Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Study on Immune Cell Infiltration in Lung Adenocarcinoma

Author(s): Bingqing Sun and Hongwen Zhao*

Volume 25, Issue 12, 2022

Published on: 06 April, 2022

Page: [2082 - 2088] Pages: 7

DOI: 10.2174/1386207325666220221100429

Price: $65

Abstract

Background: As a vital part of the tumor environment, immune cells affect the progression of tumors, and their composition and role vary in different types of tumors and influence prognosis. These immune cells have the potential to be beneficially targeted for immunotherapy, or, conversely, they may react negatively, even leading to drug resistance. For these reasons, probing into the composition and possible effects of immune cells in lung cancer is conducive to discovering valuable therapeutic targets.

Materials and Methods: The lung adenocarcinoma gene expression data were downloaded from the TCGA database (https://cancergenome.nih.gov/; https://portal.gdc.cancer.gov/), and the lung adenocarcinoma gene expression matrix was converted into an immune cell-matrix using CIBERSORT software (https://cibersort.stanford.edu/), followed by an analysis of immune cells in lung adenocarcinoma tissues.

Results: The results showed that among all immune cells in lung adenocarcinoma tissues, macrophages (Mφ) had the highest number, followed by T cells. The number of plasma cells in lung adenocarcinoma tissues was higher than in adjacent normal tissues. Compared with those in adjacent normal tissues, the number of resting memory clusters of differentiation 4 (CD4)+ T cells was lower, whereas active memory CD4+ T cells were higher in lung adenocarcinoma tissues. In addition, the number of CD8+ T cells was negatively related to that of resting memory CD4+ T cells, with a correlation coefficient of -0.44, whereas it showed a positive association with the number of active memory CD4+ T cells, with a correlation coefficient of 0.47. It was found that among various immune cells infiltrating lung adenocarcinoma tissues, unstimulated Mφ (M0), alternatively activated Mφ (M2), and resting memory CD4+ T cells accounted for the largest proportions. However, these three types of immune cells were found to be lower in lung adenocarcinoma tissues than in adjacent normal tissues.

Conclusion: Immune cells infiltrating lung adenocarcinoma tissues are complex, which affect the development and progression of the tumor and may also be a significant cause of drug resistance. Studying the changes in immune cell infiltration during the development of specific types of tumors contributes to disease progression interpretation, prognosis assessment, and potential solutions to the existing drug resistance issue. In this paper, the status of immune cells in lung adenocarcinoma tissues was preliminarily discussed based on the database mining, but more experimental studies and in-depth discussions are needed in the future.

Keywords: Lung adenocarcinoma, tumor microenvironment, immune cells, immunotherapy, cell infiltration, interstitial cells.

[1]
Zheng, X.; Hu, Y.; Yao, C. The paradoxical role of tumor-infiltrating immune cells in lung cancer. Intractable Rare Dis. Res., 2017, 6(4), 234-241.
[http://dx.doi.org/10.5582/irdr.2017.01059] [PMID: 29259850]
[2]
Domingues, P.; González-Tablas, M.; Otero, Á.; Pascual, D.; Miranda, D.; Ruiz, L.; Sousa, P.; Ciudad, J.; Gonçalves, J.M.; Lopes, M.C.; Orfao, A.; Tabernero, M.D. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav. Immun., 2016, 53, 1-15.
[http://dx.doi.org/10.1016/j.bbi.2015.07.019] [PMID: 26216710]
[3]
Oliver, A.J.; Lau, P.K.H.; Unsworth, A.S.; Loi, S.; Darcy, P.K.; Kershaw, M.H.; Slaney, C.Y. Tissue-dependent tumor microenvironments and their impact on immunotherapy responses. Front. Immunol., 2018, 9, 70.
[http://dx.doi.org/10.3389/fimmu.2018.00070] [PMID: 29445373]
[4]
Parra, E.R.; Villalobos, P.; Behrens, C.; Jiang, M.; Pataer, A.; Swisher, S.G.; William, W.N., Jr; Zhang, J.; Lee, J.; Cascone, T.; Heymach, J.V.; Forget, M.A.; Haymaker, C.; Bernatchez, C.; Kalhor, N.; Weissferdt, A.; Moran, C.; Zhang, J.; Vaporciyan, A.; Gibbons, D.L.; Sepesi, B.; Wistuba, I.I. Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J. Immunother. Cancer, 2018, 6(1), 48.
[http://dx.doi.org/10.1186/s40425-018-0368-0] [PMID: 29871672]
[5]
Gaudreau, P.O.; Negrao, M.V.; Mitchell, K.G.; Reuben, A.; Corsini, E.M.; Li, J.; Karpinets, T.V.; Wang, Q.; Diao, L.; Wang, J.; Federico, L.; Parra-Cuentas, E.R.; Khairullah, R.; Behrens, C.; Correa, A.M.; Gomez, D.; Little, L.; Gumbs, C.; Kadara, H.N.; Fujimoto, J.; McGrail, D.J.; Vaporciyan, A.A.; Swisher, S.G.; Walsh, G.; Antonoff, M.B.; Weissferdt, A.; Tran, H.; Roarty, E.; Haymaker, C.; Bernatchez, C.; Zhang, J.; Futreal, P.A.; Wistuba, I.I.; Cascone, T.; Heymach, J.V.; Sepesi, B.; Zhang, J.; Gibbons, D.L. Neoadjuvant chemotherapy in-creases cytotoxic T cell, tissue resident memory T cell, and B cell infiltration in resectable NSCLC. J. Thorac. Oncol., 2021, 16(1), 127-139.
[http://dx.doi.org/10.1016/j.jtho.2020.09.027] [PMID: 33096269]
[6]
Zuo, S.; Wei, M.; Wang, S.; Dong, J.; Wei, J. Pan-cancer analysis of immune cell infiltration identifies a prognostic immune-cell character-istic score (ICCS) in lung adenocarcinoma. Front. Immunol., 2020, 11, 1218.
[http://dx.doi.org/10.3389/fimmu.2020.01218] [PMID: 32714316]
[7]
Li, Y.; Tao, L.; Cai, W. Profiles of immune infiltration and prognostic immunoscore in lung adenocarcinoma. BioMed Res. Inter., 2020, 15, 5858092.
[8]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[9]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[10]
Taiyun, W. Viliam, Simko R package “corrplot”: Visualization of a correlation matrix (Version 0.84); , 2017. Available from: https://github.com/taiyun/corrplot
[11]
Yang, M.; McKay, D.; Pollard, J.W.; Lewis, C.E. Diverse functions of macrophages in different tumor microenvironments. Cancer Res., 2018, 78(19), 5492-5503.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1367] [PMID: 30206177]
[12]
Hwang, I.; Kim, J.W.; Ylaya, K.; Chung, E.J.; Kitano, H.; Perry, C.; Hanaoka, J.; Fukuoka, J.; Chung, J.Y.; Hewitt, S.M. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J. Transl. Med., 2020, 18(1), 443.
[http://dx.doi.org/10.1186/s12967-020-02618-z] [PMID: 33228719]
[13]
Hamerlik, P.; Lathia, J.D.; Rasmussen, R.; Wu, Q.; Bartkova, J.; Lee, M.; Moudry, P.; Bartek, J., Jr; Fischer, W.; Lukas, J.; Rich, J.N.; Bar-tek, J. Autocrine VEGF-VEGFR2-neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med., 2012, 209(3), 507-520.
[http://dx.doi.org/10.1084/jem.20111424] [PMID: 22393126]
[14]
Guyot, M.; Hilmi, C.; Ambrosetti, D.; Merlano, M.; Lo Nigro, C.; Durivault, J.; Grépin, R.; Pagès, G. Targeting the pro-angiogenic forms of VEGF or inhibiting their expression as anti-cancer strategies. Oncotarget, 2017, 8(6), 9174-9188.
[http://dx.doi.org/10.18632/oncotarget.13942] [PMID: 27999187]
[15]
Comunanza, V.; Bussolino, F. Therapy for cancer: strategy of combining anti-angiogenic and target therapies. Front. Cell Dev. Biol., 2017, 5, 101.
[http://dx.doi.org/10.3389/fcell.2017.00101] [PMID: 29270405]
[16]
Stacker, S.A.; Achen, M.G.; Jussila, L.; Baldwin, M.E.; Alitalo, K. Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer, 2002, 2(8), 573-583.
[http://dx.doi.org/10.1038/nrc863] [PMID: 12154350]
[17]
Mandriota, S.J.; Jussila, L.; Jeltsch, M.; Compagni, A.; Baetens, D.; Prevo, R.; Banerji, S.; Huarte, J.; Montesano, R.; Jackson, D.G.; Orci, L.; Alitalo, K.; Christofori, G.; Pepper, M.S. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metasta-sis. EMBO J., 2001, 20(4), 672-682.
[http://dx.doi.org/10.1093/emboj/20.4.672] [PMID: 11179212]
[18]
Alishekevitz, D.; Gingis-Velitski, S.; Kaidar-Person, O.; Gutter-Kapon, L.; Scherer, S.D.; Raviv, Z.; Merquiol, E.; Ben-Nun, Y.; Miller, V.; Rachman-Tzemah, C.; Timaner, M.; Mumblat, Y.; Ilan, N.; Loven, D.; Hershkovitz, D.; Satchi-Fainaro, R.; Blum, G.; Sleeman, J.P.; Vlo-davsky, I.; Shaked, Y. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by vegfr3. Cell Rep., 2016, 17(5), 1344-1356.
[http://dx.doi.org/10.1016/j.celrep.2016.09.083] [PMID: 27783948]
[19]
Chen, Z.; Varney, M.L.; Backora, M.W.; Cowan, K.; Solheim, J.C.; Talmadge, J.E.; Singh, R.K. Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontane-ous metastasis and enhances survival. Cancer Res., 2005, 65(19), 9004-9011.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0885] [PMID: 16204074]
[20]
Szulzewsky, F.; Pelz, A.; Feng, X.; Synowitz, M.; Markovic, D.; Langmann, T.; Holtman, I.R.; Wang, X.; Eggen, B.J.; Boddeke, H.W.; Hambardzumyan, D.; Wolf, S.A.; Kettenmann, H. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One, 2015, 10(2), e0116644.
[http://dx.doi.org/10.1371/journal.pone.0116644] [PMID: 25658639]
[21]
Chia-Sing, Lu. Shiau, Ai-Li; Su., Bing-Hua; Hsu, Tsui-Shan; Wang, Chung-Teng; Su., Yu-Chu; Tsai, Ming-Shian; Feng., Yin-Hsun; Tseng; Yen, Yi-Ting; Wu, Chao-Liang; Shieh, Gia-Shing Oct4 promotes M2 macrophage polarization through upregulation of macro-phage colony-stimulating factor in lung cancer. J. Hematol. Oncol., 2020, 13, 62.
[22]
Huang, W.C.; Kuo, K.T.; Wang, C.H.; Yeh, C.T.; Wang, Y. Cisplatin resistant lung cancer cells promoted M2 polarization of tumor-associated macrophages via the Src/CD155/MIF functional pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 180.
[http://dx.doi.org/10.1186/s13046-019-1166-3] [PMID: 31036057]
[23]
Yang, L.; Dong, Y.; Li, Y.; Wang, D.; Liu, S.; Wang, D.; Gao, Q.; Ji, S.; Chen, X.; Lei, Q.; Jiang, W.; Wang, L.; Zhang, B.; Yu, J.J.; Zhang, Y. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer. Int. J. Cancer, 2019, 145(4), 1099-1110.
[http://dx.doi.org/10.1002/ijc.32151] [PMID: 30671927]
[24]
Guo, Z.; Song, J.; Hao, J.; Zhao, H.; Du, X.; Li, E.; Kuang, Y.; Yang, F.; Wang, W.; Deng, J.; Wang, Q. M2 macrophages promote NSCLC metastasis by upregulating CRYAB. Cell Death Dis., 2019, 10(6), 377.
[http://dx.doi.org/10.1038/s41419-019-1618-x] [PMID: 31097690]
[25]
Cui, L.; Yang, G.; Ye, J.; Yao, Y.; Lu, G.; Chen, J.; Fang, L.; Lu, S.; Zhou, J. Dioscin elicits anti-tumour immunity by inhibiting macro-phage M2 polarization via JNK and STAT3 pathways in lung cancer. J. Cell. Mol. Med., 2020, 24(16), 9217-9230.
[http://dx.doi.org/10.1111/jcmm.15563] [PMID: 32618105]
[26]
Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol., 2018, 233(9), 6425-6440.
[http://dx.doi.org/10.1002/jcp.26429] [PMID: 29319160]
[27]
Dhupkar, P.; Gordon, N.; Stewart, J.; Kleinerman, E.S. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype induc-ing regression of OS lung metastases. Cancer Med., 2018, 7(6), 2654-2664.
[http://dx.doi.org/10.1002/cam4.1518] [PMID: 29733528]
[28]
Garrido-Martin, E.M.; Mellows, T.W.P.; Clarke, J.; Ganesan, A.P.; Wood, O.; Cazaly, A.; Seumois, G.; Chee, S.J.; Alzetani, A.; King, E.V.; Hedrick, C.C.; Thomas, G.; Friedmann, P.S.; Ottensmeier, C.H.; Vijayanand, P.; Sanchez-Elsner, T. M1hot tumor-associated macrophages boost tissue-resident memory T cells infiltration and survival in human lung cancer. J. Immunother. Cancer, 2020, 8(2), e000778.
[http://dx.doi.org/10.1136/jitc-2020-000778] [PMID: 32699181]
[29]
Tamminga, M.; Hiltermann, T.J.N.; Schuuring, E.; Timens, W.; Fehrmann, R.S.; Groen, H.J. Immune microenvironment composition in non-small cell lung cancer and its association with survival. Clin. Transl. Immunology, 2020, 9(6), e1142.
[http://dx.doi.org/10.1002/cti2.1142] [PMID: 32547744]
[30]
Oja, A.E.; Piet, B.; van der Zwan, D.; Blaauwgeers, H.; Mensink, M.; de Kivit, S.; Borst, J.; Nolte, M.A.; van Lier, R.A.W.; Stark, R.; Hombrink, P. Functional heterogeneity of CD4+ tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC. Front. Immunol., 2018, 9, 2654.
[http://dx.doi.org/10.3389/fimmu.2018.02654] [PMID: 30505306]
[31]
Sarvaria, A.; Madrigal, J.A.; Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell. Mol. Immunol., 2017, 14(8), 662-674.
[http://dx.doi.org/10.1038/cmi.2017.35] [PMID: 28626234]
[32]
Chen, J.; Tan, Y.; Sun, F.; Hou, L.; Zhang, C.; Ge, T.; Yu, H.; Wu, C.; Zhu, Y.; Duan, L.; Wu, L.; Song, N.; Zhang, L.; Zhang, W.; Wang, D.; Chen, C.; Wu, C.; Jiang, G.; Zhang, P. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer. Genome Biol., 2020, 21(1), 152.
[http://dx.doi.org/10.1186/s13059-020-02064-6] [PMID: 32580738]
[33]
Ribatti, D.; Tamma, R.; Crivellato, E. The dual role of mast cells in tumor fate. Cancer Lett., 2018, 433, 252-258.
[http://dx.doi.org/10.1016/j.canlet.2018.07.005] [PMID: 29981810]
[34]
Gorzalczany, Y.; Merimsky, O.; Sagi-Eisenberg, R. Mast cells are directly activated by cancer cell-derived extracellular vesicles by a CD73- and adenosine-dependent mechanism. Transl. Oncol., 2019, 12(12), 1549-1556.
[http://dx.doi.org/10.1016/j.tranon.2019.08.005] [PMID: 31493676]
[35]
Gorzalczany, Y.; Akiva, E.; Klein, O.; Merimsky, O.; Sagi-Eisenberg, R. Mast cells are directly activated by contact with cancer cells by a mechanism involving autocrine formation of adenosine and autocrine/paracrine signaling of the adenosine A3 receptor. Cancer Lett., 2017, 397, 23-32.
[http://dx.doi.org/10.1016/j.canlet.2017.03.026] [PMID: 28342985]
[36]
Liu, X.; Wu, S.; Yang, Y.; Zhao, M.; Zhu, G.; Hou, Z. The prognostic landscape of tumor-infiltrating immune cell and immunomodulators in lung cancer. Biomed. Pharmacother., 2017, 95, 55-61.
[http://dx.doi.org/10.1016/j.biopha.2017.08.003] [PMID: 28826097]
[37]
Zhang, X.C.; Wang, J.; Shao, G.G.; Wang, Q.; Qu, X.; Wang, B.; Moy, C.; Fan, Y.; Albertyn, Z.; Huang, X.; Zhang, J.; Qiu, Y.; Platero, S.; Lorenzi, M.V.; Zudaire, E.; Yang, J.; Cheng, Y.; Xu, L.; Wu, Y.L. Comprehensive genomic and immunological characterization of Chinese non-small cell lung cancer patients. Nat. Commun., 2019, 10(1), 1772.
[http://dx.doi.org/10.1038/s41467-019-09762-1] [PMID: 30992440]
[38]
Seo, J.S.; Kim, A.; Shin, J.Y.; Kim, Y.T. Comprehensive analysis of the tumor immune micro-environment in non-small cell lung cancer for effificacy of checkpoint inhibitor. Sci. Rep., 2018, 8, 1-14.
[http://dx.doi.org/10.1038/s41598-018-32855-8]
[39]
Lavin, Y.; Kobayashi, S.; Leader, A.; Amir, E.D.; Elefant, N.; Bigenwald, C.; Remark, R.; Sweeney, R.; Becker, C.D.; Levine, J.H.; Mein-hof, K.; Chow, A.; Kim-Shulze, S.; Wolf, A.; Medaglia, C.; Li, H.; Rytlewski, J.A.; Emerson, R.O.; Solovyov, A.; Greenbaum, B.D.; Sand-ers, C.; Vignali, M.; Beasley, M.B.; Flores, R.; Gnjatic, S.; Pe’er, D.; Rahman, A.; Amit, I.; Merad, M. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell, 2017, 169(4), 750-765.e17.
[http://dx.doi.org/10.1016/j.cell.2017.04.014] [PMID: 28475900]
[40]
Stankovic, B.; Bjørhovde, H.A.K.; Skarshaug, R.; Aamodt, H.; Frafjord, A.; Müller, E.; Hammarström, C.; Beraki, K.; Bækkevold, E.S.; Woldbæk, P.R.; Helland, Å.; Brustugun, O.T.; Øynebråten, I.; Corthay, A. Immune cell composition in human non-small cell lung cancer. Front. Immunol., 2019, 9, 3101.
[http://dx.doi.org/10.3389/fimmu.2018.03101] [PMID: 30774636]
[41]
Pyfferoen, L.; Brabants, E.; Everaert, C.; De Cabooter, N.; Heyns, K.; Deswarte, K.; Vanheerswynghels, M.; De Prijck, S.; Waegemans, G.; Dullaers, M.; Hammad, H.; De Wever, O.; Mestdagh, P.; Vandesompele, J.; Lambrecht, B.N.; Vermaelen, K.Y. The transcriptome of lung tumor-infiltrating dendritic cells reveals a tumor-supporting phenotype and a microRNA signature with negative impact on clinical out-come. OncoImmunology, 2016, 6(1), e1253655.
[http://dx.doi.org/10.1080/2162402X.2016.1253655] [PMID: 28197369]
[42]
Shi, W.; Dong, L.; Sun, Q.; Ding, H.; Meng, J.; Dai, G. Follicular helper T cells promote the effector functions of CD8+ T cells via the pro-vision of IL-21, which is downregulated due to PD-1/PD-L1-mediated suppression in colorectal cancer. Exp. Cell Res., 2018, 372(1), 35-42.
[http://dx.doi.org/10.1016/j.yexcr.2018.09.006] [PMID: 30205088]
[43]
Qiu, L.; Yu, Q.; Zhou, Y.; Zheng, S.; Tao, J.; Jiang, Q.; Yuan, G. Functionally impaired follicular helper T cells induce regulatory B cells and CD14+ human leukocyte antigen-DR- cell differentiation in non-small cell lung cancer. Cancer Sci., 2018, 109(12), 3751-3761.
[http://dx.doi.org/10.1111/cas.13836] [PMID: 30325558]
[44]
Ma, Q.Y.; Huang, D.Y.; Zhang, H.J.; Chen, J.; Miller, W.; Chen, X.F. Function of follicular helper T cell is impaired and correlates with survival time in non-small cell lung cancer. Int. Immunopharmacol., 2016, 41, 1-7.
[http://dx.doi.org/10.1016/j.intimp.2016.10.014] [PMID: 27788370]
[45]
Kinoshita, T.; Muramatsu, R.; Fujita, T.; Nagumo, H.; Sakurai, T.; Noji, S.; Takahata, E.; Yaguchi, T.; Tsukamoto, N.; Kudo-Saito, C.; Hayashi, Y.; Kamiyama, I.; Ohtsuka, T.; Asamura, H.; Kawakami, Y. Prognostic value of tumor-infiltrating lymphocytes differs depending on histological type and smoking habit in completely resected non-small-cell lung cancer. Ann. Oncol., 2016, 27(11), 2117-2123.
[http://dx.doi.org/10.1093/annonc/mdw319] [PMID: 27502728]
[46]
Kinoshita, T.; Kudo-Saito, C.; Muramatsu, R.; Fujita, T.; Saito, M.; Nagumo, H.; Sakurai, T.; Noji, S.; Takahata, E.; Yaguchi, T.; Tsukamo-to, N.; Hayashi, Y.; Kaseda, K.; Kamiyama, I.; Ohtsuka, T.; Tomizawa, K.; Shimoji, M.; Mitsudomi, T.; Asamura, H.; Kawakami, Y. De-termination of poor prognostic immune features of tumour microenvironment in non-smoking patients with lung adenocarcinoma. Eur. J. Cancer, 2017, 86, 15-27.
[http://dx.doi.org/10.1016/j.ejca.2017.08.026] [PMID: 28950145]
[47]
Zhao, J.; Bao, W.; Cai, W. Immune infiltration landscape in lung squamous cell carcinoma implications. BioMed Res. Int., 2020, 2020, 5981870.
[http://dx.doi.org/10.1155/2020/5981870] [PMID: 33102584]
[48]
Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G., Jr; Garrido, M.; Lubiniecki, G.M.; Shentu, Y. Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550.
[http://dx.doi.org/10.1016/S0140-6736(15)01281-7] [PMID: 26712084]
[49]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R. KEYNOTE-024 investigators. pembroli-zumab versus chemotherapy for PD-l1-positive non-small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[50]
Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; Cortinovis, D.L.; Leach, J.; Polikoff, J.; Barrios, C.; Kabbinavar, F.; Frontera, O.A.; De Marinis, F.; Turna, H.; Lee, J.S.; Ballinger, M.; Kowanetz, M.; He, P.; Chen, D.S.; Sandler, A.; Gandara, D.R. OAK Study Group. Atezolizumab versus docetaxel in patients with previous-ly treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet, 2017, 389(10066), 255-265.
[http://dx.doi.org/10.1016/S0140-6736(16)32517-X] [PMID: 27979383]
[51]
Hatfield, S.M.; Kjaergaard, J.; Lukashev, D.; Schreiber, T.H.; Belikoff, B.; Abbott, R.; Sethumadhavan, S.; Philbrook, P.; Ko, K.; Cannici, R.; Thayer, M.; Rodig, S.; Kutok, J.L.; Jackson, E.K.; Karger, B.; Podack, E.R.; Ohta, A.; Sitkovsky, M.V. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med., 2015, 7(277), 277ra30.
[http://dx.doi.org/10.1126/scitranslmed.aaa1260] [PMID: 25739764]
[52]
Linnemann, C.; Schildberg, F.A.; Schurich, A.; Diehl, L.; Hegenbarth, S.I.; Endl, E.; Lacher, S.; Müller, C.E.; Frey, J.; Simeoni, L.; Schraven, B.; Stabenow, D.; Knolle, P.A. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling. Immunology, 2009, 128(1)(Suppl.), e728-e737.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03075.x] [PMID: 19740334]
[53]
Brochez, L.; Chevolet, I.; Kruse, V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur. J. Cancer, 2017, 76, 167-182.
[http://dx.doi.org/10.1016/j.ejca.2017.01.011] [PMID: 28324751]
[54]
Mossmann, D.; Park, S.; Hall, M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer, 2018, 18(12), 744-757.
[http://dx.doi.org/10.1038/s41568-018-0074-8] [PMID: 30425336]
[55]
Okkenhaug, K. Signaling by the phosphoinositide 3-kinase family in immune cells. Annu. Rev. Immunol., 2013, 31, 675-704.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095946] [PMID: 23330955]
[56]
Giannone, G.; Ghisoni, E.; Genta, S.; Scotto, G.; Tuninetti, V.; Turinetto, M.; Valabrega, G. Immuno-metabolism and microenvironment in cancer: Key players for immunotherapy. Int. J. Mol. Sci., 2020, 21(12), 4414.
[http://dx.doi.org/10.3390/ijms21124414] [PMID: 32575899]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy