Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

An Update on Nondopaminergic Treatments for Motor and Non-motor Symptoms of Parkinson’s Disease

Author(s): Xiao-Zhong Jing, Xiang-Zhen Yuan, Xingguang Luo, Shu-Yun Zhang and Xiao-Ping Wang*

Volume 21, Issue 8, 2023

Published on: 30 March, 2022

Page: [1806 - 1826] Pages: 21

DOI: 10.2174/1570159X20666220222150811

Price: $65

Abstract

Nondopaminergic neurotransmitters such as adenosine, norepinephrine, serotonin, glutamate, and acetylcholine are all involved in Parkinson's disease (PD) and promote its symptoms. Therefore, nondopaminergic receptors are key targets for developing novel preparations for the management of motor and non-motor symptoms in PD, without the potential adverse events of dopamine replacement therapy. We reviewed English-written articles and ongoing clinical trials of nondopaminergic treatments for PD patients till 2014 to summarize the recent findings on nondopaminergic preparations for the treatment of PD patients. The most promising research area of nondopaminergic targets is to reduce motor complications caused by traditional dopamine replacement therapy, including motor fluctuations and levodopa-induced dyskinesia. Istradefylline, Safinamide, and Zonisamide were licensed for the management of motor fluctuations in PD patients, while novel serotonergic and glutamatergic agents to improve motor fluctuations are still under research. Sustained- release agents of Amantadine were approved for treating levodopa induced dyskinesia (LID), and serotonin 5HT1B receptor agonist also showed clinical benefits to LID. Nondopaminergic targets were also being explored for the treatment of non-motor symptoms of PD. Pimavanserin was approved globally for the management of hallucinations and delusions related to PD psychosis. Istradefylline revealed beneficial effect on daytime sleepiness, apathy, depression, and lower urinary tract symptoms in PD subjects. Droxidopa may benefit orthostatic hypotension in PD patients. Safinamide and Zonisamide also showed clinical efficacy on certain non-motor symptoms of PD patients. Nondopaminergic drugs are not expected to replace dopaminergic strategies, but further development of these drugs may lead to new approaches with positive clinical implications.

Keywords: Parkinson's disease, Nondopaminergic treatment, Nondopaminergic neurotransmitters, Motor symptoms, Non-motor symptoms, update

Graphical Abstract

[1]
Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of parkinson disease: A review. JAMA, 2020, 323(6), 548-560.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[2]
Kalia, L.V.; Brotchie, J.M.; Fox, S.H. Novel nondopaminergic targets for motor features of Parkinson’s disease: Review of recent trials. Mov. Disord., 2013, 28(2), 131-144.
[http://dx.doi.org/10.1002/mds.25273] [PMID: 23225267]
[3]
Müller, T. Pharmacokinetics and pharmacodynamics of levodopa/carbidopa cotherapies for Parkinson’s disease. Expert Opin. Drug Metab. Toxicol., 2020, 16(5), 403-414.
[http://dx.doi.org/10.1080/17425255.2020.1750596] [PMID: 32238065]
[4]
Müller, T. Detoxification and antioxidative therapy for levodopa-induced neurodegeneration in Parkinson’s disease. Expert Rev. Neurother., 2013, 13(6), 707-718.
[http://dx.doi.org/10.1586/ern.13.50] [PMID: 23739007]
[5]
Chaudhuri, K.R.; Todorova, A.; Nirenberg, M.J.; Parry, M.; Martin, A.; Martinez-Martin, P.; Rizos, A.; Henriksen, T.; Jost, W.; Storch, A.; Ebersbach, G.; Reichmann, H.; Odin, P.; Antonini, A. A pilot prospective, multicenter observational study of dopamine agonist withdrawal syndrome in Parkinson’s disease. Mov. Disord. Clin. Pract. (Hoboken), 2015, 2(2), 170-174.
[http://dx.doi.org/10.1002/mdc3.12141] [PMID: 30713891]
[6]
Baig, F.; Kelly, M.J.; Lawton, M.A.; Ruffmann, C.; Rolinski, M.; Klein, J.C.; Barber, T.; Lo, C.; Ben-Shlomo, Y.; Okai, D.; Hu, M.T. Impulse control disorders in Parkinson disease and RBD: A longitudinal study of severity. Neurology, 2019, 93(7), e675-e687.
[http://dx.doi.org/10.1212/WNL.0000000000007942] [PMID: 31311842]
[7]
Solla, P.; Fasano, A.; Cannas, A.; Marrosu, F. Suicide and dopamine agonist withdrawal syndrome in Parkinson’s disease. Mov. Disord., 2015, 30(13), 1859-1860.
[http://dx.doi.org/10.1002/mds.26443] [PMID: 26452673]
[8]
Pinna, A. Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs, 2014, 28(5), 455-474.
[http://dx.doi.org/10.1007/s40263-014-0161-7] [PMID: 24687255]
[9]
Elkouzi, A.; Vedam-Mai, V.; Eisinger, R.S.; Okun, M.S. Emerging therapies in Parkinson disease - repurposed drugs and new approaches. Nat. Rev. Neurol., 2019, 15(4), 204-223.
[http://dx.doi.org/10.1038/s41582-019-0155-7] [PMID: 30867588]
[10]
Charvin, D.; Medori, R.; Hauser, R.A.; Rascol, O. Therapeutic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat. Rev. Drug Discov., 2018, 17(11), 804-822.
[http://dx.doi.org/10.1038/nrd.2018.136] [PMID: 30262889]
[11]
Lewitt, P.A.; Hauser, R.A.; Lu, M.; Nicholas, A.P.; Weiner, W.; Coppard, N.; Leinonen, M.; Savola, J.M. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology, 2012, 79(2), 163-169.
[http://dx.doi.org/10.1212/WNL.0b013e31825f0451] [PMID: 22744665]
[12]
Vijverman, A-C.; Fox, S.H. New treatments for the motor symptoms of Parkinson’s disease. Expert Rev. Clin. Pharmacol., 2014, 7(6), 761-777.
[http://dx.doi.org/10.1586/17512433.2014.966812] [PMID: 25318835]
[13]
Tison, F.; Keywood, C.; Wakefield, M.; Durif, F.; Corvol, J.C.; Eggert, K.; Lew, M.; Isaacson, S.; Bezard, E.; Poli, S.M.; Goetz, C.G.; Trenkwalder, C.; Rascol, O. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov. Disord., 2016, 31(9), 1373-1380.
[http://dx.doi.org/10.1002/mds.26659] [PMID: 27214664]
[14]
Hauser, R.A.; Pahwa, R.; Tanner, C.M.; Oertel, W.; Isaacson, S.H.; Johnson, R.; Felt, L.; Stempien, M.J. ADS-5102 (Amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 2 study): Interim results of an open-label safety study. J. Parkinsons Dis., 2017, 7(3), 511-522.
[http://dx.doi.org/10.3233/JPD-171134] [PMID: 28777755]
[15]
Müller, T. Safinamide in the treatment of Parkinson’s disease. Neurodegener. Dis. Manag., 2020, 10(4), 195-204.
[http://dx.doi.org/10.2217/nmt-2020-0017] [PMID: 32648512]
[16]
Morelli, M.; Wardas, J. Adenosine A(2a) receptor antagonists: Potential therapeutic and neuroprotective effects in Parkinson’s disease. Neurotox. Res., 2001, 3(6), 545-556.
[http://dx.doi.org/10.1007/BF03033210] [PMID: 15111244]
[17]
Gołembiowska, K.; Dziubina, A. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2. Neurotox. Res., 2012, 22(2), 150-157.
[http://dx.doi.org/10.1007/s12640-012-9316-9] [PMID: 22407500]
[18]
Hazama, T.; Fukada, K.; Mitani, Y.; Kinoshita, M.; Takata, K.; Kokunai, Y.; Sawada, J-i. Clinical characteristics of Parkinson’s disease patients responsive to Istradefylline treatment. Parkinsonism Relat. Disord., 2016, 22, e99-e100.
[http://dx.doi.org/10.1016/j.parkreldis.2015.10.215]
[19]
Mizuno, Y.; Kondo, T. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov. Disord., 2013, 28(8), 1138-1141.
[http://dx.doi.org/10.1002/mds.25418] [PMID: 23483627]
[20]
Kondo, T.; Mizuno, Y. A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin. Neuropharmacol., 2015, 38(2), 41-46.
[http://dx.doi.org/10.1097/WNF.0000000000000073] [PMID: 25768849]
[21]
Iijima, M.; Orimo, S.; Terashi, H.; Suzuki, M.; Hayashi, A.; Shimura, H.; Mitoma, H.; Kitagawa, K.; Okuma, Y. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson’s disease: A single-arm, open-label, prospective, multicenter study. Expert Opin. Pharmacother., 2019, 20(11), 1405-1411.
[http://dx.doi.org/10.1080/14656566.2019.1614167] [PMID: 31039621]
[22]
Hattori, N.; Kitabayashi, H.; Kanda, T.; Nomura, T.; Toyama, K.; Mori, A. A pooled analysis from phase 2b and 3 studies in Japan of Istradefylline in Parkinson’s disease. Mov. Disord., 2020, 35(8), 1481-1487.
[http://dx.doi.org/10.1002/mds.28095] [PMID: 32501582]
[23]
Kitta, T.; Yabe, I.; Takahashi, I.; Matsushima, M.; Sasaki, H.; Shinohara, N. Clinical efficacy of istradefylline on lower urinary tract symptoms in Parkinson’s disease. Int. J. Urol., 2016, 23(10), 893-894.
[http://dx.doi.org/10.1111/iju.13160] [PMID: 27388933]
[24]
Suzuki, K.; Miyamoto, M.; Miyamoto, T.; Uchiyama, T.; Watanabe, Y.; Suzuki, S.; Kadowaki, T.; Fujita, H.; Matsubara, T.; Sakuramoto, H.; Hirata, K. Istradefylline improves daytime sleepiness in patients with Parkinson’s disease: An open-label, 3-month study. J. Neurol. Sci., 2017, 380, 230-233.
[http://dx.doi.org/10.1016/j.jns.2017.07.045] [PMID: 28870576]
[25]
Nagayama, H.; Kano, O.; Murakami, H.; Ono, K.; Hamada, M.; Toda, T.; Sengoku, R.; Shimo, Y.; Hattori, N. Effect of istradefylline on mood disorders in Parkinson’s disease. J. Neurol. Sci., 2019, 396, 78-83.
[http://dx.doi.org/10.1016/j.jns.2018.11.005] [PMID: 30423541]
[26]
Shimo, Y.; Maeda, T.; Chiu, S.W.; Yamaguchi, T.; Kashihara, K.; Tsuboi, Y.; Nomoto, M.; Hattori, N.; Watanabe, H.; Saiki, H. Influence of istradefylline on non-motor symptoms of Parkinson’s disease: A subanalysis of a 1-year observational study in Japan (J-FIRST). Parkinsonism Relat. Disord., 2021, 91, 115-120.
[http://dx.doi.org/10.1016/j.parkreldis.2021.09.015] [PMID: 34583302]
[27]
Müller, T.; Öhm, G.; Eilert, K.; Möhr, K.; Rotter, S.; Haas, T.; Küchler, M.; Lütge, S.; Marg, M.; Rothe, H. Benefit on motor and non-motor behavior in a specialized unit for Parkinson’s disease. J. Neural Transm. (Vienna), 2017, 124(6), 715-720.
[http://dx.doi.org/10.1007/s00702-017-1701-3] [PMID: 28247031]
[28]
Salamone, J.D. Preladenant, a novel adenosine A(2A) receptor antagonist for the potential treatment of parkinsonism and other disorders. IDrugs, 2010, 13(10), 723-731.
[PMID: 20878595]
[29]
Hodgson, R.A.; Bedard, P.J.; Varty, G.B.; Kazdoba, T.M.; Di Paolo, T.; Grzelak, M.E.; Pond, A.J.; Hadjtahar, A.; Belanger, N.; Gregoire, L.; Dare, A.; Neustadt, B.R.; Stamford, A.W.; Hunter, J.C. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp. Neurol., 2010, 225(2), 384-390.
[http://dx.doi.org/10.1016/j.expneurol.2010.07.011] [PMID: 20655910]
[30]
Hauser, R.A.; Cantillon, M.; Pourcher, E.; Micheli, F.; Mok, V.; Onofrj, M.; Huyck, S.; Wolski, K. Preladenant in patients with Parkinson’s disease and motor fluctuations: A phase 2, double-blind, randomised trial. Lancet Neurol., 2011, 10(3), 221-229.
[http://dx.doi.org/10.1016/S1474-4422(11)70012-6] [PMID: 21315654]
[31]
Hattori, N.; Kikuchi, M.; Adachi, N.; Hewitt, D.; Huyck, S.; Saito, T. Adjunctive preladenant: A placebo-controlled, dose-finding study in Japanese patients with Parkinson’s disease. Parkinsonism Relat. Disord., 2016, 32, 73-79.
[http://dx.doi.org/10.1016/j.parkreldis.2016.08.020] [PMID: 27632893]
[32]
Hauser, R.A.; Stocchi, F.; Rascol, O.; Huyck, S.B.; Capece, R.; Ho, T.W.; Sklar, P.; Lines, C.; Michelson, D.; Hewitt, D. Preladenant as an adjunctive therapy with levodopa in Parkinson disease: Two randomized clinical trials and lessons learned. JAMA Neurol., 2015, 72(12), 1491-1500.
[http://dx.doi.org/10.1001/jamaneurol.2015.2268] [PMID: 26523919]
[33]
Stocchi, F.; Rascol, O.; Hauser, R.A.; Huyck, S.; Tzontcheva, A.; Capece, R.; Ho, T.W.; Sklar, P.; Lines, C.; Michelson, D.; Hewitt, D.J. Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology, 2017, 88(23), 2198-2206.
[http://dx.doi.org/10.1212/WNL.0000000000004003] [PMID: 28490648]
[34]
Hauser, R.A.; Olanow, C.W.; Kieburtz, K.D.; Pourcher, E.; Docu-Axelerad, A.; Lew, M.; Kozyolkin, O.; Neale, A.; Resburg, C.; Meya, U.; Kenney, C.; Bandak, S. Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fluctuations on levodopa: A phase 2b, double-blind, randomised trial. Lancet Neurol., 2014, 13(8), 767-776.
[http://dx.doi.org/10.1016/S1474-4422(14)70148-6] [PMID: 25008546]
[35]
Noyce, A.J.; Bestwick, J.P.; Silveira-Moriyama, L.; Hawkes, C.H.; Giovannoni, G.; Lees, A.J.; Schrag, A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol., 2012, 72(6), 893-901.
[http://dx.doi.org/10.1002/ana.23687] [PMID: 23071076]
[36]
Altman, R.D.; Lang, A.E.; Postuma, R.B. Caffeine in Parkinson’s disease: A pilot open-label, dose-escalation study. Mov. Disord., 2011, 26(13), 2427-2431.
[http://dx.doi.org/10.1002/mds.23873] [PMID: 21953603]
[37]
Postuma, R.B.; Lang, A.E.; Munhoz, R.P.; Charland, K.; Pelletier, A.; Moscovich, M.; Filla, L.; Zanatta, D.; Rios Romenets, S.; Altman, R.; Chuang, R.; Shah, B. Caffeine for treatment of Parkinson disease: A randomized controlled trial. Neurology, 2012, 79(7), 651-658.
[http://dx.doi.org/10.1212/WNL.0b013e318263570d] [PMID: 22855866]
[38]
Postuma, R.B.; Anang, J.; Pelletier, A.; Joseph, L.; Moscovich, M.; Grimes, D.; Furtado, S.; Munhoz, R.P.; Appel-Cresswell, S.; Moro, A.; Borys, A.; Hobson, D.; Lang, A.E. Caffeine as symptomatic treatment for Parkinson disease (Café-PD): A randomized trial. Neurology, 2017, 89(17), 1795-1803.
[http://dx.doi.org/10.1212/WNL.0000000000004568] [PMID: 28954882]
[39]
Müller, T.; Möhr, J.D. Pharmacokinetics of monoamine oxidase B inhibitors in Parkinson’s disease: Current status. Expert Opin. Drug Metab. Toxicol., 2019, 15(5), 429-435.
[http://dx.doi.org/10.1080/17425255.2019.1607292] [PMID: 31017021]
[40]
Mizuno, Y.; Kondo, T.; Kuno, S.; Nomoto, M.; Yanagisawa, N. Early addition of selegiline to L-Dopa treatment is beneficial for patients with Parkinson disease. Clin. Neuropharmacol., 2010, 33(1), 1-4.
[http://dx.doi.org/10.1097/WNF.0b013e3181bbf45c] [PMID: 19935410]
[41]
Teo, K.C.; Ho, S.L. Monoamine oxidase-B (MAO-B) inhibitors: Implications for disease-modification in Parkinson’s disease. Transl. Neurodegener., 2013, 2(1), 19.
[http://dx.doi.org/10.1186/2047-9158-2-19] [PMID: 24011391]
[42]
Blair, H.A.; Dhillon, S. Safinamide: A Review in Parkinson’s Disease. CNS Drugs, 2017, 31(2), 169-176.
[http://dx.doi.org/10.1007/s40263-017-0408-1] [PMID: 28110399]
[43]
Stocchi, F.; Borgohain, R.; Onofrj, M.; Schapira, A.H.; Bhatt, M.; Lucini, V.; Giuliani, R.; Anand, R. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov. Disord., 2012, 27(1), 106-112.
[http://dx.doi.org/10.1002/mds.23954] [PMID: 21913224]
[44]
Borgohain, R.; Szasz, J.; Stanzione, P.; Meshram, C.; Bhatt, M.; Chirilineau, D.; Stocchi, F.; Lucini, V.; Giuliani, R.; Forrest, E.; Rice, P.; Anand, R. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov. Disord., 2014, 29(2), 229-237.
[http://dx.doi.org/10.1002/mds.25751] [PMID: 24323641]
[45]
Borgohain, R.; Szasz, J.; Stanzione, P.; Meshram, C.; Bhatt, M.H.; Chirilineau, D.; Stocchi, F.; Lucini, V.; Giuliani, R.; Forrest, E.; Rice, P.; Anand, R. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov. Disord., 2014, 29(10), 1273-1280.
[http://dx.doi.org/10.1002/mds.25961] [PMID: 25044402]
[46]
Cattaneo, C.; Müller, T.; Bonizzoni, E.; Lazzeri, G.; Kottakis, I.; Keywood, C. Long-term effects of safinamide on mood fluctuations in Parkinson’s disease. J. Parkinsons Dis., 2017, 7(4), 629-634.
[http://dx.doi.org/10.3233/JPD-171143] [PMID: 28777756]
[47]
Cattaneo, C.; Jost, W.H.; Bonizzoni, E. Long-term efficacy of safinamide on symptoms severity and quality of life in fluctuating Parkinson’s disease patients. J. Parkinsons Dis., 2020, 10(1), 89-97.
[http://dx.doi.org/10.3233/JPD-191765] [PMID: 31594253]
[48]
Cattaneo, C.; Kulisevsky, J.; Tubazio, V.; Castellani, P. Long-term efficacy of safinamide on Parkinson’s disease chronic pain. Adv. Ther., 2018, 35(4), 515-522.
[http://dx.doi.org/10.1007/s12325-018-0687-z] [PMID: 29542008]
[49]
Santos García, D.; Labandeira Guerra, C.; Yáñez Baña, R.; Cimas Hernando, M.I.; Cabo López, I.; Paz Gonález, J.M.; Alonso Losada, M.G.; González Palmás, M.J.; Martínez Miró, C. Safinamide improves non-motor symptoms burden in Parkinson’s disease: An open-label prospective study. Brain Sci., 2021, 11(3), 316.
[http://dx.doi.org/10.3390/brainsci11030316] [PMID: 33801565]
[50]
Santos García, D.; Yáñez Baña, R.; Labandeira Guerra, C.; Cimas Hernando, M.I.; Cabo López, I.; Paz González, J.M.; Alonso Losada, M.G.; Gonzalez Palmás, M.J.; Cores Bartolomé, C.; Martínez Miró, C. Pain improvement in Parkinson’s disease patients treated with safinamide: Results from the SAFINONMOTOR study. J. Pers. Med., 2021, 11(8), 798.
[http://dx.doi.org/10.3390/jpm11080798] [PMID: 34442442]
[51]
Rinaldi, D.; Sforza, M.; Assogna, F.; Savini, C.; Salvetti, M.; Caltagirone, C.; Spalletta, G.; Pontieri, F.E. Safinamide improves executive functions in fluctuating Parkinson’s disease patients: an exploratory study. J. Neural Transm. (Vienna), 2021, 128(2), 273-277.
[PMID: 33068177]
[52]
Peña, E.; Borrué, C.; Mata, M.; Martínez-Castrillo, J.C.; Alonso-Canovas, A.; Chico, J.L.; López-Manzanares, L.; Llanero, M.; Herreros-Rodríguez, J.; Esquivel, A.; Maycas-Cepeda, T.; Ruíz-Huete, C. Impact of safinamide on depressive symptoms in Parkinson’s disease patients (SADness-PD study): A multicenter retrospective study. Brain Sci., 2021, 11(2), 232.
[http://dx.doi.org/10.3390/brainsci11020232] [PMID: 33668408]
[53]
Labandeira, C.M.; Alonso Losada, M.G.; Yáñez Baña, R.; Cimas Hernando, M.I.; Cabo López, I.; Paz González, J.M.; Gonzalez Palmás, M.J.; Martínez Miró, C.; Santos García, D. Effectiveness of safinamide over mood in Parkinson’s disease patients: Secondary analysis of the open-label study SAFINONMOTOR. Adv. Ther., 2021, 38(10), 5398-5411.
[http://dx.doi.org/10.1007/s12325-021-01873-w] [PMID: 34523075]
[54]
Deeks, E.D. Safinamide: First global approval. Drugs, 2015, 75(6), 705-711.
[http://dx.doi.org/10.1007/s40265-015-0389-7] [PMID: 25851099]
[55]
Murata, M.; Hasegawa, K.; Kanazawa, I. Zonisamide improves motor function in Parkinson disease: A randomized, double-blind study. Neurology, 2007, 68(1), 45-50.
[http://dx.doi.org/10.1212/01.wnl.0000250236.75053.16] [PMID: 17200492]
[56]
Maeda, T.; Takano, D.; Yamazaki, T.; Satoh, Y.; Nagata, K. Zonisamide in the early stage of Parkinson’s disease. Neurol. Clin. Neurosci., 2015, 3(4), 127-130.
[http://dx.doi.org/10.1111/ncn3.167]
[57]
Murata, M.; Hasegawa, K.; Kanazawa, I.; Shirakura, K.; Kochi, K.; Shimazu, R.; Kimura, T.; Yoshida, K.; Abe, T.; Kurita, K.; Yoshizawa, K.; Tamaoka, A.; Nakano, I.; Shimizu, T.; Hattori, N.; Mizusawa, H.; Kuno, S.; Yokochi, F.; Hirabayashi, K.; Horiuchi, E.; Kawashima, N.; Koike, R.; Ishikawa, A.; Kuriyama, M.; Mizoguchi, K.; Mitake, S.; Washimi, Y.; Tatsuoka, Y.; Fujimura, H.; Toda, K.; Kondo, T.; Nakashima, K.; Nomoto, M.; Uozumi, T.; Sato, A.; Matsuo, H.; Tsuruta, K. Randomized placebo‐controlled trial of zonisamide in patients with Parkinson’s disease. Neurol. Clin. Neurosci., 2015, 4(1), 10-15.
[http://dx.doi.org/10.1111/ncn3.12026]
[58]
Murata, M.; Hasegawa, K.; Kanazawa, I.; Fukasaka, J.; Kochi, K.; Shimazu, R. Zonisamide improves wearing-off in Parkinson’s disease: A randomized, double-blind study. Mov. Disord., 2015, 30(10), 1343-1350.
[http://dx.doi.org/10.1002/mds.26286] [PMID: 26094993]
[59]
Murata, M.; Odawara, T.; Hasegawa, K.; Iiyama, S.; Nakamura, M.; Tagawa, M.; Kosaka, K. Adjunct zonisamide to levodopa for DLB parkinsonism: A randomized double-blind phase 2 study. Neurology, 2018, 90(8), e664-e672.
[http://dx.doi.org/10.1212/WNL.0000000000005010] [PMID: 29367449]
[60]
Murata, M.; Odawara, T.; Hasegawa, K.; Kajiwara, R.; Takeuchi, H.; Tagawa, M.; Kosaka, K. Effect of zonisamide on parkinsonism in patients with dementia with Lewy bodies: A phase 3 randomized clinical trial. Parkinsonism Relat. Disord., 2020, 76, 91-97.
[http://dx.doi.org/10.1016/j.parkreldis.2019.12.005] [PMID: 31982288]
[61]
Hasegawa, K.; Kochi, K.; Maruyama, H.; Konishi, O.; Toya, S.; Odawara, T. Efficacy and safety of zonisamide in dementia with lewy bodies patients with parkinsonism: A post hoc analysis of two randomized, double-blind, placebo-controlled trials. J. Alzheimers Dis., 2021, 79(2), 627-637.
[http://dx.doi.org/10.3233/JAD-200893] [PMID: 33337365]
[62]
Suzuki, K.; Fujita, H.; Matsubara, T.; Haruyama, Y.; Kadowaki, T.; Funakoshi, K.; Watanabe, Y.; Hirata, K. Zonisamide effects on sleep problems and depressive symptoms in Parkinson’s disease. Brain Behav., 2021, 11(3), e02026.
[http://dx.doi.org/10.1002/brb3.2026] [PMID: 33399276]
[63]
Jamwal, S.; Kumar, P. Insight into the emerging role of striatal neurotransmitters in the pathophysiology of Parkinson’s disease and Huntington’s disease: A review. Curr. Neuropharmacol., 2019, 17(2), 165-175.
[http://dx.doi.org/10.2174/1570159X16666180302115032] [PMID: 29512464]
[64]
Sebastianutto, I.; Cenci, M.A. mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-induced dyskinesia. Curr. Opin. Pharmacol., 2018, 38, 81-89.
[http://dx.doi.org/10.1016/j.coph.2018.03.003] [PMID: 29625424]
[65]
Zhang, Z.; Zhang, S.; Fu, P.; Zhang, Z.; Lin, K.; Ko, J.K.; Yung, K.K. Roles of glutamate receptors in Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(18), E4391.
[http://dx.doi.org/10.3390/ijms20184391] [PMID: 31500132]
[66]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[67]
Sawada, H.; Oeda, T.; Kuno, S.; Nomoto, M.; Yamamoto, K.; Yamamoto, M.; Hisanaga, K.; Kawamura, T. Amantadine for dyskinesias in Parkinson’s disease: A randomized controlled trial. PLoS One, 2010, 5(12), e15298.
[http://dx.doi.org/10.1371/journal.pone.0015298] [PMID: 21217832]
[68]
Goetz, C.G.; Stebbins, G.T.; Chung, K.A.; Hauser, R.A.; Miyasaki, J.M.; Nicholas, A.P.; Poewe, W.; Seppi, K.; Rascol, O.; Stacy, M.A.; Nutt, J.G.; Tanner, C.M.; Urkowitz, A.; Jaglin, J.A.; Ge, S. Which dyskinesia scale best detects treatment response? Mov. Disord., 2013, 28(3), 341-346.
[http://dx.doi.org/10.1002/mds.25321] [PMID: 23390076]
[69]
Chan, H.F.; Kukkle, P.L.; Merello, M.; Lim, S.Y.; Poon, Y.Y.; Moro, E. Amantadine improves gait in PD patients with STN stimulation. Parkinsonism Relat. Disord., 2013, 19(3), 316-319.
[http://dx.doi.org/10.1016/j.parkreldis.2012.11.005] [PMID: 23218842]
[70]
Ory-Magne, F.; Corvol, J.C.; Azulay, J.P.; Bonnet, A.M.; Brefel-Courbon, C.; Damier, P.; Dellapina, E.; Destée, A.; Durif, F.; Galitzky, M.; Lebouvier, T.; Meissner, W.; Thalamas, C.; Tison, F.; Salis, A.; Sommet, A.; Viallet, F.; Vidailhet, M.; Rascol, O. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology, 2014, 82(4), 300-307.
[http://dx.doi.org/10.1212/WNL.0000000000000050] [PMID: 24371304]
[71]
Mizoguchi, K.; Yokoo, H.; Yoshida, M.; Tanaka, T.; Tanaka, M. Amantadine increases the extracellular dopamine levels in the striatum by re-uptake inhibition and by N-methyl-D-aspartate antagonism. Brain Res., 1994, 662(1-2), 255-258.
[http://dx.doi.org/10.1016/0006-8993(94)90821-4] [PMID: 7859080]
[72]
Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Sethi, K.; Isaacson, S.; Truong, D.; Struck, L.; Ruby, A.E.; McClure, N.L.; Went, G.T.; Stempien, M.J. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED study). Mov. Disord., 2015, 30(6), 788-795.
[http://dx.doi.org/10.1002/mds.26159] [PMID: 25650051]
[73]
Oertel, W.; Eggert, K.; Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Trenkwalder, C.; Ehret, R.; Azulay, J.P.; Isaacson, S.; Felt, L.; Stempien, M.J. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov. Disord., 2017, 32(12), 1701-1709.
[http://dx.doi.org/10.1002/mds.27131] [PMID: 28833562]
[74]
Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Isaacson, S.H.; Nausieda, P.A.; Truong, D.D.; Agarwal, P.; Hull, K.L.; Lyons, K.E.; Johnson, R.; Stempien, M.J. ADS-5102 (Amantadine) extended-release capsules for levodopa-induced dyskinesia in parkinson disease (EASE LID study): A randomized clinical trial. JAMA Neurol., 2017, 74(8), 941-949.
[http://dx.doi.org/10.1001/jamaneurol.2017.0943] [PMID: 28604926]
[75]
Mehta, S.H.; Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Johnson, R. Effects of gocovri (Amantadine) extended release capsules on non-motor symptoms in patients with Parkinson’s disease and dyskinesia. Neurol. Ther., 2021, 10(1), 307-320.
[http://dx.doi.org/10.1007/s40120-021-00246-3] [PMID: 33864229]
[76]
Müller, T.; Möhr, J.D. Recent clinical advances in pharmacotherapy for levodopa-induced dyskinesia. Drugs, 2019, 79(13), 1367-1374.
[http://dx.doi.org/10.1007/s40265-019-01170-5] [PMID: 31332769]
[77]
Hauser, R.A.; Pahwa, R.; Wargin, W.A.; Souza-Prien, C.J.; McClure, N.; Johnson, R.; Nguyen, J.T.; Patni, R.; Went, G.T. Pharmacokinetics of ADS-5102 (Amantadine) Extended release capsules administered once daily at bedtime for the treatment of dyskinesia. Clin. Pharmacokinet., 2019, 58(1), 77-88.
[http://dx.doi.org/10.1007/s40262-018-0663-4] [PMID: 29777529]
[78]
Malek, N.; Grosset, D.G. Medication adherence in patients with Parkinson’s disease. CNS Drugs, 2015, 29(1), 47-53.
[http://dx.doi.org/10.1007/s40263-014-0220-0] [PMID: 25503824]
[79]
Perez-Lloret, S.; Rascol, O. Efficacy and safety of amantadine for the treatment of L-DOPA-induced dyskinesia. J. Neural Transm. (Vienna), 2018, 125(8), 1237-1250.
[http://dx.doi.org/10.1007/s00702-018-1869-1] [PMID: 29511826]
[80]
Moreau, C.; Delval, A.; Tiffreau, V.; Defebvre, L.; Dujardin, K.; Duhamel, A.; Petyt, G.; Hossein-Foucher, C.; Blum, D.; Sablonnière, B.; Schraen, S.; Allorge, D.; Destée, A.; Bordet, R.; Devos, D. Memantine for axial signs in Parkinson’s disease: A randomised, double-blind, placebo-controlled pilot study. J. Neurol. Neurosurg. Psychiatry, 2013, 84(5), 552-555.
[http://dx.doi.org/10.1136/jnnp-2012-303182] [PMID: 23077087]
[81]
Wictorin, K.; Widner, H. Memantine and reduced time with dyskinesia in Parkinson’s Disease. Acta Neurol. Scand., 2016, 133(5), 355-360.
[http://dx.doi.org/10.1111/ane.12468] [PMID: 26234336]
[82]
Wesnes, K.A.; Aarsland, D.; Ballard, C.; Londos, E. Memantine improves attention and episodic memory in Parkinson’s disease dementia and dementia with Lewy bodies. Int. J. Geriatr. Psychiatry, 2015, 30(1), 46-54.
[http://dx.doi.org/10.1002/gps.4109] [PMID: 24737460]
[83]
Fox, S.H.; Metman, L.V.; Nutt, J.G.; Brodsky, M.; Factor, S.A.; Lang, A.E.; Pope, L.E.; Knowles, N.; Siffert, J. Trial of dextromethorphan/quinidine to treat levodopa-induced dyskinesia in Parkinson’s disease. Mov. Disord., 2017, 32(6), 893-903.
[http://dx.doi.org/10.1002/mds.26976] [PMID: 28370447]
[84]
Silverdale, M.A.; Nicholson, S.L.; Crossman, A.R.; Brotchie, J.M. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov. Disord., 2005, 20(4), 403-409.
[http://dx.doi.org/10.1002/mds.20345] [PMID: 15593312]
[85]
Kobylecki, C.; Hill, M.P.; Crossman, A.R.; Ravenscroft, P. Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson’s disease. Mov. Disord., 2011, 26(13), 2354-2363.
[http://dx.doi.org/10.1002/mds.23867] [PMID: 21953539]
[86]
Kobylecki, C.; Burn, D.J.; Kass-Iliyya, L.; Kellett, M.W.; Crossman, A.R.; Silverdale, M.A. Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(4), 452-455.
[http://dx.doi.org/10.1016/j.parkreldis.2014.01.016] [PMID: 24521874]
[87]
Goetz, C.G.; Stebbins, G.T.; Chung, K.A.; Nicholas, A.P.; Hauser, R.A.; Merkitch, D.; Stacy, M.A. Topiramate as an adjunct to amantadine in the treatment of dyskinesia in parkinson’s disease: A randomized, double-blind, placebo-controlled multicenter study. Mov. Disord., 2017, 32(9), 1335-1336.
[http://dx.doi.org/10.1002/mds.27092] [PMID: 28646494]
[88]
Lees, A.; Fahn, S.; Eggert, K.M.; Jankovic, J.; Lang, A.; Micheli, F.; Mouradian, M.M.; Oertel, W.H.; Olanow, C.W.; Poewe, W.; Rascol, O.; Tolosa, E.; Squillacote, D.; Kumar, D. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov. Disord., 2012, 27(2), 284-288.
[http://dx.doi.org/10.1002/mds.23983] [PMID: 22161845]
[89]
Parkinson Study Group. Evaluation of dyskinesias in a pilot, randomized, placebo-controlled trial of remacemide in advanced Parkinson disease. Arch. Neurol., 2001, 58(10), 1660-1668.
[http://dx.doi.org/10.1001/archneur.58.10.1660] [PMID: 11594926]
[90]
Iderberg, H.; Maslava, N.; Thompson, A.D.; Bubser, M.; Niswender, C.M.; Hopkins, C.R.; Lindsley, C.W.; Conn, P.J.; Jones, C.K.; Cenci, M.A. Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson’s disease and L-DOPA-induced dyskinesia: Comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology, 2015, 95, 121-129.
[http://dx.doi.org/10.1016/j.neuropharm.2015.02.023] [PMID: 25749357]
[91]
Charvin, D.; Di Paolo, T.; Bezard, E.; Gregoire, L.; Takano, A.; Duvey, G.; Pioli, E.; Halldin, C.; Medori, R.; Conquet, F. An mGlu4-Positive Allosteric Modulator Alleviates Parkinsonism in Primates. Mov. Disord., 2018, 33(10), 1619-1631.
[http://dx.doi.org/10.1002/mds.27462] [PMID: 30216534]
[92]
Pisani, A.; Bonsi, P.; Centonze, D.; Gubellini, P.; Bernardi, G.; Calabresi, P. Targeting striatal cholinergic interneurons in Parkinson’s disease: focus on metabotropic glutamate receptors. Neuropharmacology, 2003, 45(1), 45-56.
[http://dx.doi.org/10.1016/S0028-3908(03)00137-0] [PMID: 12814658]
[93]
Pourmirbabaei, S.; Dolatshahi, M.; Rahmani, F. Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur. J. Pharmacol., 2019, 855, 149-159.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.004] [PMID: 31063776]
[94]
Berg, D.; Godau, J.; Trenkwalder, C.; Eggert, K.; Csoti, I.; Storch, A.; Huber, H.; Morelli-Canelo, M.; Stamelou, M.; Ries, V.; Wolz, M.; Schneider, C.; Di Paolo, T.; Gasparini, F.; Hariry, S.; Vandemeulebroecke, M.; Abi-Saab, W.; Cooke, K.; Johns, D.; Gomez-Mancilla, B. AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov. Disord., 2011, 26(7), 1243-1250.
[http://dx.doi.org/10.1002/mds.23616] [PMID: 21484867]
[95]
Stocchi, F.; Rascol, O.; Destee, A.; Hattori, N.; Hauser, R.A.; Lang, A.E.; Poewe, W.; Stacy, M.; Tolosa, E.; Gao, H.; Nagel, J.; Merschhemke, M.; Graf, A.; Kenney, C.; Trenkwalder, C. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov. Disord., 2013, 28(13), 1838-1846.
[http://dx.doi.org/10.1002/mds.25561] [PMID: 23853029]
[96]
Kumar, R.; Hauser, R.A.; Mostillo, J.; Dronamraju, N.; Graf, A.; Merschhemke, M.; Kenney, C. Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson’s disease patients. Int. J. Neurosci., 2016, 126(1), 20-24.
[http://dx.doi.org/10.3109/00207454.2013.841685] [PMID: 24007304]
[97]
Trenkwalder, C.; Stocchi, F.; Poewe, W.; Dronamraju, N.; Kenney, C.; Shah, A.; von Raison, F.; Graf, A. Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: Two randomized phase 2 studies. Mov. Disord., 2016, 31(7), 1054-1058.
[http://dx.doi.org/10.1002/mds.26585] [PMID: 27214258]
[98]
Negida, A.; Ghaith, H.S.; Fala, S.Y.; Ahmed, H.; Bahbah, E.I.; Ebada, M.A.; Aziz, M.A.E. Mavoglurant (AFQ056) for the treatment of levodopa-induced dyskinesia in patients with Parkinson’s disease: a meta-analysis. Neurol. Sci., 2021, 42(8), 3135-3143.
[http://dx.doi.org/10.1007/s10072-021-05319-7] [PMID: 34014397]
[99]
Bezard, E.; Pioli, E.Y.; Li, Q.; Girard, F.; Mutel, V.; Keywood, C.; Tison, F.; Rascol, O.; Poli, S.M. The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov. Disord., 2014, 29(8), 1074-1079.
[http://dx.doi.org/10.1002/mds.25920] [PMID: 24865335]
[100]
Rascol, O.; Ferreira, J.; Nègre-Pages, L.; Perez-Lloret, S.; Lacomblez, L.; Galitzky, M.; Lemarié, J.C.; Corvol, J.C.; Brotchie, J.M.; Bossi, L. A proof-of-concept, randomized, placebo-controlled, multiple cross-overs (n-of-1) study of naftazone in Parkinson’s disease. Fundam. Clin. Pharmacol., 2012, 26(4), 557-564.
[http://dx.doi.org/10.1111/j.1472-8206.2011.00951.x] [PMID: 21585523]
[101]
Corvol, J.C.; Durif, F.; Meissner, W.G.; Azulay, J.P.; Haddad, R.; Guimarães-Costa, R.; Mariani, L.L.; Cormier-Dequaire, F.; Thalamas, C.; Galitzky, M.; Boraud, T.; Debilly, B.; Eusebio, A.; Houot, M.; Dellapina, E.; Chaigneau, V.; Salis, A.; Lacomblez, L.; Benel, L.; Rascol, O. Naftazone in advanced Parkinson’s disease: An acute L-DOPA challenge randomized controlled trial. Parkinsonism Relat. Disord., 2019, 60, 51-56.
[http://dx.doi.org/10.1016/j.parkreldis.2018.10.005] [PMID: 30297210]
[102]
Nicholson, S.L.; Brotchie, J.M. 5-hydroxytryptamine (5-HT, serotonin) and Parkinson’s disease - opportunities for novel therapeutics to reduce the problems of levodopa therapy. Eur. J. Neurol., 2002, 9(s3)(Suppl. 3), 1-6.
[http://dx.doi.org/10.1046/j.1468-1331.9.s3.1.x] [PMID: 12464115]
[103]
Muñoz, A.; Li, Q.; Gardoni, F.; Marcello, E.; Qin, C.; Carlsson, T.; Kirik, D.; Di Luca, M.; Björklund, A.; Bezard, E.; Carta, M. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain, 2008, 131(Pt 12), 3380-3394.
[http://dx.doi.org/10.1093/brain/awn235] [PMID: 18952677]
[104]
Fox, S.H. Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs, 2013, 73(13), 1405-1415.
[http://dx.doi.org/10.1007/s40265-013-0105-4] [PMID: 23917951]
[105]
Schneider, R.B.; Auinger, P.; Tarolli, C.G.; Iourinets, J.; Gil-Díaz, M.C.; Richard, I.H. A trial of buspirone for anxiety in Parkinson’s disease: Safety and tolerability. Parkinsonism Relat. Disord., 2020, 81, 69-74.
[http://dx.doi.org/10.1016/j.parkreldis.2020.10.020] [PMID: 33070009]
[106]
Goetz, C.G.; Damier, P.; Hicking, C.; Laska, E.; Müller, T.; Olanow, C.W.; Rascol, O.; Russ, H. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov. Disord., 2007, 22(2), 179-186.
[http://dx.doi.org/10.1002/mds.21226] [PMID: 17094088]
[107]
Goetz, C.G.; Laska, E.; Hicking, C.; Damier, P.; Müller, T.; Nutt, J.; Warren Olanow, C.; Rascol, O.; Russ, H. Placebo influences on dyskinesia in Parkinson’s disease. Mov. Disord., 2008, 23(5), 700-707.
[http://dx.doi.org/10.1002/mds.21897] [PMID: 18175337]
[108]
Bezard, E.; Tronci, E.; Pioli, E.Y.; Li, Q.; Porras, G.; Björklund, A.; Carta, M. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov. Disord., 2013, 28(8), 1088-1096.
[http://dx.doi.org/10.1002/mds.25366] [PMID: 23389842]
[109]
Svenningsson, P.; Rosenblad, C.; Af Edholm Arvidsson, K.; Wictorin, K.; Keywood, C.; Shankar, B.; Lowe, D.A.; Björklund, A.; Widner, H. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain, 2015, 138(Pt 4), 963-973.
[http://dx.doi.org/10.1093/brain/awu409] [PMID: 25669730]
[110]
McFarthing, K.; Prakash, N.; Simuni, T. CLINICAL TRIAL HIGHLIGHTS - DYSKINESIA. J. Parkinsons Dis., 2019, 9(3), 449-465.
[http://dx.doi.org/10.3233/JPD-199002] [PMID: 31356217]
[111]
Fisher, R.; Hikima, A.; Morris, R.; Jackson, M.J.; Rose, S.; Varney, M.A.; Depoortere, R.; Newman-Tancredi, A. The selective 5-HT1A receptor agonist, NLX-112, exerts anti-dyskinetic and anti-parkinsonian-like effects in MPTP-treated marmosets. Neuropharmacology, 2020, 167, 107997.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107997] [PMID: 32057799]
[112]
Depoortere, R.; Johnston, T.H.; Fox, S.H.; Brotchie, J.M.; Newman-Tancredi, A. The selective 5-HT1A receptor agonist, NLX-112, exerts anti-dyskinetic effects in MPTP-treated macaques. Parkinsonism Relat. Disord., 2020, 78, 151-157.
[http://dx.doi.org/10.1016/j.parkreldis.2020.08.009] [PMID: 32846366]
[113]
Huot, P.; Johnston, T.H.; Fox, S.H.; Newman-Tancredi, A.; Brotchie, J.M. The highly-selective 5-HT(1A) agonist F15599 reduces L-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology, 2015, 97, 306-311.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.033] [PMID: 26071982]
[114]
Leucht, S.; Corves, C.; Arbter, D.; Engel, R.R.; Li, C.; Davis, J.M. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet, 2009, 373(9657), 31-41.
[http://dx.doi.org/10.1016/S0140-6736(08)61764-X] [PMID: 19058842]
[115]
Chang, A.; Fox, S.H. Psychosis in Parkinson’s disease: Epidemiology, pathophysiology, and management. Drugs, 2016, 76(11), 1093-1118.
[http://dx.doi.org/10.1007/s40265-016-0600-5] [PMID: 27312429]
[116]
Brown, T.M. Clozapine for drug-induced psychosis in Parkinson’s disease. N. Engl. J. Med., 1999, 341(6), 456.
[http://dx.doi.org/10.1056/NEJM199908053410617] [PMID: 10438274]
[117]
Friedman, J.; Lannon, M.; Comella, C.; Factor, S.; Kurlan, R.; Richard, I.; Parsa, M.; Pfeiffer, R.; Davies, R.; Janko, K.; Brown, D.; Gardner, I.; Pearson, N.; Large, K.; Rast, S.; Oakes, D.; Goetz, C.; Paulson, G.; Marshall, F.; Greenamyre, J. Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson’s disease. N. Engl. J. Med., 1999, 340(10), 757-763.
[http://dx.doi.org/10.1056/NEJM199903113401003] [PMID: 10072410]
[118]
Yaw, T.K.; Fox, S.H.; Lang, A.E. Clozapine in Parkinsonian rest tremor: A review of outcomes, adverse reactions, and possible mechanisms of action. Mov. Disord. Clin. Pract. (Hoboken), 2015, 3(2), 116-124.
[http://dx.doi.org/10.1002/mdc3.12266] [PMID: 30363578]
[119]
Bonuccelli, U.; Ceravolo, R.; Salvetti, S.; D’Avino, C.; Del Dotto, P.; Rossi, G.; Murri, L. Clozapine in Parkinson’s disease tremor. Effects of acute and chronic administration. Neurology, 1997, 49(6), 1587-1590.
[http://dx.doi.org/10.1212/WNL.49.6.1587] [PMID: 9409351]
[120]
Durif, F.; Debilly, B.; Galitzky, M.; Morand, D.; Viallet, F.; Borg, M.; Thobois, S.; Broussolle, E.; Rascol, O. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology, 2004, 62(3), 381-388.
[http://dx.doi.org/10.1212/01.WNL.0000110317.52453.6C] [PMID: 14872017]
[121]
Honigfeld, G.; Arellano, F.; Sethi, J.; Bianchini, A.; Schein, J. Reducing clozapine-related morbidity and mortality: 5 years of experience with the Clozaril National Registry. J. Clin. Psychiatry, 1998, 59(Suppl. 3), 3-7.
[PMID: 9541331]
[122]
Devinsky, O.; Honigfeld, G.; Patin, J. Clozapine-related seizures. Neurology, 1991, 41(3), 369-371.
[http://dx.doi.org/10.1212/WNL.41.3.369] [PMID: 2006003]
[123]
Meltzer, H.Y.; Mills, R.; Revell, S.; Williams, H.; Johnson, A.; Bahr, D.; Friedman, J.H. Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of parkinson’s disease psychosis. Neuropsychopharmacology, 2010, 35(4), 881-892.
[http://dx.doi.org/10.1038/npp.2009.176] [PMID: 19907417]
[124]
Cummings, J.; Isaacson, S.; Mills, R.; Williams, H.; Chi-Burris, K.; Corbett, A.; Dhall, R.; Ballard, C. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet, 2014, 383(9916), 533-540.
[http://dx.doi.org/10.1016/S0140-6736(13)62106-6] [PMID: 24183563]
[125]
Espay, A.J.; Guskey, M.T.; Norton, J.C.; Coate, B.; Vizcarra, J.A.; Ballard, C.; Factor, S.A.; Friedman, J.H.; Lang, A.E.; Larsen, N.J.; Andersson, C.; Fredericks, D.; Weintraub, D. Pimavanserin for Parkinson’s Disease psychosis: Effects stratified by baseline cognition and use of cognitive-enhancing medications. Mov. Disord., 2018, 33(11), 1769-1776.
[http://dx.doi.org/10.1002/mds.27488] [PMID: 30387904]
[126]
Chendo, I.; Ferreira, J.J. Pimavanserin for the treatment of Parkinson’s disease psychosis. Expert Opin. Pharmacother., 2016, 17(15), 2115-2124.
[http://dx.doi.org/10.1080/14656566.2016.1234609] [PMID: 27609312]
[127]
Markham, A. Pimavanserin: First Global Approval. Drugs, 2016, 76(10), 1053-1057.
[http://dx.doi.org/10.1007/s40265-016-0597-9] [PMID: 27262680]
[128]
Braak, H.; Del Tredici, K. Neuropathological Staging of Brain Pathology in Sporadic Parkinson’s disease: Separating the Wheat from the Chaff. J. Parkinsons Dis., 2017, 7(s1), S71-S85.
[http://dx.doi.org/10.3233/JPD-179001] [PMID: 28282810]
[129]
Karachi, C.; Grabli, D.; Bernard, F.A.; Tandé, D.; Wattiez, N.; Belaid, H.; Bardinet, E.; Prigent, A.; Nothacker, H.P.; Hunot, S.; Hartmann, A.; Lehéricy, S.; Hirsch, E.C.; François, C. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Invest., 2010, 120(8), 2745-2754.
[http://dx.doi.org/10.1172/JCI42642] [PMID: 20628197]
[130]
Yarnall, A.; Rochester, L.; Burn, D.J. The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov. Disord., 2011, 26(14), 2496-2503.
[http://dx.doi.org/10.1002/mds.23932] [PMID: 21898597]
[131]
Henderson, E.J.; Lord, S.R.; Brodie, M.A.; Gaunt, D.M.; Lawrence, A.D.; Close, J.C.; Whone, A.L.; Ben-Shlomo, Y. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol., 2016, 15(3), 249-258.
[http://dx.doi.org/10.1016/S1474-4422(15)00389-0] [PMID: 26795874]
[132]
Li, Z.; Yu, Z.; Zhang, J.; Wang, J.; Sun, C.; Wang, P.; Zhang, J. Impact of rivastigmine on cognitive dysfunction and falling in Parkinson’s disease patients. Eur. Neurol., 2015, 74(1-2), 86-91.
[http://dx.doi.org/10.1159/000438824] [PMID: 26288230]
[133]
McDonald, J.; Pourcher, E.; Nadeau, A.; Corbeil, P. A Randomized trial of oral and transdermal rivastigmine for postural instability in Parkinson disease dementia. Clin. Neuropharmacol., 2018, 41(3), 87-93.
[http://dx.doi.org/10.1097/WNF.0000000000000275] [PMID: 29537978]
[134]
van Mierlo, T.J.M.; Foncke, E.M.J.; Post, B.; Schmand, B.A.; Bloem, B.R.; van Harten, B.; Tissingh, G.; Munts, A.G.; de Haan, R.J.; de Bie, R.M.A. Rivastigmine for minor visual hallucinations in Parkinson’s disease: A randomized controlled trial with 24 months follow-up. Brain Behav., 2021, 11(8), e2257.
[http://dx.doi.org/10.1002/brb3.2257] [PMID: 34291590]
[135]
Espay, A.J.; Marsili, L.; Mahajan, A.; Sturchio, A.; Pathan, R.; Pilotto, A.; Elango, D.S.; Pezous, N.; Masellis, M.; Gomez-Mancilla, B. Rivastigmine in Parkinson’s disease dementia with orthostatic hypotension. Ann. Neurol., 2021, 89(1), 91-98.
[http://dx.doi.org/10.1002/ana.25923] [PMID: 33016374]
[136]
Dubois, B.; Tolosa, E.; Katzenschlager, R.; Emre, M.; Lees, A.J.; Schumann, G.; Pourcher, E.; Gray, J.; Thomas, G.; Swartz, J.; Hsu, T.; Moline, M.L. Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov. Disord., 2012, 27(10), 1230-1238.
[http://dx.doi.org/10.1002/mds.25098] [PMID: 22915447]
[137]
Chung, K.A.; Lobb, B.M.; Nutt, J.G.; Horak, F.B. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology, 2010, 75(14), 1263-1269.
[http://dx.doi.org/10.1212/WNL.0b013e3181f6128c] [PMID: 20810998]
[138]
Mancini, M.; Chung, K.; Zajack, A.; Martini, D.N.; Ramsey, K.; Lapidus, J.; Horak, F.B.; Nutt, J.G. Effects of augmenting cholinergic neurotransmission on balance in Parkinson’s disease. Parkinsonism Relat. Disord., 2019, 69, 40-47.
[http://dx.doi.org/10.1016/j.parkreldis.2019.10.022] [PMID: 31675664]
[139]
Singer, W.; Opfer-Gehrking, T.L.; McPhee, B.R.; Hilz, M.J.; Bharucha, A.E.; Low, P.A. Acetylcholinesterase inhibition: a novel approach in the treatment of neurogenic orthostatic hypotension. J. Neurol. Neurosurg. Psychiatry, 2003, 74(9), 1294-1298.
[http://dx.doi.org/10.1136/jnnp.74.9.1294] [PMID: 12933939]
[140]
Schreglmann, S.R.; Büchele, F.; Sommerauer, M.; Epprecht, L.; Kägi, G.; Hägele-Link, S.; Götze, O.; Zimmerli, L.; Waldvogel, D.; Baumann, C.R. Pyridostigmine bromide versus fludrocortisone in the treatment of orthostatic hypotension in Parkinson’s disease - a randomized controlled trial. Eur. J. Neurol., 2017, 24(4), 545-551.
[http://dx.doi.org/10.1111/ene.13260] [PMID: 28224720]
[141]
Villafane, G.; Cesaro, P.; Rialland, A.; Baloul, S.; Azimi, S.; Bourdet, C.; Le Houezec, J.; Macquin-Mavier, I.; Maison, P. Chronic high dose transdermal nicotine in Parkinson’s disease: an open trial. Eur. J. Neurol., 2007, 14(12), 1313-1316.
[http://dx.doi.org/10.1111/j.1468-1331.2007.01949.x] [PMID: 17941858]
[142]
Villafane, G.; Thiriez, C.; Audureau, E.; Straczek, C.; Kerschen, P.; Cormier-Dequaire, F.; Van Der Gucht, A.; Gurruchaga, J.M.; Quéré-Carne, M.; Evangelista, E.; Paul, M.; Defer, G.; Damier, P.; Remy, P.; Itti, E.; Fénelon, G. High-dose transdermal nicotine in Parkinson’s disease patients: a randomized, open-label, blinded-endpoint evaluation phase 2 study. Eur. J. Neurol., 2018, 25(1), 120-127.
[http://dx.doi.org/10.1111/ene.13474] [PMID: 28960663]
[143]
Lieberman, A.; Lockhart, T.E.; Olson, M.C.; Smith Hussain, V.A.; Frames, C.W.; Sadreddin, A.; McCauley, M.; Ludington, E. Nicotine bitartrate reduces falls and freezing of gait in Parkinson disease: A reanalysis. Front. Neurol., 2019, 10, 424.
[http://dx.doi.org/10.3389/fneur.2019.00424] [PMID: 31133957]
[144]
Di Paolo, T.; Grégoire, L.; Feuerbach, D.; Elbast, W.; Weiss, M.; Gomez-Mancilla, B. AQW051, a novel and selective nicotinic acetylcholine receptor α7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism Relat. Disord., 2014, 20(11), 1119-1123.
[http://dx.doi.org/10.1016/j.parkreldis.2014.05.007] [PMID: 25172125]
[145]
Trenkwalder, C.; Berg, D.; Rascol, O.; Eggert, K.; Ceballos-Baumann, A.; Corvol, J.C.; Storch, A.; Zhang, L.; Azulay, J.P.; Broussolle, E.; Defebvre, L.; Geny, C.; Gostkowski, M.; Stocchi, F.; Tranchant, C.; Derkinderen, P.; Durif, F.; Espay, A.J.; Feigin, A.; Houeto, J.L.; Schwarz, J.; Di Paolo, T.; Feuerbach, D.; Hockey, H.U.; Jaeger, J.; Jakab, A.; Johns, D.; Linazasoro, G.; Maruff, P.; Rozenberg, I.; Sovago, J.; Weiss, M.; Gomez-Mancilla, B. A placebo-controlled trial of AQW051 in patients with moderate to severe levodopa-induced dyskinesia. Mov. Disord., 2016, 31(7), 1049-1054.
[http://dx.doi.org/10.1002/mds.26569] [PMID: 26990766]
[146]
Arbouw, M.E.; Movig, K.L.; Koopmann, M.; Poels, P.J.; Guchelaar, H.J.; Egberts, T.C.; Neef, C.; van Vugt, J.P. Glycopyrrolate for sialorrhea in Parkinson disease: a randomized, double-blind, crossover trial. Neurology, 2010, 74(15), 1203-1207.
[http://dx.doi.org/10.1212/WNL.0b013e3181d8c1b7] [PMID: 20385892]
[147]
Mestre, T.A.; Freitas, E.; Basndwah, A.; Lopez, M.R.; de Oliveira, L.M.; Al-Shorafat, D.M.; Zhang, T.; Lui, J.P.; Grimes, D.; Fox, S.H. Glycopyrrolate improves disability from sialorrhea in Parkinson’s disease: A 12-week controlled trial. Mov. Disord., 2020, 35(12), 2319-2323.
[http://dx.doi.org/10.1002/mds.28196] [PMID: 32657457]
[148]
Lloret, S.P.; Nano, G.; Carrosella, A.; Gamzu, E.; Merello, M. A double-blind, placebo-controlled, randomized, crossover pilot study of the safety and efficacy of multiple doses of intra-oral tropicamide films for the short-term relief of sialorrhea symptoms in Parkinson’s disease patients. J. Neurol. Sci., 2011, 310(1-2), 248-250.
[http://dx.doi.org/10.1016/j.jns.2011.05.021] [PMID: 21636098]
[149]
Mills, R.; Bahroo, L.; Pagan, F. An update on the use of botulinum toxin therapy in Parkinson’s disease. Curr. Neurol. Neurosci. Rep., 2015, 15(1), 511.
[http://dx.doi.org/10.1007/s11910-014-0511-3] [PMID: 25407133]
[150]
Rahimi, F.; Samotus, O.; Lee, J.; Jog, M. Effective management of upper limb parkinsonian tremor by incobotulinumtoxin A injections using sensor-based biomechanical patterns. Tremor Other Hyperkinet. Mov. (N. Y.), 2015, 5(0), 348.
[http://dx.doi.org/10.5334/tohm.240] [PMID: 26566459]
[151]
Mittal, S.O.; Machado, D.; Richardson, D.; Dubey, D.; Jabbari, B. Botulinum toxin in Parkinson disease tremor: A randomized, double-blind, placebo-controlled study with a customized injection approach. Mayo Clin. Proc., 2017, 92(9), 1359-1367.
[http://dx.doi.org/10.1016/j.mayocp.2017.06.010] [PMID: 28789780]
[152]
Bruno, V.; Freitas, M.E.; Mancini, D.; Lui, J.P.; Miyasaki, J.; Fox, S.H. Botulinum toxin type A for pain in advanced Parkinson’s disease. Can. J. Neurol. Sci., 2018, 45(1), 23-29.
[http://dx.doi.org/10.1017/cjn.2017.245] [PMID: 29334040]
[153]
Knüpfer, S.C.; Schneider, S.A.; Averhoff, M.M.; Naumann, C.M.; Deuschl, G.; Jünemann, K.P.; Hamann, M.F. Preserved micturition after intradetrusor onabotulinumtoxin A injection for treatment of neurogenic bladder dysfunction in Parkinson’s disease. BMC Urol., 2016, 16(1), 55.
[http://dx.doi.org/10.1186/s12894-016-0174-2] [PMID: 27596481]
[154]
Vurture, G.; Peyronnet, B.; Feigin, A.; Biagioni, M.C.; Gilbert, R.; Rosenblum, N.; Frucht, S.; Di Rocco, A.; Nitti, V.W.; Brucker, B.M. Outcomes of intradetrusor onabotulinum toxin A injection in patients with Parkinson’s disease. Neurourol. Urodyn., 2018, 37(8), 2669-2677.
[http://dx.doi.org/10.1002/nau.23717] [PMID: 29767449]
[155]
Egevad, G.; Petkova, V.Y.; Vilholm, O.J. Sialorrhea in patients with Parkinson’s disease: safety and administration of botulinum neurotoxin. J. Parkinsons Dis., 2014, 4(3), 321-326.
[http://dx.doi.org/10.3233/JPD-140379] [PMID: 24919823]
[156]
Srivanitchapoom, P.; Pandey, S.; Hallett, M. Drooling in Parkinson’s disease: a review. Parkinsonism Relat. Disord., 2014, 20(11), 1109-1118.
[http://dx.doi.org/10.1016/j.parkreldis.2014.08.013] [PMID: 25200111]
[157]
Petracca, M.; Guidubaldi, A.; Ricciardi, L.; Ialongo, T.; Del Grande, A.; Mulas, D.; Di Stasio, E.; Bentivoglio, A.R. Botulinum Toxin A and B in sialorrhea: Long-term data and literature overview. Toxicon., 2015, 107(Pt A), 129-140.
[http://dx.doi.org/10.1016/j.toxicon.2015.08.014] [PMID: 26327120]
[158]
Jost, W.H.; Friedman, A.; Michel, O.; Oehlwein, C.; Slawek, J.; Bogucki, A.; Ochudlo, S.; Banach, M.; Pagan, F.; Flatau-Baqué, B.; Csikós, J.; Cairney, C.J.; Blitzer, A. SIAXI: Placebo-controlled, randomized, double-blind study of incobotulinumtoxinA for sialorrhea. Neurology, 2019, 92(17), e1982-e1991.
[http://dx.doi.org/10.1212/WNL.0000000000007368] [PMID: 30918101]
[159]
Jost, W.H.; Friedman, A.; Michel, O.; Oehlwein, C.; Slawek, J.; Bogucki, A.; Ochudlo, S.; Banach, M.; Pagan, F.; Flatau-Baqué, B.; Dorsch, U.; Csikós, J.; Blitzer, A. Long-term incobotulinumtoxinA treatment for chronic sialorrhea: Efficacy and safety over 64 weeks. Parkinsonism Relat. Disord., 2020, 70, 23-30.
[http://dx.doi.org/10.1016/j.parkreldis.2019.11.024] [PMID: 31794936]
[160]
Isaacson, S.H.; Ondo, W.; Jackson, C.E.; Trosch, R.M.; Molho, E.; Pagan, F.; Lew, M.; Dashtipour, K.; Clinch, T.; Espay, A.J. Safety and efficacy of rimabotulinumtoxinb for treatment of sialorrhea in adults: A randomized clinical Trial. JAMA Neurol., 2020, 77(4), 461-469.
[http://dx.doi.org/10.1001/jamaneurol.2019.4565] [PMID: 31930364]
[161]
Lewitt, P.A. Norepinephrine: the next therapeutics frontier for Parkinson’s disease. Transl. Neurodegener., 2012, 1(1), 4.
[http://dx.doi.org/10.1186/2047-9158-1-4] [PMID: 23211006]
[162]
Espay, A.J.; LeWitt, P.A.; Kaufmann, H. Norepinephrine deficiency in Parkinson’s disease: the case for noradrenergic enhancement. Mov. Disord., 2014, 29(14), 1710-1719.
[http://dx.doi.org/10.1002/mds.26048] [PMID: 25297066]
[163]
Hauser, R.A.; Hewitt, L.A.; Isaacson, S. Droxidopa in patients with neurogenic orthostatic hypotension associated with Parkinson’s disease (NOH306A). J. Parkinsons Dis., 2014, 4(1), 57-65.
[http://dx.doi.org/10.3233/JPD-130259] [PMID: 24326693]
[164]
Hauser, R.A.; Isaacson, S.; Lisk, J.P.; Hewitt, L.A.; Rowse, G. Droxidopa for the short-term treatment of symptomatic neurogenic orthostatic hypotension in Parkinson’s disease (nOH306B). Mov. Disord., 2015, 30(5), 646-654.
[http://dx.doi.org/10.1002/mds.26086] [PMID: 25487613]
[165]
Hauser, R.A.; Heritier, S.; Rowse, G.J.; Hewitt, L.A.; Isaacson, S.H. Droxidopa and reduced falls in a trial of Parkinson disease patients with neurogenic orthostatic hypotension. Clin. Neuropharmacol., 2016, 39(5), 220-226.
[http://dx.doi.org/10.1097/WNF.0000000000000168] [PMID: 27332626]
[166]
François, C.; Hauser, R.A.; Aballéa, S.; Dorey, J.; Kharitonova, E.; Hewitt, L.A. Cost-effectiveness of droxidopa in patients with neurogenic orthostatic hypotension: post-hoc economic analysis of Phase 3 clinical trial data. J. Med. Econ., 2016, 19(5), 515-525.
[http://dx.doi.org/10.3111/13696998.2015.1136827] [PMID: 26710315]
[167]
Zhao, S.; Cheng, R.; Zheng, J.; Li, Q.; Wang, J.; Fan, W.; Zhang, L.; Zhang, Y.; Li, H.; Liu, S. A randomized, double-blind, controlled trial of add-on therapy in moderate-to-severe Parkinson’s disease. Parkinsonism Relat. Disord., 2015, 21(10), 1214-1218.
[http://dx.doi.org/10.1016/j.parkreldis.2015.08.023] [PMID: 26342560]
[168]
Ostock, C.Y.; Hallmark, J.; Palumbo, N.; Bhide, N.; Conti, M.; George, J.A.; Bishop, C. Modulation of L-DOPA’s antiparkinsonian and dyskinetic effects by α2-noradrenergic receptors within the locus coeruleus. Neuropharmacology, 2015, 95, 215-225.
[http://dx.doi.org/10.1016/j.neuropharm.2015.03.008] [PMID: 25817388]
[169]
Espay, A.J.; Dwivedi, A.K.; Payne, M.; Gaines, L.; Vaughan, J.E.; Maddux, B.N.; Slevin, J.T.; Gartner, M.; Sahay, A.; Revilla, F.J.; Duker, A.P.; Shukla, R. Methylphenidate for gait impairment in Parkinson disease: a randomized clinical trial. Neurology, 2011, 76(14), 1256-1262.
[http://dx.doi.org/10.1212/WNL.0b013e3182143537] [PMID: 21464430]
[170]
Moreau, C.; Delval, A.; Defebvre, L.; Dujardin, K.; Duhamel, A.; Petyt, G.; Vuillaume, I.; Corvol, J.C.; Brefel-Courbon, C.; Ory-Magne, F.; Guehl, D.; Eusebio, A.; Fraix, V.; Saulnier, P.J.; Lagha-Boukbiza, O.; Durif, F.; Faighel, M.; Giordana, C.; Drapier, S.; Maltête, D.; Tranchant, C.; Houeto, J.L.; Debû, B.; Sablonniere, B.; Azulay, J.P.; Tison, F.; Rascol, O.; Vidailhet, M.; Destée, A.; Bloem, B.R.; Bordet, R.; Devos, D. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol., 2012, 11(7), 589-596.
[http://dx.doi.org/10.1016/S1474-4422(12)70106-0] [PMID: 22658702]
[171]
Delval, A.; Moreau, C.; Bleuse, S.; Guehl, D.; Bestaven, E.; Guillaud, E.; Dujardin, K.; Defebvre, L.; Devos, D. Gait and attentional performance in freezers under methylphenidate. Gait Posture, 2015, 41(2), 384-388.
[http://dx.doi.org/10.1016/j.gaitpost.2014.10.022] [PMID: 25468682]
[172]
Prokic, E.J.; Stanford, I.M.; Woodhall, G.L.; Williams, A.C.; Hall, S.D. Bradykinesia is driven by cumulative beta power during continuous movement and alleviated by gabaergic modulation in Parkinson’s disease. Front. Neurol., 2019, 10, 1298.
[http://dx.doi.org/10.3389/fneur.2019.01298] [PMID: 31920922]
[173]
Siriwardena, A.N.; Apekey, T.; Tilling, M.; Dyas, J.V.; Middleton, H.; Ørner, R. General practitioners’ preferences for managing insomnia and opportunities for reducing hypnotic prescribing. J. Eval. Clin. Pract., 2010, 16(4), 731-737.
[http://dx.doi.org/10.1111/j.1365-2753.2009.01186.x] [PMID: 20545802]
[174]
Chen, Y.Y.; Sy, H.N.; Wu, S.L. Zolpidem improves akinesia, dystonia and dyskinesia in advanced Parkinson’s disease. J. Clin. Neurosci., 2008, 15(8), 955-956.
[http://dx.doi.org/10.1016/j.jocn.2007.07.082] [PMID: 18485713]
[175]
Huang, H.Y.; Hsu, Y.T.; Wu, Y.C.; Chiou, S.M.; Kao, C.H.; Tsai, M.C.; Tsai, C.H. Zolpidem improves neuropsychiatric symptoms and motor dysfunction in a patient with Parkinson’s disease after deep brain stimulation. Acta Neurol. Taiwan., 2012, 21(2), 84-86.
[PMID: 22879118]
[176]
Evidente, V.G. Zolpidem improves dystonia in “Lubag” or X-linked dystonia-parkinsonism syndrome. Neurology, 2002, 58(4), 662-663.
[http://dx.doi.org/10.1212/WNL.58.4.662] [PMID: 11865155]
[177]
Bullock, A.; Kaul, I.; Li, S.; Silber, C.; Doherty, J.; Kanes, S.J. Zuranolone as an oral adjunct to treatment of Parkinsonian tremor: A phase 2, open-label study. J. Neurol. Sci., 2021, 421, 117277.
[http://dx.doi.org/10.1016/j.jns.2020.117277] [PMID: 33387701]
[178]
Benarroch, E. Endocannabinoids in basal ganglia circuits: implications for Parkinson disease. Neurology, 2007, 69(3), 306-309.
[http://dx.doi.org/10.1212/01.wnl.0000267407.79757.75] [PMID: 17636069]
[179]
McSherry, J.W.; Carroll, C.B.; Zajicek, J.; Teare, L.; Bain, P. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology, 2005, 64(6), 1100.
[http://dx.doi.org/10.1212/WNL.64.6.1100] [PMID: 15781848]
[180]
Sieradzan, K.A.; Fox, S.H.; Hill, M.; Dick, J.P.; Crossman, A.R.; Brotchie, J.M. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology, 2001, 57(11), 2108-2111.
[http://dx.doi.org/10.1212/WNL.57.11.2108] [PMID: 11739835]
[181]
Koppel, B.S.; Brust, J.C.; Fife, T.; Bronstein, J.; Youssof, S.; Gronseth, G.; Gloss, D. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology, 2014, 82(17), 1556-1563.
[http://dx.doi.org/10.1212/WNL.0000000000000363] [PMID: 24778283]
[182]
de Faria, S.M.; de Morais Fabrício, D.; Tumas, V.; Castro, P.C.; Ponti, M.A.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.S.; Chagas, M.H.N. Effects of acute cannabidiol administration on anxiety and tremors induced by a Simulated Public Speaking Test in patients with Parkinson’s disease. J. Psychopharmacol., 2020, 34(2), 189-196.
[http://dx.doi.org/10.1177/0269881119895536] [PMID: 31909680]
[183]
Prast, H.; Tran, M.H.; Fischer, H.; Kraus, M.; Lamberti, C.; Grass, K.; Philippu, A. Histaminergic neurons modulate acetylcholine release in the ventral striatum: role of H3 histamine receptors. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 360(5), 558-564.
[http://dx.doi.org/10.1007/s002109900097] [PMID: 10598795]
[184]
Johnston, T.H.; van der Meij, A.; Brotchie, J.M.; Fox, S.H. Effect of histamine H2 receptor antagonism on levodopa-induced dyskinesia in the MPTP-macaque model of Parkinson’s disease. Mov. Disord., 2010, 25(10), 1379-1390.
[http://dx.doi.org/10.1002/mds.23069] [PMID: 20310030]
[185]
Mestre, T.A.; Shah, B.B.; Connolly, B.S.; de Aquino, C.; Al Dhakeel, A.; Walsh, R.; Ghate, T.; Lui, J.P.; Fox, S.H. Famotidine, a Histamine H2 Receptor Antagonist, Does Not Reduce Levodopa-Induced Dyskinesia in Parkinson’s Disease: A Proof-of-Concept Study. Mov. Disord. Clin. Pract. (Hoboken), 2014, 1(3), 219-224.
[http://dx.doi.org/10.1002/mdc3.12061] [PMID: 30363717]
[186]
Trenkwalder, C.; Chaudhuri, K.R.; Martinez-Martin, P.; Rascol, O.; Ehret, R.; Vališ, M.; Sátori, M.; Krygowska-Wajs, A.; Marti, M.J.; Reimer, K.; Oksche, A.; Lomax, M.; DeCesare, J.; Hopp, M. Prolonged-release oxycodone-naloxone for treatment of severe pain in patients with Parkinson’s disease (PANDA): a double-blind, randomised, placebo-controlled trial. Lancet Neurol., 2015, 14(12), 1161-1170.
[http://dx.doi.org/10.1016/S1474-4422(15)00243-4] [PMID: 26494524]
[187]
Madeo, G.; Schirinzi, T.; Natoli, S.; Pierantozzi, M.; Stefani, A.; Dauri, M.; Pisani, A. Efficacy and safety profile of prolonged release oxycodone in combination with naloxone (OXN PR) in Parkinson’s disease patients with chronic pain. J. Neurol., 2015, 262(9), 2164-2170.
[http://dx.doi.org/10.1007/s00415-015-7823-3] [PMID: 26134157]
[188]
Papay, K.; Xie, S.X.; Stern, M.; Hurtig, H.; Siderowf, A.; Duda, J.E.; Minger, J.; Weintraub, D. Naltrexone for impulse control disorders in Parkinson disease: a placebo-controlled study. Neurology, 2014, 83(9), 826-833.
[http://dx.doi.org/10.1212/WNL.0000000000000729] [PMID: 25037206]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy