Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Nanotechnology Applications in Biomedical Systems

Author(s): Irmaizatussyehdany Buniyamin*, Rabiatuladawiyah Md Akhir, Noor Asnida Asli, Zuraida Khusaimi, Mohd Firdaus Malek and Mohamad Rusop Mahmood

Volume 7, Issue 3, 2022

Published on: 12 May, 2022

Page: [167 - 180] Pages: 14

DOI: 10.2174/2405461507666220301121135

Price: $65

Abstract

The current progress in the field of nanotechnology with respect to biomedical and biotechnology is aimed at designing novel materials that have exclusive properties of nanoscale structures. The application of nano-structured materials into biomedical systems has received much attention due to their remarkable resolution in assisting diagnoses and treating medical difficulties. The variety of nanostructured materials produced could be easily controlled and manipulated. Moreover, they could be developed with new properties in a predictable manner, whereby the modified biological characteristic and functionalities are compatible with biomedical systems for various applications and purposes. All-inclusive, nanotechnology has an enormous impact on health care and is undeniably shaping the future pathway. This paper reviews research methods in nanotechnology developments, which convey benefits to the biomedical application on nano-network and communication, biosensor, nanoprobe, drug delivery system and nano implants.

Keywords: Nanotechnology, nanostructured material, biomedical system, progression, variation, functionalities.

Graphical Abstract

[1]
Whitesides GM. The ‘right’ size in nanobiotechnology. Nat Biotechnol 2003; 21(10): 1161-5.
[http://dx.doi.org/10.1038/nbt872] [PMID: 14520400]
[2]
Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Mater Sci Angew Chem Int 2001; 40: 4128-58.
[3]
Safarik I, Safarikova M. Magnetic nanoparticles and bioscience. Monatsh Chem 2002; 133(6): 737-59.
[http://dx.doi.org/10.1007/s007060200047]
[4]
Genchi GG, Marino A, Tapeinos C, Ciofani G. Smart materials meet multifunctional biomedical devices: Current and prospective implications for nanomedicine. Front Bioeng Biotechnol 2017; 5: 80.
[http://dx.doi.org/10.3389/fbioe.2017.00080] [PMID: 29326928]
[5]
Laval JM, Mazeran PE, Thomas D. Nanobiotechnology and its role in the development of new analytical devices. Analyst (Lond) 2000; 125(1): 29-33.
[http://dx.doi.org/10.1039/a907827d] [PMID: 10885063]
[6]
Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health. Sci Transl Med 2015; 7(283)283rv3
[http://dx.doi.org/10.1126/scitranslmed.aaa3487] [PMID: 25877894]
[7]
Randall CL, Gultepe E, Gracias DH. Self-folding devices and materials for biomedical applications. Trends Biotechnol 2012; 30(3): 138-46.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.013] [PMID: 21764161]
[8]
Francesco C, Antonio G, Sergio C. Smart nano-systems for tumour cellular diagnoses and therapiesWearable and autonomous biomedical devices and systems for smart environment (Lect Notes Electr Eng). Heidelberg, Berlin: Springer 2010; pp. 31-54.
[http://dx.doi.org/10.1007/978-3-642-15687-8_2]
[9]
Suda T, Moore M, Nakano T, Egashira R, Enomoto A. Proceeding of the genetic and evolutionary computation conference (GECCO). Washington DC USA. June 25-29 2005;
[10]
Rizwan A, Zoha A, Zhang R, Ahmad W, Arshad K, Abu Ali N. A review on the role of nano-communication in future healthcare systems: A big data analytics perspectiveIEEE Access 2018; 6: 36 41903-20
[http://dx.doi.org/10.1109/ACCESS.2018.2859340]
[11]
Mazzola L. Commercializing nanotechnology. Nat Biotechnol 2003; 21(10): 1137-43.
[http://dx.doi.org/10.1038/nbt1003-1137] [PMID: 14520392]
[12]
Bauer LA, Birenbaum NS, Meyer GJ. Biological applications of high aspect ratio nanoparticles. J Mater Chem 2004; 14(4): 517-26.
[http://dx.doi.org/10.1039/b312655b]
[13]
Lopez-Barbosa N, Gamarra JD, Osma JF. The future point-of-care detection of disease and its data capture and handling. Anal Bioanal Chem 2016; 408(11): 2827-37.
[http://dx.doi.org/10.1007/s00216-015-9249-2] [PMID: 26780711]
[14]
Yurkin ST, Wang Z. Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery. Nanomedicine (Lond) 2017; 12(16): 2007-19.
[http://dx.doi.org/10.2217/nnm-2017-0100] [PMID: 28745122]
[15]
Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2004; 2(1): 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[16]
Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles: Development and applications. Nano Res 2008; 1(2): 99-115.
[http://dx.doi.org/10.1007/s12274-008-8018-3]
[17]
Swierczewska M, Liu G, Lee S, Chen X. High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 2012; 41(7): 2641-55.
[http://dx.doi.org/10.1039/C1CS15238F] [PMID: 22187721]
[18]
Takeuchi H, Yamamoto H, Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv Drug Deliv Rev 2001; 47(1): 39-54.
[http://dx.doi.org/10.1016/S0169-409X(00)00120-4] [PMID: 11251244]
[19]
Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003; 42(6): 463-78.
[http://dx.doi.org/10.1016/S0163-7827(03)00033-X] [PMID: 14559067]
[20]
Oyewumi MO, Mumper RJ. Influence of formulation parameters on gadolinium entrapment and tumor cell uptake using folate-coated nanoparticles. Int J Pharm 2003; 251(1-2): 85-97.
[http://dx.doi.org/10.1016/S0378-5173(02)00587-2] [PMID: 12527178]
[21]
H Abbasi Q, Yang K, Chopra N. Nano-communication for biomedical applications: A review on the state-of-the-art from physical layers to novel networking concepts. IEEE Access 2016; 4: 3920- 35..
[22]
M Shubair R, Elayan H. In: In vivo wireless body communications: State-of-the-art and future directions. Proceding of the IEE Loughborough Antennas and Propagation Conference (LAPC). Loughborough United Kingdom Nov 3-5 2015..
[23]
Wegmuller MS. Intra-body communication for biomedical sensor networks 2007..
[24]
Akyildiz IF, Brunetti F, Blázquez C. Nanonetworks: A new communication paradigm. Comput Netw 2008; 52(12): 2260-79.
[http://dx.doi.org/10.1016/j.comnet.2008.04.001]
[25]
Darwish A, Ismail Sayed G, Hassanien AE. The impact of implantable sensors in biomedical technology on the future of healthcare systems Intelligent pervasive computing systems for smarter healthcare. Hoboken, NJ, USA: John Wiley & Sons Inc 2019; pp. 67-89.
[http://dx.doi.org/10.1002/9781119439004.ch3]
[26]
Stelzner M, Lau FL, Freundt K, et al. Precise detection and treatment of human diseases based on nano networking. Proceeding of the 11th International Conference on Body Area Networks (BODYNETS). Turin Italy. December 15-16 2016;
[27]
Dressler F, Fischer S. Connecting in-body nano communication with body area networks: Challenges and opportunities of the internet of nano things. Nano Commun Netw 2015; 6(2): 29-38.
[http://dx.doi.org/10.1016/j.nancom.2015.01.006]
[28]
Abu Ali N, Abu-Elkheir M. Internet of nano-things healthcare applications: Requirements, opportunities, and challenges. Proceeding of the IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob' 2015). Abu Dhabi United Arab Emirates. 2015.Oct 19-21 2015.
[29]
Pramanik PKD, Solanki A, Debnath A, Nayyar A, El-Sappagh S, Kwak KS. Advancing modern healthcare with nanotechnology, nanobiosensors, and internet of nano things: Taxonomies, applications, architecture, and challenges. IEEE Access 2020; 8: 65230- 66.
[30]
Maksimovi M. The roles of nanotechnology and internet of nano things in healthcare transformation. TecnoLgicas 2017; 20(40): 139-53.
[http://dx.doi.org/10.22430/22565337.720]
[31]
Nayyar A, Puri V, Le DN. Internet of nano things (IoNT): Next evolutionary step in nanotechnology. Nanosci Nanotechnol 2017; 7(1): 4-8.
[32]
Cruz Alvarado MA, Bazán PA. Understanding the internet of nano things: Overview, trends, and challenges. Cienc Inf 2019; 9(1): 152-82.
[33]
Haselmayr W, Springer A, Fischer G, et al. Integration of molecular communications into future generation wireless networks.Proceeding of the 6G Wireless Summit IEEE. Levi Finland. 2019.
[34]
Agoulmine N, Kim K, Kim S, Rim T, Lee JS, Meyyapan M. Enabling communication and cooperation in bionanosensor networks: Toward innovative healthcare solutions. IEEE Wirel Commun 2012; 19(5): 42-51.
[http://dx.doi.org/10.1109/MWC.2012.6339471]
[35]
Okaie Y, Nakano T, Obuchi T, Hara T. Research challenges in bionanosensor networks. Proceeding of the PIEEE Conf Comput Commun Workshops (INFOCOM WKSHPS). San Francisco CA USA. 2016.April 10-14 2016.
[36]
Okaie Y, Nakano T, Hara T, et al. Cooperative target tracking by a mobile bionanosensor network. IEEE Trans Nanobiosci 2014; 13(3): 267-77.
[http://dx.doi.org/10.1109/TNB.2014.2343237] [PMID: 25095262]
[37]
Obuchi T, Okaie Y, Nakano T, Hara T, Nishio S. Inbody mobile bionanosensor networks through non-diffusion-based molecular communication. Proceeding of the IEEE Internatinoal Conf Commun (ICC). London United Kingdom. June 8-12 2015;
[38]
Zarepour E, Hassan N, Hassan M, Chou CT, Warkiani ME. Design and analysis of a wireless nanosensor network for monitoring human lung cells. Proceeding of the 10th EAI International Conference on Body Area Networks ICST. Sydney Australia. Sept 28-30 2015;
[39]
Pandit S, Dasgupta D, Dewan N, Ahmed P. Nanotechnology based biosensors and its application. Pharma Innov J 2016; 5(6): 18-25.
[40]
Rai M, Gade A, Gaikwad S, Marcato PD, Duran N. Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc 2012; 23(1): 14-24.
[41]
Shandilya R, Bhargava A, Bunkar N, Tiwari R, Goryacheva IY, Mishra PK. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 2019; 130: 147-65.
[http://dx.doi.org/10.1016/j.bios.2019.01.034] [PMID: 30735948]
[42]
Zhang X, Guo Q, Cui D. Recent advances in nanotechnology applied to biosensors. Sensors (Basel) 2009; 9(2): 1033-53.
[http://dx.doi.org/10.3390/s90201033] [PMID: 22399954]
[43]
Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: Concepts and variations. ISRN Nanomater 2013; 10: 327-35.
[44]
Wang J, Chen G, Jiang H, Li Z, Wang X. Advances in nano-scaled biosensors for biomedical applications. Analyst (Lond) 2013; 138(16): 4427-35.
[http://dx.doi.org/10.1039/c3an00438d] [PMID: 23748648]
[45]
Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L. Nanotechnology and biosensors. Biotechnol Adv 2004; 22(7): 505-18.
[http://dx.doi.org/10.1016/j.biotechadv.2004.03.004] [PMID: 15262314]
[46]
Tian K, Prestgard M, Tiwari A. A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C 2014; 41: 100-18.
[http://dx.doi.org/10.1016/j.msec.2014.04.013] [PMID: 24907743]
[47]
Zhang X, Gu A, Wang G, et al. Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. CrystEngComm 2010; 12(4): 1120-6.
[http://dx.doi.org/10.1039/B919749D]
[48]
Joshi PP, Merchant SA, Wang Y, Schmidtke DW. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 2005; 77(10): 3183-8.
[http://dx.doi.org/10.1021/ac0484169] [PMID: 15889907]
[49]
Song JM, Kasili PM, Griffin GD, Vo-Dinh T. Detection of cytochrome C in a single cell using an optical nanobiosensor. Anal Chem 2004; 76(9): 2591-4.
[http://dx.doi.org/10.1021/ac0352878] [PMID: 15117202]
[50]
Grimm J, Perez JM, Josephson L, Weissleder R. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res 2004; 64(2): 639-43.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2798] [PMID: 14744779]
[51]
Richardson J, Hawkins P, Luxton R. The use of coated paramagnetic particles as a physical label in a magneto-immunoassay. Biosens Bioelectron 2001; 16(9-12): 989-93.
[http://dx.doi.org/10.1016/S0956-5663(01)00201-9] [PMID: 11679279]
[52]
Bai HP, Lu XX, Yang GM, Yang YH. Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode. Chin Chem Lett 2008; 19(3): 314-8.
[http://dx.doi.org/10.1016/j.cclet.2007.12.030]
[53]
Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M. M Faudeh A. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 2012; 12(18): 3249-66.
[http://dx.doi.org/10.1039/c2lc40630f] [PMID: 22859057]
[54]
Sposito AJ, Kurdekar A, Zhao J, Hewlett I. Application of nanotechnology in biosensors for enhancing pathogen detection. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(5)e1512
[http://dx.doi.org/10.1002/wnan.1512] [PMID: 29528198]
[55]
Kim G, Moon JH, Moh CY, Lim JG. A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosens Bioelectron 2015; 67: 243-7.
[http://dx.doi.org/10.1016/j.bios.2014.08.023] [PMID: 25172028]
[56]
Vamvakaki V, Chaniotakis NA. Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 2007; 22(12): 2848-53.
[http://dx.doi.org/10.1016/j.bios.2006.11.024] [PMID: 17223333]
[57]
Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Nano-biosensors to detect beta-amyloid for Alzheimer’s disease management. Biosens Bioelectron 2016; 80: 273-87.
[http://dx.doi.org/10.1016/j.bios.2016.01.065] [PMID: 26851586]
[58]
Mazunder S, Pavurala M. A review on nanoprobes for sensing, imaging and disease detection. J Mater Sci Nanotechnol 2016; 4(1): 104.
[59]
Cormode DP, Skajaa T, Fayad ZA, Mulder WJM. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009; 29(7): 992-1000.
[http://dx.doi.org/10.1161/ATVBAHA.108.165506] [PMID: 19057023]
[60]
Xu JJ, Zhao WW, Song S, Fan C, Chen HY. Functional nanoprobes for ultrasensitive detection of biomolecules: an update. Chem Soc Rev 2014; 43(5): 1601-11.
[http://dx.doi.org/10.1039/C3CS60277J] [PMID: 24342982]
[61]
He J, VanBrocklin HF, Franc BL, Seo Y, Jones EF. Nanoprobes for medical diagnosis: Current status of nanotechnology in molecular imaging. Curr Nanosci 2008; 4(1): 17-29.
[http://dx.doi.org/10.2174/157341308783591843]
[62]
Mac JT, Nuñez V, Burns JM, Guerrero YA, Vullev VI, Anvari B. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells. Biomed Opt Express 2016; 7(4): 1311-22.
[http://dx.doi.org/10.1364/BOE.7.001311] [PMID: 27446657]
[63]
Lim B, Vavassori P, Sooryakumar R, Kim C. Nano/micro-scale magnetophoretic devices for biomedical applications. J Phys D Appl Phys 2017; 50(3)033002
[http://dx.doi.org/10.1088/1361-6463/50/3/033002]
[64]
Robert D, Nguyen TH, Gallet F, Wilhelm C. In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS One 2010; 5(4)e10046
[http://dx.doi.org/10.1371/journal.pone.0010046] [PMID: 20386607]
[65]
Choa JB, Li M, Zhang YB, Yin CX, Huo FJ. A simple fluorescent pH probe and its application in cells. Chem Pap 2019; 73(6): 1481-8.
[http://dx.doi.org/10.1007/s11696-019-00699-9]
[66]
Zhoa L, Jin Z, Fan X, et al. Synthesis of 1,8-naphthalimide-based fluorescent nano-probes and their application in pH detection. Chin Chem Lett 2018; 29(10): 1500-2.
[http://dx.doi.org/10.1016/j.cclet.2018.07.018]
[67]
Zhao T, Huang G, Li Y, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgeryNat Biomed Eng 2016; 1: 0006
[68]
Mahtab R, Rogers JP, Murphy CJ. Protein-sized quantum dot luminescence can distinguish between “straight”, “bent”, and “kinked” oligonucleotides. J Am Chem Soc 1995; 117(35): 9099-100.
[http://dx.doi.org/10.1021/ja00140a040]
[69]
Wu HF, Agrawal K, Shrivas K, Lee YH. On particle ionization/enrichment of multifunctional nanoprobes: washing/separation-free, acceleration and enrichment of microwave-assisted tryptic digestion of proteins via bare TiO2 nanoparticles in ESI-MS and comparing to MALDI-MS. J Mass Spectrom 2010; 45(12): 1402-8.
[http://dx.doi.org/10.1002/jms.1855] [PMID: 20967754]
[70]
Rajamanickam K. Multimodal molecular imaging strategies using functionalized nano probes. J Nanotechnol Res 2019; 1(2): 119-35.
[http://dx.doi.org/10.26502/jnr.2688-85210010]
[71]
Singh SK. Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Advances 2014; 4(102): 58674-98.
[http://dx.doi.org/10.1039/C4RA08847F]
[72]
Kumar A, Kim S, Nam JM. Plasmonically engineered nanoprobes for biomedical applications. J Am Chem Soc 2016; 138(44): 14509-25.
[http://dx.doi.org/10.1021/jacs.6b09451] [PMID: 27723324]
[73]
Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009; 17(8): 2950-62.
[http://dx.doi.org/10.1016/j.bmc.2009.02.043] [PMID: 19299149]
[74]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[75]
Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine 2005; 1(1): 22-30.
[http://dx.doi.org/10.1016/j.nano.2004.11.009] [PMID: 17292054]
[76]
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012; 64(5): 1020-37.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[77]
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6(4): 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[78]
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2(1): 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[79]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[80]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[81]
Anupama C, Ranganath SH, Sudhir HR, Thanuja MY. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132: 57-80.
[http://dx.doi.org/10.1016/j.addr.2018.06.012] [PMID: 29935987]
[82]
Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006; 5(8): 1909-17.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0141] [PMID: 16928810]
[83]
Gong R, Chen G. Preparation and application of functionalized nano drug carriers. Saudi Pharm J 2016; 24(3): 254-7.
[http://dx.doi.org/10.1016/j.jsps.2016.04.010] [PMID: 27275111]
[84]
Soumya RS, Hela PG. Nano silver based targeted drug delivery for treatment of cancer. Pharm Lett 2013; 5(4): 189-97.
[85]
Lu W, Zhang Y, Tan YZ, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release 2005; 107(3): 428-48.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.027] [PMID: 16176844]
[86]
Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res 2006; 67(1): 55-60.
[http://dx.doi.org/10.1002/ddr.20067]
[87]
Arruebo M, Fernández-pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles controlled release of drugs from nanostructured functional materials. Nano Today 2007; 2: 22-32.
[http://dx.doi.org/10.1016/S1748-0132(07)70084-1]
[88]
Freund JB, Shapiro B. Transport of particles by magnetic forces and cellular blood flow in a model microvessel. Phys Fluids 2012; 24(5)051904
[http://dx.doi.org/10.1063/1.4718752]
[89]
Deng Y, Zhang X, Shen H, et al. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol 2020; 7: 489.
[http://dx.doi.org/10.3389/fbioe.2019.00489] [PMID: 32083068]
[90]
Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 2007; 25(4): 667-80.
[http://dx.doi.org/10.1002/jmri.20866] [PMID: 17347992]
[91]
Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1638-49.
[http://dx.doi.org/10.1016/j.addr.2008.08.002] [PMID: 18840488]
[92]
Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci 1993; 82(9): 912-7.
[http://dx.doi.org/10.1002/jps.2600820909] [PMID: 8229689]
[93]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[94]
Ravi Kumar MNV. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 2000; 3(2): 234-58.
[PMID: 10994037]
[95]
Page-Clisson ME, Pinto-Alphandary H, Ourevitch M, Andremont A, Couvreur P. Development of ciprofloxacin-loaded nanoparticles: Physicochemical study of the drug carrier. J Control Release 1998; 56(1-3): 23-32.
[http://dx.doi.org/10.1016/S0168-3659(98)00065-0] [PMID: 9801426]
[96]
Torrecillas R, Moya JS, Díaz LA, Bartolomé JF, Fernández A, Lopez-Esteban S. Nanotechnology in joint replacement. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009; 1(5): 540-52.
[http://dx.doi.org/10.1002/wnan.47] [PMID: 20049816]
[97]
Zibka M, Menaszek E, Tarasiuk J, Wroski S. Biocompatible nanocomposite implant with silver nanoparticles for otology-In vivo evaluation. Nanomaterials (Basel) 2018; 8(10): 764.
[http://dx.doi.org/10.3390/nano8100764] [PMID: 30262741]
[98]
Lavenus S, Louarn G, Layrolle P. Nanotechnology and dental implants. Int J Biomater 2010; 2010915327
[http://dx.doi.org/10.1155/2010/915327] [PMID: 21253543]
[99]
Buniyamin I, Akhir RM, Asli NA, Khusaimi Z, Mahmood MR. Biosynthesis of SnO2 nanoparticles by aqueous leaves extract of Aquilaria malaccensis (agarwood). IOP Conf Ser: Mater Sci 1092: 012070.
[100]
Buniyamin I, Akhir RM, Asli NA, Khusaimi Z, Mahmood MR. Effect of calcination time on biosynthesised SnO2 nanoparticles using bioactive compound from leaves extract of Chromolaena OdorataAIP Conf Proc 2021; 2368: 020006.
[http://dx.doi.org/10.1063/5.0057784]
[101]
Smith WR, Hudson PW, Ponce BA, Rajaram Manoharan SR. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord 2018; 19(1): 67.
[http://dx.doi.org/10.1186/s12891-018-1990-1] [PMID: 29499666]
[102]
SMN Mydin RB. Hazan R, Farid Wajidi MF, Sreekantan S Titanium dioxide nanotube arrays for biomedical implant materials and nanomedicine applications Titanium dioxide-material for a sustainable environment. London, UK: Intechopen 2018; pp. 469-83.
[103]
Tran PA, Sarin L, Hurt RH, Webster TJ. Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium. Int J Nanomedicine 2010; 5: 351-8.
[PMID: 20517480]
[104]
Rehman FU, Zhao C, Jiang H, Wang X. Biomedical applications of nano-titania in theranostics and photodynamic therapy. Biomater Sci 2016; 4(1): 40-54.
[http://dx.doi.org/10.1039/C5BM00332F] [PMID: 26442645]
[105]
Lee JS, Murphy WL. Functionalizing orthopedic implants with silver nanoparticles to treat infection. In: Annual Meeting of the Orthopaedic Research Society. San Francisco. 2012.
[106]
Gavaskar A, Rojas D, Videla F. Nanotechnology: the scope and potential applications in orthopedic surgery. Eur J Orthop Surg Traumatol 2018; 28(7): 1257-60.
[http://dx.doi.org/10.1007/s00590-018-2193-z] [PMID: 29602957]
[107]
Hsu WK, Goldstein CL, Shamji MF, et al. Novel osteobiologics and biomaterials in the treatment of spinal disorders. Clin Neurosurg 2017; 80(3S): S100-7.
[http://dx.doi.org/10.1093/neuros/nyw085] [PMID: 28350951]
[108]
Federspil PA. Implant-retained craniofacial prostheses for facial defects. GMS Curr Top Otorhinolaryngol Head Neck Surg 2009; 8: Doc03.
[PMID: 22073096]
[109]
Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. J Miner Met Mater Soc 2008; 60(3): 46-9.
[http://dx.doi.org/10.1007/s11837-008-0031-1]
[110]
Lavenus S, Rozé J, Hoornaert A, Louarn G, Layrolle P. Impact of nanotechnology on dental implants Emerging nanotechnologies in dentistry. New York: Elsevier 2012; pp. 71-84.
[http://dx.doi.org/10.1016/B978-1-4557-7862-1.00005-5]
[111]
Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance. Biomater Sci 2018; 6(6): 1312-38.
[http://dx.doi.org/10.1039/C8BM00021B] [PMID: 29744496]
[112]
Petersen DK, Naylor TM, Ver Halen JP. Current and future applications of nanotechnology in plastic and reconstructive surgery. Plast Aesthet Res 2014; 1(2): 43-50.
[http://dx.doi.org/10.4103/2347-9264.139698]
[113]
Mendonça Munhoz A, Santanelli di Pompeo F, De Mezerville R. Nanotechnology, nanosurfaces and silicone gel breast implants: current aspects. Case Reports Plast Surg Hand Surg 2017; 4(1): 99-113.
[http://dx.doi.org/10.1080/23320885.2017.1407658] [PMID: 29250575]
[114]
Puskas JE, Luebbers MT. Breast implants: the good, the bad and the ugly. Can nanotechnology improve implants? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4(2): 153-68.
[http://dx.doi.org/10.1002/wnan.164] [PMID: 21964678]
[115]
Parvez Mahmud MA, Huda N, Farjana SH, Asadnia M, Lang C. Recent advances in nanogenerator-driven self-powered implantable biomedical devices. Adv Energy Mater 2017; 8(2)1701210
[http://dx.doi.org/10.1002/aenm.201701210]
[116]
Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011; 32(24): 5706-16.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.040] [PMID: 21565401]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy