Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Squeeze-Film Damping of Microbeam and Microplate Resonators in the Free Molecular Regime

Author(s): Zhaodong Wang, Pu Li* and Beibei Sun

Volume 14, Issue 4, 2022

Published on: 06 April, 2022

Page: [341 - 349] Pages: 9

DOI: 10.2174/1876402914666220221113221

Price: $65

Abstract

Background: Correct modeling of squeeze-film damping (SFD) is an important consideration in the design of high-Q microresonators. In 2002, using the molecular dynamics (MD) approach, Bao et al. developed an analytical MD model for the evaluation of the SFD of a parallel-plate device in the free molecular regime. Their model was based on the energy exchange between the oscillating plate and gas molecules. Bao’s model is now widely used in microsystem design. However, Bao’s model cannot reduce to the air damping model in free space and is unsuitable for flexible microbeams.

Objective: This paper first presents a more accurate analytical model for the evaluation of the SFD of the parallel plate. Then the present analytical model is extended to model the SFD of flexible microbeams with deformed shapes.

Methods: This paper is based on the momentum transfer between the vibration plate and gas molecules.

Results: The analytical results of the present model have shown a good agreement with the available experimental results.

Conclusion: The limitations in the previous model are overcome.

Keywords: Microresonators, microsystems, squeeze-film damping (SFD), molecular dynamics approach, free molecular regime, low pressure.

Graphical Abstract

[1]
Pantano, M.F.; Pagnotta, L.; Nigro, S. On the effective viscosity expression for modeling squeeze-film damping at low pressure. Trans. Asme. J. Tribol., 2014, 136(3), 031702.
[http://dx.doi.org/10.1115/1.4026592]
[2]
Veijola, T.; Kuisma, H.; Lahdenpera, J.; Ryhanen, T. Equivalentcircuit model of the squeezed gas film in a silicon accelerometer. Sens. Actuat. A Phys., 1995, 48(3), 239-248.
[http://dx.doi.org/10.1016/0924-4247(95)00995-7]
[3]
Li, W.L. Analytical modelling of ultra-thin gas squeeze film. Nanotechnology, 1999, 10(4), 440-446.
[http://dx.doi.org/10.1088/0957-4484/10/4/314]
[4]
Pandey, A.K.; Pratap, R. A semi-analytical model for squeeze-film damping including rarefaction in a MEMS torsion mirror with complex geometry. J. Micromech. Microeng., 2008, 18(10), 105003.
[http://dx.doi.org/10.1088/0960-1317/18/10/105003]
[5]
Gallis, M.A.; Torczynski, J.R. An improved Reynolds-equation model for gas damping of microbeam motion. J. Microelectromech. Syst., 2004, 13(4), 653-659.
[http://dx.doi.org/10.1109/JMEMS.2004.832194]
[6]
Schaaf, S.A.; Chambre, P.L. Flow of Rarefied Gases; Princeton University Press: Princeton, NJ, 1961.
[7]
Hutcherson, S.; Te, W. On the squeeze-film damping of micro-resonators in the free-molecule regime. J. Micromech. Microeng., 2004, 14(12), 1726-1733.
[http://dx.doi.org/10.1088/0960-1317/14/12/018]
[8]
Li, P.; Fang, Y. A molecular dynamics simulation approach for the squeeze-film damping of MEMS devices in the free molecular regime. J. Micromech. Microeng., 2010, 20(3), 035005.
[http://dx.doi.org/10.1088/0960-1317/20/3/035005]
[9]
Hong, G.; Ye, W. A macromodel for squeeze-film air damping in the free-molecule regime. Phys. Fluids, 2010, 22(1), 012001.
[http://dx.doi.org/10.1063/1.3275844]
[10]
Leung, R.; Cheung, H.; Gang, H.; Ye, W. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators. Microfluid. Nanofluidics, 2010, 9(4-5), 809-818.
[http://dx.doi.org/10.1007/s10404-010-0597-0]
[11]
Leung, R.C.W.; Thurber, T.; Ye, W. On the modified Reynolds equation model for the prediction of squeeze-film gas damping in a low vacuum. Microfluid. Nanofluidics, 2011, 11(6), 753-762.
[http://dx.doi.org/10.1007/s10404-011-0840-3]
[12]
Ye, W.; Hong, G. Proceeding of the 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China2010.
[http://dx.doi.org/10.1109/NEMS.2010.5592237]
[13]
Lu, C.; Li, P.; Fang, Y. Efficient molecular model for squeeze-film damping in rarefied air. Chin. Phys. B, 2019, 28(9), 098501.
[http://dx.doi.org/10.1088/1674-1056/ab3443]
[14]
Christian, R.G. The theory of oscillating-vane vacuum gauges. Vacuum, 1966, 16(4), 175-178.
[http://dx.doi.org/10.1016/0042-207X(66)91162-6]
[15]
Kadar, Z.; Kindt, W.; Bossche, A.; Mollinger, J. Quality factor of torsional resonators in the low-pressure region. Sens. Actuators A Phys., 1996, 53(1-3), 299-303.
[http://dx.doi.org/10.1016/0924-4247(96)80153-1]
[16]
Li, B.; Wu, H.; Zhu, C.; Liu, J. The theoretical analysis on damping characteristics of resonant microbeam in vacuum. Sens. Actuators A Phys., 1999, 77(3), 191-194.
[http://dx.doi.org/10.1016/S0924-4247(99)00072-2]
[17]
Bao, M.; Yang, H.; Yin, H.; Sun, Y. Energy transfer model for squeeze-film air damping in low vacuum. J. Micromech. Microeng., 2002, 136(3), 341-346.
[http://dx.doi.org/10.1088/0960-1317/12/3/322]
[18]
Li, P.; Hu, R. A model for squeeze-film damping of perforated MEMS devices in the free molecular regime. J. Micromech. Microeng., 2011, 21(2), 025006.
[http://dx.doi.org/10.1088/0960-1317/21/2/025006]
[19]
Zook, J.D.; Burns, D.W.; Guckel, H.; Sniegowski, J.J.; Engelstad, R.L.; Feng, Z. Characteristics of polysilicon resonant microbeams. Sens. Actuat. A Phys., 1992, 35(1), 51-59.
[http://dx.doi.org/10.1016/0924-4247(92)87007-4]
[20]
Sumali, H. Squeeze-film damping in the free molecular regime: model validation and measurement on a MEMS. J. Micromech. Microeng., 2007, 17(11), 2231-2240.
[http://dx.doi.org/10.1088/0960-1317/17/11/009]
[21]
Lee, J.W.; Tung, R.; Raman, A.; Sumali, H.; Sullivan, J.P. Squeeze-film damping of flexible microcantilevers at low ambient pressures: theo-ry and experiment. J. Micromech. Microeng., 2009, 19(10), 105029.
[http://dx.doi.org/10.1088/0960-1317/19/10/105029]
[22]
Li, P.; Hu, R. On the air damping of flexible microbeam in free space at the free-molecule regime. Microfluid. Nanofluidics, 2007, 3(6), 715-721.
[http://dx.doi.org/10.1007/s10404-007-0175-2]
[23]
Rao, S.S. Mechanical Vibrations, 5th ed; Prentice Hall: NY, USA, 2004.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy