol. Macromol., 2021, 169, 95-102.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.095] [PMID: 33338527]
[37]
Janjigian, Y.Y.; Bissig, M.; Curigliano, G.; Coppola, J.; Latymer, M. Talking to patients about biosimilars. In: Future Oncol;, 2018. 14, pp. (23)2403-2414.
[PMID: 29856243]
[38]
Fernandes, G.S.; Sternberg, C.; Lopes, G.; Chammas, R.; Gifoni, M.A.C.; Gil, R.A.; Araujo, D.V. The use of biosimilar medicines in on-cology - position statement of the Brazilian society of clinical oncology (SBOC). Braz. J. Med. Biol. Res., 2018, 51(3), e7214.
[http://dx.doi.org/10.1590/1414-431x20177214] [PMID: 29340530]
[39]
Declerck, P.; Danesi, R.; Petersel, D.; Jacobs, I. The language of biosimilars: clarification, definitions, and regulatory aspects. Drugs, 2017, 77(6), 671-677.
[PMID: 28258517]
[40]
Clark, T.; Jo, S.J.; Phillips, A. Sample size for biosimilar trials: In defense of synthesis. Ther. Innov. Regul. Sci., 2018, 52(3), 300-305.
[PMID: 29714537]
[41]
Buske, C.; Ogura, M.; Kwon, H.C.; Yoon, S.W. An introduction to biosimilar cancer therapeutics: definitions, rationale for development and regulatory requirements. Future Oncol., 2017, 13(15s), 5-16.
[http://dx.doi.org/10.2217/fon-2017-0153] [PMID: 28482702]
[42]
Lüftner, D.; Lyman, G.H.; Gonçalves, J.; Pivot, X.; Seo, M. Biologic drug quality assurance to optimize HER2 + breast cancer treatment: Insights from development of the trastuzumab biosimilar SB3. Target. Oncol., 2020, 15(4), 467-475.
[PMID: 32748046]
[43]
Rugo, H.S.; Barve, A.; Waller, C.F.; Hernandez-Bronchud, M.; Herson, J.; Yuan, J.; Sharma, R.; Baczkowski, M.; Kothekar, M.; Loga-nathan, S.; Manikhas, A.; Bondarenko, I.; Mukhametshina, G.; Nemsadze, G.; Parra, J.D.; Abesamis-Tiambeng, M.L.; Baramidze, K.; Akewanlop, C.; Vynnychenko, I.; Sriuranpong, V.; Mamillapalli, G.; Ray, S.; Yanez Ruiz, E.P.; Pennella, E. Effect of a proposed trastuzumab biosimilar compared with trastuzumab on overall response rate in patients with ERBB2 (HER2)-positive metastatic breast cancer: A randomized clinical trial. JAMA -. JAMA, 2017, 317(1), 37-47.
[http://dx.doi.org/10.1001/jama.2016.18305] [PMID: 27918780]
[44]
Cohen, H.P.; Blauvelt, A.; Rifkin, R.M.; Danese, S.; Gokhale, S.B.; Woollett, G. Switching reference medicines to biosimilars: A systematic literature review of clinical outcomes. Drugs, 2018, 78(4), 463-478.
[PMID: 29500555]
[45]
Hübel, K.; Kron, F.; Lux, M.P. Biosimilars in oncology: Effects on economy and therapeutic innovations. Eur. J. Cancer, 2020, 139, 10-19.
[http://dx.doi.org/10.1016/j.ejca.2020.07.037] [PMID: 32950935]
[46]
Kaida-Yip, F.; Deshpande, K.; Saran, T.; Vyas, D. Biosimilars: Review of current applications, obstacles, and their future in medicine. World J. Clin. Cases, 2018, 6(8), 161-166.
[http://dx.doi.org/10.12998/wjcc.v6.i8.161] [PMID: 30148143]
[47]
Pimenta, M.V.; Monteiro, G. The production of biopharmaceuticals in Brazil: Current issues. Braz. J. Pharm. Sci., 2019, 55, 17823.
[http://dx.doi.org/10.1590/s2175-97902019000217823]
[48]
Vulto, A.G.; Jaquez, O.A. The process defines the product: what really matters in biosimilar design and production? Rheumatology (Oxford),, 2017. 56(Suppl_4), iv14-iv29.
[http://dx.doi.org/10.1093/rheumatology/kex278] [PMID: 28903544]
[49]
López-Morales, C.A.; Miranda-Hernández, M.P.; Juárez-Bayardo, L.C.; Ramírez-Ibáñez, N.D.; Romero-Díaz, A.J.; Piña-Lara, N. Physico-chemical and biological characterization of a biosimilar trastuzumab. BioMed Res. Int., 2015, 2015, 427235.
[http://dx.doi.org/10.1155/2015/427235] [PMID: 26075238]
[50]
Dranitsaris, G.; Amir, E.; Dorward, K. Biosimilars of biological drug therapies: regulatory, clinical and commercial considerations. Drugs, 2011, 71(12), 1527-1536.
[http://dx.doi.org/10.2165/11593730-000000000-00000] [PMID: 21861538]
[51]
Mellstedt, H.; Niederwieser, D.; Ludwig, H. The challenge of biosimilars. Ann. Oncol., 2008, 19(3), 411-419.
[http://dx.doi.org/10.1093/annonc/mdm345] [PMID: 17872902]
[52]
Andrews, L.; Ralston, S.; Blomme, E.; Barnhart, K. A snapshot of biologic drug development: Challenges and opportunities. Hum. Exp. Toxicol., 2015, 34(12), 1279-1285.
[http://dx.doi.org/10.1177/0960327115603594] [PMID: 26614816]
[53]
Kantardjieff, A.; Zhou, W. Mammalian cell cultures for biologics manufacturing. Adv. Biochem. Eng. Biotechnol., 2014, 139, 1-9.
[PMID: 24258145]
[54]
Woodcock, J.; Griffin, J.; Behrman, R.; Cherney, B.; Crescenzi, T.; Fraser, B.; Hixon, D.; Joneckis, C.; Kozlowski, S.; Rosenberg, A.; Schrager, L.; Shacter, E.; Temple, R.; Webber, K.; Winkle, H. The FDA’s assessment of follow-on protein products: a historical perspec-tive. Nat. Rev. Drug Discov., 2007, 6(6), 437-442.
[http://dx.doi.org/10.1038/nrd2307] [PMID: 17633790]
[55]
Zhu, M.M.; Mollet, M.; Hubert, R.S.; Kyung, Y.S.; Zhang, G.G. Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification. In: Handbook of Industrial Chemistry and Biotechnology; Kent, J.A.; Bommaraju, T.V.; Barnicki, S.D., Eds.; Springer: Cham, 2017; pp. 1639-1669.
[http://dx.doi.org/10.1007/978-3-319-52287-6_29]
[56]
Brezinsky, S.C.G.; Chiang, G.G.; Szilvasi, A.; Mohan, S.; Shapiro, R.I.; MacLean, A.; Sisk, W.; Thill, G. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J. Immunol. Methods, 2003, 277(1-2), 141-155.
[http://dx.doi.org/10.1016/S0022-1759(03)00108-X] [PMID: 12799047]
[57]
Jozala, A.F.; Geraldes, D.C.; Tundisi, L.L.; Feitosa, V. de A.; Breyer, C.A.; Cardoso, S.L. Biopharmaceuticals from microorganisms: from production to purification. Braz. J. Microbiol., 2016, 47(Suppl. 1), 51-63.
[PMID: 27838289]
[58]
Fishman, J.B.; Berg, E.A. Antibody purification and storage. Cold Spring Harb. Protoc., 2019, 2019(5), 331-344.
[PMID: 31043563]
[59]
Ramos-de-la-Peña, A.M.; González-Valdez, J.; Aguilar, O. Protein A chromatography: Challenges and progress in the purification of mon-oclonal antibodies. J. Sep. Sci., 2019, 42(9), 1816-1827.
[PMID: 30811843]
[60]
Stein, A.; Kiesewetter, A. Cation exchange chromatography in antibody purification: pH screening for optimised binding and HCP remov-al. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 848(1), 151-158.
[http://dx.doi.org/10.1016/j.jchromb.2006.10.010] [PMID: 17113367]
[61]
Cummings, L.J.; Frost, R.G.; Snyder, M.A. Monoclonal antibody purification by ceramic hydroxyapatite chromatography. Methods Mol. Biol., 2014, 1131, 241-251.
[http://dx.doi.org/10.1007/978-1-62703-992-5_15] [PMID: 24515470]
[62]
Shibui, T.; Bando, K.; Misawa, S. High-level secretory expression, purification, and characterization of an anti-human Her II monoclonal antibody, trastuzumab, in the methylotrophic yeast Pichia pastoris. Adv. Biosci. Biotechnol., 2013, 04(05), 640-646.
[http://dx.doi.org/10.4236/abb.2013.45084]
[63]
Liu, H.F.; Ma, J.; Winter, C.; Bayer, R. Recovery and purification process development for monoclonal antibody production; Taylor & Francis, 2010. 2, p. 2.
[64]
Gronemeyer, P.; Ditz, R.; Strube, J. Trends in upstream and downstream process development for antibody manufacturing. In: Bioengineering; MDPI AG, 2014. 1, pp. 188-212.
[65]
Makurvet, F.D. Biologics vs. small molecules: Drug costs and patient access. Med Drug Discov, 2021, 9, 100075.
[http://dx.doi.org/10.1016/j.medidd.2020.100075]
[66]
Cuellar, S. Integrating trastuzumab biosimilars and HER2-directed therapies into HER2-positive breast cancer management. Am. J. Manag. Care, 2020, 26(2)(Suppl.), S32-S40.
[PMID: 32282173]
[67]
Huang, H.Y.; Liu, C.C.; Yu, Y.; Wang, L.; Wu, D.W.; Guo, L.W. Pharmacoeconomic evaluation of cancer biosimilars worldwide: A sys-tematic review. Front. Pharmacol., 2020, 11, 572569.
[PMID: 33536905]
[68]
Paplomata, E.; Nahta, R. ABP 980: promising trastuzumab biosimilar for HER2-positive breast cancer. Expert Opin. Biol. Ther., 2018, 18(3), 335-341.
[http://dx.doi.org/10.1080/14712598.2018.1430761] [PMID: 29350568]
[69]
Lechat, P. Biosimilar medicines: Regulatory issues and medico-economic impacts. Bull. Acad Natl. Med., 2020, 204(8), 877-883.
[PMID: 32836292]
[70]
Miller, E.M.; Schwartzberg, L.S. Biosimilars for breast cancer: a review of HER2-targeted antibodies in the United States. Ther. Adv. Med. Oncol., 2019, 11, 1758835919887044.
[PMID: 31798693]
[71]
Stebbing, J.; Baranau, Y.; Baryash, V.; Manikhas, A.; Moiseyenko, V.; Dzagnidze, G.; Zhavrid, E.; Boliukh, D.; Stroyakovskii, D.; Pikiel, J.; Eniu, A.; Komov, D.; Morar-Bolba, G.; Li, R.K.; Rusyn, A.; Lee, S.J.; Lee, S.Y.; Esteva, F.J. CT-P6 compared with reference trastuzumab for HER2-positive breast cancer: a randomised, double-blind, active-controlled, phase 3 equivalence trial. Lancet Oncol., 2017, 18(7), 917-928.
[http://dx.doi.org/10.1016/S1470-2045(17)30434-5] [PMID: 28592386]
[72]
Pivot, X.; Bondarenko, I.; Nowecki, Z.; Dvorkin, M.; Trishkina, E.; Ahn, J.H.; Vinnyk, Y. Im, S.A.; Sarosiek, T.; Chatterjee, S.; Wojtukiewicz, M.Z.; Moiseyenko, V.; Shparyk, Y.; Bello, M., III; Semiglazov, V.; Song, S.; Lim, J. Phase III, randomized, double-blind study comparing the efficacy, safety, and immunogenicity of SB3 (trastuzumab biosimilar) and reference trastuzumab in patients treated with neoadjuvant therapy for human epidermal growth factor receptor 2-positive early breast cancer. J. Clin. Oncol., 2018, 36(10), 968-974.
[http://dx.doi.org/10.1200/JCO.2017.74.0126] [PMID: 29373094]
[73]
Lammers, P.E.; Dank, M.; Masetti, R.; Abbas, R.; Hilton, F.; Coppola, J.; Jacobs, I. Neoadjuvant PF-05280014 (a potential trastuzumab biosimilar) versus trastuzumab for operable HER2+ breast cancer. Br. J. Cancer, 2018, 119(3), 266-273.
[http://dx.doi.org/10.1038/s41416-018-0147-1] [PMID: 30002437]
[74]
von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; Knott, A.; Lang, I.; Levy, C.; Yardley, D.A.; Bines, J.; Gelber, R.D.; Piccart, M.; Baselga, J. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N. Engl. J. Med., 2017, 377(2), 122-131.
[http://dx.doi.org/10.1056/NEJMoa1703643] [PMID: 28581356]
[75]
Calleja-Hernández, M.Á.; Martínez-Sesmero, J.M.; Santiago-Josefat, B. Biosimilars of monoclonal antibodies in inflammatory diseases and cancer: current situation, challenges, and opportunities. Farm. Hosp., 2020, 44(3), 100-108.
[PMID: 32452309]
[76]
Declerck, P.; Bakalos, G.; Zintzaras, E.; Barton, B.; Schreitmüller, T. Monoclonal antibody biosimilars in oncology: Critical appraisal of available data on switching. Clin. Ther., 2018, 40(5), 798-809.e2.
[http://dx.doi.org/10.1016/j.clinthera.2018.03.018] [PMID: 29699853]
[77]
Farhat, F.; Torres, A.; Park, W.; de Lima Lopes, G.; Mudad, R.; Ikpeazu, C.; Abi Aad, S. The concept of biosimilars: From characterization to evolution-a narrative review. Oncologist, 2018, 23(3), 346-352.
[http://dx.doi.org/10.1634/theoncologist.2017-0126] [PMID: 29284760]
[78]
Lee, S.M.; Jung, J.H.; Suh, D.; Jung, Y.S.; Yoo, S.L.; Kim, D.W.; Kim, J.A.; Suh, D.C. Budget impact of switching to biosimilar trastuzumab (CT-P6) for the treatment of breast cancer and gastric cancer in 28 European countries. BioDrugs, 2019, 33(4), 423-436.
[http://dx.doi.org/10.1007/s40259-019-00359-0] [PMID: 31201616]

© 2024 Bentham Science Publishers | Privacy Policy