Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Favipiravir in the Battle with Respiratory Viruses

Author(s): Julia M. Smyk and Anna Majewska*

Volume 22, Issue 17, 2022

Published on: 11 April, 2022

Page: [2224 - 2236] Pages: 13

DOI: 10.2174/1389557522666220218122744

Price: $65

Abstract

Among antiviral drugs, the vast majority targets only one or two related viruses. The conventional model, one virus - one drug, significantly limits therapeutic options. Therefore, in the strategy of controlling viral infections, there is a necessity to develop compounds with pleiotropic effects. Favipiravir (FPV) emerged as a strong candidate to become such a drug. The aim of the study is to present up-to-date information on the role of favipiravir in the treatment of viral respiratory infections. The anti-influenza activity of favipiravir has been confirmed in cell culture experiments, animal models, and clinical trials. Thoroughly different - from the previously registered drugs - mechanism of action suggests that FVP can be used as a countermeasure for the novel or re-emerging influenza virus infections.

In recent months, favipiravir has been broadly investigated due to its potential efficacy in the treatment of COVID-19. Based on preclinical and clinical studies and a recently published meta-analysis it seems that favipiravir may be a promising antiviral drug in the treatment of patients with COVID-19.

FPV is also effective against other RNA respiratory viruses and may be a candidate for the treatment of serious infections caused by human rhinovirus, respiratory syncytial virus, metapneumovirus, parainfluenza viruses and hantavirus pulmonary syndrome.

Keywords: COVID-19, favipiravir, influenza, respiratory viruses, SARS-CoV-2, viral infection.

Graphical Abstract

[1]
Shiraki, K.; Daikoku, T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther., 2020, 209, 107512.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107512] [PMID: 32097670]
[2]
Łagocka, R.; Dziedziejko, V.; Kłos, P.; Pawlik, A. Favipiravir in therapy of viral infections. J. Clin. Med., 2021, 10(2), 273.
[http://dx.doi.org/10.3390/jcm10020273] [PMID: 33451007]
[3]
Report on the deliberation results March 4, 2014 evaluation and licensing division, pharmaceutical and food safety bureau ministry of health, labour and welfare. 2014. Available from: https://www.pmda.go.jp/files/000210319.pdf [Accessed on 12th Nov, 2020].
[4]
Clinical Trials. US National Library of Medicine Available from: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=favipiravir&cntry=&state=&city=&dist= [Accessed on 21st Mar 2021].
[5]
Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D.F.; Barnard, D.L.; Gowen, B.B.; Julander, J.G.; Morrey, J.D. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res., 2009, 82(3), 95-102.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.198] [PMID: 19428599]
[6]
Ivashchenko, A.A.; Dmitriev, K.A.; Vostokova, N.V. AVIFAVIR for treatment of patients with moderate COVID-19: Interim results of a phase II/III multicenter randomized clinical trial. Clin. Infect. Dis., 2020., ciaa1176.
[http://dx.doi.org/10.1093/cid/ciaa1176] [PMID: 32770240]
[7]
Nguyen, T.H.; Guedj, J.; Anglaret, X.; Laouénan, C.; Madelain, V.; Taburet, A.M.; Baize, S.; Sissoko, D.; Pastorino, B.; Rodallec, A.; Piorkowski, G.; Carazo, S.; Conde, M.N.; Gala, J.L.; Bore, J.A.; Carbonnelle, C.; Jacquot, F.; Raoul, H.; Malvy, D.; de Lamballerie, X.; Mentré, F. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl. Trop. Dis., 2017, 11(2), e0005389.
[http://dx.doi.org/10.1371/journal.pntd.0005389] [PMID: 28231247]
[8]
Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis., 2019, 32(2), 176-186.
[http://dx.doi.org/10.1097/QCO.0000000000000532] [PMID: 30724789]
[9]
Agrawal, U.; Raju, R.; Udwadia, Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India, 2020, 76(4), 370-376.
[http://dx.doi.org/10.1016/j.mjafi.2020.08.004] [PMID: 32895599]
[10]
Du, Y.X.; Chen, X.P. Favipiravir: Pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin. Pharmacol. Ther., 2020, 108(2), 242-247.
[http://dx.doi.org/10.1002/cpt.1844] [PMID: 32246834]
[11]
Goldhill, D.H.; Te Velthuis, A.J.W.; Fletcher, R.A.; Langat, P.; Zambon, M.; Lackenby, A.; Barclay, W.S. The mechanism of resistance to favipiravir in influenza. Proc. Natl. Acad. Sci. USA, 2018, 115(45), 11613-11618.
[http://dx.doi.org/10.1073/pnas.1811345115] [PMID: 30352857]
[12]
Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; Narita, H.; Shiraki, K. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother., 2002, 46(4), 977-981.
[http://dx.doi.org/10.1128/AAC.46.4.977-981.2002] [PMID: 11897578]
[13]
Furuta, Y.; Gowen, B.B.; Takahashi, K.; Shiraki, K.; Smee, D.F.; Barnard, D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res., 2013, 100(2), 446-454.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[14]
Venkataraman, S.; Prasad, B.V.L.S.; Selvarajan, R. RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses, 2018, 10(2), 76.
[http://dx.doi.org/10.3390/v10020076] [PMID: 29439438]
[15]
Dabbous, H.M.; Abd-Elsalam, S.; El-Sayed, M.H.; Sherief, A.F.; Ebeid, F.F.S.; El Ghafar, M.S.A.; Soliman, S.; Elbahnasawy, M.; Badawi, R.; Tageldin, M.A. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch. Virol., 2021, 166(3), 949-954.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[16]
Baranovich, T.; Wong, S.S.; Armstrong, J.; Marjuki, H.; Webby, R.J.; Webster, R.G.; Govorkova, E.A. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J. Virol., 2013, 87(7), 3741-3751.
[http://dx.doi.org/10.1128/JVI.02346-12] [PMID: 23325689]
[17]
Janowski, A.B.; Dudley, H.; Wang, D. Antiviral activity of ribavirin and favipiravir against human astroviruses. J. Clin. Virol., 2020, 123, 104247.
[http://dx.doi.org/10.1016/j.jcv.2019.104247] [PMID: 31864069]
[18]
Vanderlinden, E.; Vrancken, B.; Van Houdt, J.; Rajwanshi, V.K.; Gillemot, S.; Andrei, G.; Lemey, P.; Naesens, L. Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis. Antimicrob. Agents Chemother., 2016, 60(11), 6679-6691.
[http://dx.doi.org/10.1128/AAC.01156-16] [PMID: 27572398]
[19]
Tyring, S. Antiviral agents, vaccines, and immunotherapies; Taylor & Francis, 2004.
[http://dx.doi.org/10.1201/b14238]
[20]
Majewska, A.; Mlynarczyk-Bonikowska, B.; Malejczyk, M.; Majewski, S.; Mlynarczyk, G. Antiviral medication in sexually transmitted diseases. Part III: Hepatitis B, hepatitis C. Mini Rev. Med. Chem., 2017, 17(4), 328-337.
[http://dx.doi.org/10.2174/1389557516666160808114408] [PMID: 27515715]
[21]
Lam, S.; Lombardi, A.; Ouanounou, A. COVID-19: A review of the proposed pharmacological treatments. Eur. J. Pharmacol., 2020, 886, 173451.
[http://dx.doi.org/10.1016/j.ejphar.2020.173451] [PMID: 32768505]
[22]
Loustaud-Ratti, V.; Debette-Gratien, M.; Jacques, J.; Alain, S.; Marquet, P.; Sautereau, D.; Rousseau, A.; Carrier, P. Ribavirin: Past, present and future. World J. Hepatol., 2016, 8(2), 123-130.
[http://dx.doi.org/10.4254/wjh.v8.i2.123] [PMID: 26807208]
[23]
Pilkington, V.; Pepperrell, T.; Hill, A. A review of the safety of favipiravir - a potential treatment in the COVID-19 pandemic? J. Virus Erad., 2020, 6(2), 45-51.
[http://dx.doi.org/10.1016/S2055-6640(20)30016-9] [PMID: 32405421]
[24]
Kumagai, Y.; Murakawa, Y.; Hasunuma, T.; Aso, M.; Yuji, W.; Sakurai, T.; Noto, M.; Oe, T.; Kaneko, A. Lack of effect of favipiravir, a novel antiviral agent, on QT interval in healthy Japanese adults. Int. J. Clin. Pharmacol. Ther., 2015, 53(10), 866-874.
[http://dx.doi.org/10.5414/CP202388] [PMID: 26308176]
[25]
Çap, M.; Bilge, Ö.; Işık, F.; Burak, C.; Karagöz, A.; İnci, Ü.; Akyüz, A.; Aslan, B.; Altıntaş, B.; Altındağ, R.; Kaya, İ.; Adıyaman, M.Ş.; Süleymanoğlu, M.; Kaya, Ş.; Baysal, E. The effect of favipiravir on QTc interval in patients hospitalized with coronavirus disease 2019. J. Electrocardiol., 2020, 63, 115-119.
[http://dx.doi.org/10.1016/j.jelectrocard.2020.10.015] [PMID: 33181454]
[26]
Detailed recommendations for interactions with experimental COVID-19 therapies. Liverpool Drug Interactions Group. Available from: https://www.covid19-druginteractions.org [Accessed on 8th Mar 2021].
[27]
Madelain, V.; Nguyen, T.H.; Olivo, A.; de Lamballerie, X.; Guedj, J.; Taburet, A.M.; Mentré, F. Ebola virus infection: Review of the pharmacokinetic and pharmacodynamic properties of drugs considered for testing in human efficacy trials. Clin. Pharmacokinet., 2016, 55(8), 907-923.
[http://dx.doi.org/10.1007/s40262-015-0364-1] [PMID: 26798032]
[28]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C. Drugbank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2017. Database issue: DB12466. Available from: https://go.drugbank.com/drugs/DB12466 [Accessed on 21st Mar 2021].
[29]
Zhao, Y.; Harmatz, J.S.; Epstein, C.R.; Nakagawa, Y.; Kurosaki, C.; Nakamura, T.; Kadota, T.; Giesing, D.; Court, M.H.; Greenblatt, D.J. Favipiravir inhibits acetaminophen sulfate formation but minimally affects systemic pharmacokinetics of acetaminophen. Br. J. Clin. Pharmacol., 2015, 80(5), 1076-1085.
[http://dx.doi.org/10.1111/bcp.12644] [PMID: 25808818]
[30]
Lemaitre, F.; Solas, C.; Grégoire, M.; Lagarce, L.; Elens, L.; Polard, E.; Saint-Salvi, B.; Sommet, A.; Tod, M.; Barin-Le Guellec, C. Potential drug-drug interactions associated with drugs currently proposed for COVID-19 treatment in patients receiving other treatments. Fundam. Clin. Pharmacol., 2020, 34(5), 530-547.
[http://dx.doi.org/10.1111/fcp.12586] [PMID: 32603486]
[31]
Ansari, M.Y.; Dikhit, M.R.; Sahoo, G.C.; Das, P. Comparative modeling of HGPRT enzyme of L. donovani and binding affinities of different analogs of GMP. Int. J. Biol. Macromol., 2012, 50(3), 637-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.01.010] [PMID: 22327112]
[32]
Obach, R.S.; Huynh, P.; Allen, M.C.; Beedham, C. Human liver aldehyde oxidase: Inhibition by 239 drugs. J. Clin. Pharmacol., 2004, 44(1), 7-19.
[http://dx.doi.org/10.1177/0091270003260336] [PMID: 14681337]
[33]
Rochat, B.; Kosel, M.; Boss, G.; Testa, B.; Gillet, M.; Baumann, P. Stereoselective biotransformation of the selective serotonin reuptake inhibitor citalopram and its demethylated metabolites by monoamine oxidases in human liver. Biochem. Pharmacol., 1998, 56(1), 15-23.
[http://dx.doi.org/10.1016/S0006-2952(98)00008-2] [PMID: 9698084]
[34]
Lake, B.G.; Ball, S.E.; Kao, J.; Renwick, A.B.; Price, R.J.; Scatina, J.A. Metabolism of zaleplon by human liver: Evidence for involvement of aldehyde oxidase. Xenobiotica, 2002, 32(10), 835-847.
[http://dx.doi.org/10.1080/00498250210158915] [PMID: 12419014]
[35]
Global influenza strategy 2019-2030. Geneva: World Health Organization. 2019. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. Available from: https://apps.who.int/iris [Accessed on 2nd Apr 2021].
[36]
Sleeman, K.; Mishin, V.P.; Deyde, V.M.; Furuta, Y.; Klimov, A.I.; Gubareva, L.V. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses. Antimicrob. Agents Chemother., 2010, 54(6), 2517-2524.
[http://dx.doi.org/10.1128/AAC.01739-09] [PMID: 20350949]
[37]
Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother., 2005, 49(3), 981-986.
[http://dx.doi.org/10.1128/AAC.49.3.981-986.2005] [PMID: 15728892]
[38]
Daikoku, T.; Yoshida, Y.; Okuda, T.; Shiraki, K. Characterization of susceptibility variants of influenza virus grown in the presence of T-705. J. Pharmacol. Sci., 2014, 126(3), 281-284.
[http://dx.doi.org/10.1254/jphs.14156SC] [PMID: 25296868]
[39]
Sleeman, K.; Mishin, V.P.; Guo, Z.; Garten, R.J.; Balish, A.; Fry, A.M.; Villanueva, J.; Stevens, J.; Gubareva, L.V. Antiviral susceptibility of variant influenza A(H3N2)v viruses isolated in the United States from 2011 to 2013. Antimicrob. Agents Chemother., 2014, 58(4), 2045-2051.
[http://dx.doi.org/10.1128/AAC.02556-13] [PMID: 24449767]
[40]
Takahashi, K.; Furuta, Y.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Shiraki, K. In vitro and in vivo activities of T-705 and oseltamivir against influenza virus. Antivir. Chem. Chemother., 2003, 14(5), 235-241.
[http://dx.doi.org/10.1177/095632020301400502] [PMID: 14694986]
[41]
Sidwell, R.W.; Barnard, D.L.; Day, C.W.; Smee, D.F.; Bailey, K.W.; Wong, M.H.; Morrey, J.D.; Furuta, Y. Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrob. Agents Chemother., 2007, 51(3), 845-851.
[http://dx.doi.org/10.1128/AAC.01051-06] [PMID: 17194832]
[42]
Kiso, M.; Takahashi, K.; Sakai-Tagawa, Y.; Shinya, K.; Sakabe, S.; Le, Q.M.; Ozawa, M.; Furuta, Y.; Kawaoka, Y. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc. Natl. Acad. Sci. USA, 2010, 107(2), 882-887.
[http://dx.doi.org/10.1073/pnas.0909603107] [PMID: 20080770]
[43]
Smee, D.F.; Hurst, B.L.; Wong, M.H.; Bailey, K.W.; Tarbet, E.B.; Morrey, J.D.; Furuta, Y. Effects of the combination of favipiravir (T-705) and oseltamivir on influenza A virus infections in mice. Antimicrob. Agents Chemother., 2010, 54(1), 126-133.
[http://dx.doi.org/10.1128/AAC.00933-09] [PMID: 19901093]
[44]
Tarbet, E.B.; Maekawa, M.; Furuta, Y.; Babu, Y.S.; Morrey, J.D.; Smee, D.F. Combinations of favipiravir and peramivir for the treatment of pandemic influenza A/California/04/2009 (H1N1) virus infections in mice. Antiviral Res., 2012, 94(1), 103-110.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.001] [PMID: 22429564]
[45]
Marathe, B.M.; Wong, S.S.; Vogel, P.; Garcia-Alcalde, F.; Webster, R.G.; Webby, R.J.; Najera, I.; Govorkova, E.A. Combinations of oseltamivir and T-705 extend the treatment window for highly pathogenic influenza A(H5N1) virus infection in mice. Sci. Rep., 2016, 6(1), 26742.
[http://dx.doi.org/10.1038/srep26742] [PMID: 27221530]
[46]
Fang, Q.Q.; Huang, W.J.; Li, X.Y.; Cheng, Y.H.; Tan, M.J.; Liu, J.; Wei, H.J.; Meng, Y.; Wang, D.Y. Effectiveness of favipiravir (T-705) against wild-type and oseltamivir-resistant influenza B virus in mice. Virology, 2020, 545, 1-9.
[http://dx.doi.org/10.1016/j.virol.2020.02.005] [PMID: 32174453]
[47]
Lampejo, T. Influenza and antiviral resistance: An overview. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(7), 1201-1208.
[http://dx.doi.org/10.1007/s10096-020-03840-9] [PMID: 32056049]
[48]
Shao, W.; Li, X.; Goraya, M.U.; Wang, S.; Chen, J-L. Evolution of influenza A virus by mutation and re-assortment. Int. J. Mol. Sci., 2017, 18(8), 1650.
[http://dx.doi.org/10.3390/ijms18081650] [PMID: 28783091]
[49]
Abdelnabi, R.; Morais, A.T.S.; Leyssen, P.; Imbert, I.; Beaucourt, S.; Blanc, H.; Froeyen, M.; Vignuzzi, M.; Canard, B.; Neyts, J.; Delang, L. Understanding the mechanism of the broad-spectrum antiviral activity of favipiravir (T-705): Key role of the F1 motif of the viral polymerase. J. Virol., 2017, 91(12), e00487-e17.
[http://dx.doi.org/10.1128/JVI.00487-17] [PMID: 28381577]
[50]
Cheung, P.P.; Watson, S.J.; Choy, K.T.; Fun Sia, S.; Wong, D.D.; Poon, L.L.; Kellam, P.; Guan, Y.; Malik Peiris, J.S.; Yen, H.L. Generation and characterization of influenza A viruses with altered polymerase fidelity. Nat. Commun., 2014, 5(1), 4794.
[http://dx.doi.org/10.1038/ncomms5794] [PMID: 25183443]
[51]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering (Beijing), 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[52]
Vannabouathong, C.; Devji, T.; Ekhtiari, S.; Chang, Y.; Phillips, S.A.; Zhu, M.; Chagla, Z.; Main, C.; Bhandari, M. Novel coronavirus COVID-19: Current evidence and evolving strategies. J. Bone Joint Surg. Am., 2020, 102(9), 734-744.
[http://dx.doi.org/10.2106/JBJS.20.00396] [PMID: 32379112]
[53]
Shrestha, D.B.; Budhathoki, P.; Khadka, S.; Shah, P.B.; Pokharel, N.; Rashmi, P. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: A rapid systematic review and meta-analysis. Virol. J., 2020, 17(1), 141.
[http://dx.doi.org/10.1186/s12985-020-01412-z] [PMID: 32972430]
[54]
The Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available from: https://coronavirus.jhu.edu/map.html [Accessed on 10th May 2021].
[55]
Ghasemnejad-Berenji, M.; Pashapour, S. Favipiravir and COVID-19: A simplified summary. Drug Res. (Stuttg.), 2021, 71(3), 166-170.
[http://dx.doi.org/10.1055/a-1296-7935] [PMID: 33176367]
[56]
Çalik, BaŞaran N; Uyaroğlu, OA; Telli, Dizman G Outcome of non-critical COVID-19 patients with early hospitalization and early antiviral treatment outside the ICU. Turk. J. Med. Sci., 2021, 51(2), 411-420.
[http://dx.doi.org/10.3906/sag-2006-173]
[57]
Chen, C.; Zhang, Y.; Huang, J. Favipiravirversusarbidol for COVID-19: A randomized clinical trial. medRxiv, 2020. Preprint.
[http://dx.doi.org/10.1101/2020.03.17.20037432]
[58]
Doi, K.; Ikeda, M.; Hayase, N.; Moriya, K.; Morimura, N.; Maehara, H.; Tagami, S.; Fukushima, K.; Misawa, N.; Inoue, Y.; Nakamura, H.; Takai, D.; Kurimoto, M.; Tokunaga, K.; Yamamoto, M.; Hirayama, I.; Horie, R.; Endo, Y.; Hiwatashi, K.; Shikama, M.; Jubishi, D.; Kanno, Y.; Okamoto, K.; Harada, S.; Okugawa, S.; Miyazono, K.; Seto, Y.; Inoue, J. Nafamostat mesylate treatment in combination with favipiravir for patients critically ill with COVID-19: A case series. Crit. Care, 2020, 24(1), 392.
[http://dx.doi.org/10.1186/s13054-020-03078-z] [PMID: 32620147]
[59]
Lou, Y.; Liu, L.; Yao, H. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: An exploratory randomized, controlled trial. Eur. J. Pharm. Sci., 2021, 157, 105631.
[http://dx.doi.org/10.1101/2020.04.29.20085761]
[60]
Irie, K.; Nakagawa, A.; Fujita, H.; Tamura, R.; Eto, M.; Ikesue, H.; Muroi, N.; Tomii, K.; Hashida, T. Pharmacokinetics of favipiravir in critically ill patients with COVID-19. Clin. Transl. Sci., 2020, 13(5), 880-885.
[http://dx.doi.org/10.1111/cts.12827] [PMID: 32475019]
[61]
Rattanaumpawan, P.; Jirajariyavej, S.; Lerdlamyong, K.; Palavutitotai, N.; Saiyarin, J. Real-world experience with favipiravir for treatment of COVID-19 in Thailand: Results from a multi-center observational study. medRxiv, 2020. Preprint.
[http://dx.doi.org/10.1101/2020.06.24.20133249]
[62]
Yamamura, H.; Matsuura, H.; Nakagawa, J.; Fukuoka, H.; Domi, H.; Chujoh, S. Effect of favipiravir and an anti-inflammatory strategy for COVID-19. Crit. Care, 2020, 24(1), 413.
[http://dx.doi.org/10.1186/s13054-020-03137-5] [PMID: 32646499]
[63]
Driouich, J.S.; Cochin, M.; Lingas, G.; Moureau, G.; Touret, F.; Petit, P.R.; Piorkowski, G.; Barthélémy, K.; Laprie, C.; Coutard, B.; Guedj, J.; de Lamballerie, X.; Solas, C.; Nougairède, A. Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat. Commun., 2021, 12(1), 1735.
[http://dx.doi.org/10.1038/s41467-021-21992-w] [PMID: 33741945]
[64]
Jochmans, D.; van Nieuwkoop, S.; Smits, S.L.; Neyts, J.; Fouchier, R.A.M.; van den Hoogen, B.G. Antiviral Activity of Favipiravir (T-705) against a broad range of paramyxoviruses in vitro and against human metapneumovirus in hamsters. Antimicrob. Agents Chemother., 2016, 60(8), 4620-4629.
[http://dx.doi.org/10.1128/AAC.00709-16] [PMID: 27185803]
[65]
Smielewska, A.; Emmott, E.; Goodfellow, I.; Jalal, H. In vitro sensitivity of human parainfluenza 3 clinical isolates to ribavirin, favipiravir and zanamivir. J. Clin. Virol., 2018, 102, 19-26.
[http://dx.doi.org/10.1016/j.jcv.2018.02.009] [PMID: 29477132]
[66]
Buys, K.K.; Jung, K-H.; Smee, D.F.; Furuta, Y.; Gowen, B.B. Maporal virus as a surrogate for pathogenic New World hantaviruses and its inhibition by favipiravir. Antivir. Chem. Chemother., 2011, 21(5), 193-200.
[http://dx.doi.org/10.3851/IMP1729] [PMID: 21566265]
[67]
Safronetz, D.; Falzarano, D.; Scott, D.P.; Furuta, Y.; Feldmann, H.; Gowen, B.B. Antiviral efficacy of favipiravir against two prominent etiological agents of hantavirus pulmonary syndrome. Antimicrob. Agents Chemother., 2013, 57(10), 4673-4680.
[http://dx.doi.org/10.1128/AAC.00886-13] [PMID: 23856782]
[68]
Bizot, E.; Bousquet, A.; Charpié, M.; Coquelin, F.; Lefevre, S.; Le Lorier, J.; Patin, M.; Sée, P.; Sarfati, E.; Walle, S.; Visseaux, B.; Basmaci, R. Rhinovirus: A narrative review on its genetic characteristics, pediatric clinical presentations, and pathogenesis. Front Pediatr., 2021, 9, 643219.
[http://dx.doi.org/10.3389/fped.2021.643219] [PMID: 33829004]
[69]
Casanova, V.; Sousa, F.H.; Stevens, C.; Barlow, P.G. Antiviral therapeutic approaches for human rhinovirus infections. Future Virol., 2018, 13(7), 505-518.
[http://dx.doi.org/10.2217/fvl-2018-0016] [PMID: 30245735]
[70]
Jartti, T.; Bønnelykke, K.; Elenius, V.; Feleszko, W. Role of viruses in asthma. Semin. Immunopathol., 2020, 42(1), 61-74.
[http://dx.doi.org/10.1007/s00281-020-00781-5] [PMID: 31989228]
[71]
Park, G.Y.S.; Tishkowski, K. Paramyxovirus. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[72]
Elboukari, H.; Ashraf, M. Parainfluenza virus. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[73]
Chibanga, V.P.; Dirr, L.; Guillon, P.; El-Deeb, I.M.; Bailly, B.; Thomson, R.J.; von Itzstein, M. New antiviral approaches for human parainfluenza: Inhibiting the haemagglutinin-neuraminidase. Antiviral Res., 2019, 167, 89-97.
[http://dx.doi.org/10.1016/j.antiviral.2019.04.001] [PMID: 30951732]
[74]
Griffiths, C.; Drews, S.J.; Marchant, D.J. Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment. Clin. Microbiol. Rev., 2017, 30(1), 277-319.
[http://dx.doi.org/10.1128/CMR.00010-16] [PMID: 27903593]
[75]
Jha, A.; Jarvis, H.; Fraser, C.; Openshaw, P.J.M. Respiratory syncytial virus. In: SARS, MERS and other viral lung infections; Hui, D.S.; Rossi, G.A.; Johnston, S.L., Eds.; European Respiratory Society: Sheffield, UK, 2016.
[http://dx.doi.org/10.1183/2312508X.10010315]
[76]
Mammas, I.N.; Drysdale, S.B.; Rath, B.; Theodoridou, M.; Papaioannou, G.; Papatheodoropoulou, A.; Koutsounaki, E.; Koutsaftiki, C.; Kozanidou, E.; Achtsidis, V.; Korovessi, P.; Chrousos, G.P.; Spandidos, D.A. Update on current views and advances on RSV infection. (Review). Int. J. Mol. Med., 2020, 46(2), 509-520.
[http://dx.doi.org/10.3892/ijmm.2020.4641] [PMID: 32626981]
[77]
Falsey, A.R.; Walsh, E.E. Respiratory syncytial virus infection in adults. Clin. Microbiol. Rev., 2000, 13(3), 371-384.
[http://dx.doi.org/10.1128/CMR.13.3.371] [PMID: 10885982]
[78]
Battles, M.B.; McLellan, J.S. Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol., 2019, 17(4), 233-245.
[http://dx.doi.org/10.1038/s41579-019-0149-x] [PMID: 30723301]
[79]
Andabaka, T.; Nickerson, J.W.; Rojas-Reyes, M.X.; Rueda, J.D.; Bacic Vrca, V.; Barsic, B. Monoclonal antibody for reducing the risk of respiratory syncytial virus infection in children. Cochrane Database Syst. Rev., 2013, (4), CD006602.
[http://dx.doi.org/10.1002/14651858.CD006602.pub4] [PMID: 23633336]
[80]
Barr, R.; Green, C.A.; Sande, C.J.; Drysdale, S.B. Respiratory syncytial virus: Diagnosis, prevention and management. Ther. Adv. Infect. Dis., 2019, 6, 2049936119865798.
[http://dx.doi.org/10.1177/2049936119865798] [PMID: 31384456]
[81]
Clinical Trials. US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/results?&cond=RSV&term=&cntry=&state=&city=&dist= Accessed on 6th May 2021
[82]
Krilov, L.R. Safety issues related to the administration of ribavirin. Pediatr. Infect. Dis. J., 2002, 21(5), 479-481.
[http://dx.doi.org/10.1097/00006454-200205000-00037] [PMID: 12150196]
[83]
Behzadi, M.A.; Leyva-Grado, V.H. Overview of current therapeutics and novel candidates against influenza, respiratory syncytial virus, and middle east respiratory syndrome coronavirus infections. Front. Microbiol., 2019, 10, 1327.
[http://dx.doi.org/10.3389/fmicb.2019.01327] [PMID: 31275265]
[84]
Xing, Y.; Proesmans, M. New therapies for acute RSV infections: Where are we? Eur. J. Pediatr., 2019, 178(2), 131-138.
[http://dx.doi.org/10.1007/s00431-018-03310-7] [PMID: 30610420]
[85]
Beigel, J.H.; Nam, H.H.; Adams, P.L.; Krafft, A.; Ince, W.L.; El-Kamary, S.S.; Sims, A.C. Advances in respiratory virus therapeutics - A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res., 2019, 167, 45-67.
[http://dx.doi.org/10.1016/j.antiviral.2019.04.006] [PMID: 30974127]
[86]
Nicholson, E.G.; Munoz, F.M. A review of therapeutics in clinical development for respiratory syncytial virus and influenza in children. Clin. Ther., 2018, 40(8), 1268-1281.
[http://dx.doi.org/10.1016/j.clinthera.2018.06.014] [PMID: 30077340]
[87]
Schuster, J.E.; Williams, J.V. Human metapneumovirus. Pediatr. Rev., 2013, 34(12), 558-565.
[http://dx.doi.org/10.1542/pir.34.12.558] [PMID: 24295817]
[88]
Martinez-Rodriguez, C.; Banos-Lara, M.D.R. HMPV in immunocompromised patients: Frequency and severity in pediatric oncology patients. Pathogens, 2020, 9(1), 51.
[http://dx.doi.org/10.3390/pathogens9010051] [PMID: 31936721]
[89]
Uddin, S.; Thomas, M. Human metapneumovirus. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[90]
Danishyar, A.; Ashurst, J.V. Acute Otitis Media. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[91]
Kumar, P.; Srivastava, M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease, 2018, 29(4), 434-444.
[http://dx.doi.org/10.1007/s13337-018-0498-5] [PMID: 30539045]
[92]
Dheerasekara, K.; Sumathipala, S.; Muthugala, R. Hantavirus infections-treatment and prevention. Curr. Treat. Options Infect. Dis., 2020, 12(4), 1-12.
[http://dx.doi.org/10.1007/s40506-020-00236-3] [PMID: 33144850]
[93]
Moore, R.A.; Griffen, D. Hantavirus syndrome. In: StatPearls; StatPerarls Publishing: Treasure Island, FL, 2021.
[94]
Kabwe, E.; Davidyuk, Y.; Shamsutdinov, A.; Garanina, E.; Martynova, E.; Kitaeva, K.; Malisheni, M.; Isaeva, G.; Savitskaya, T.; Urbanowicz, R.A.; Morzunov, S.; Katongo, C.; Rizvanov, A.; Khaiboullina, S. Orthohantaviruses, emerging zoonotic pathogens. Pathogens, 2020, 9(9), 775.
[http://dx.doi.org/10.3390/pathogens9090775] [PMID: 32971887]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy