Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Phytochemical-rich Fractions from Foxtail Millet (Setaria italica (L.) P. Beauv) Seeds Exhibited Antioxidant Activity and Reduced the Viability of Breast Cancer Cells In Vitro by Inducing DNA Fragmentation and Promoting Cell Cycle Arrest

Author(s): Mahadevaswamy G. Kuruburu, Venugopal R. Bovilla, Zonunsiami Leihang and SubbaRao V. Madhunapantula*

Volume 22, Issue 13, 2022

Published on: 28 March, 2022

Page: [2477 - 2493] Pages: 17

DOI: 10.2174/1871520622666220215122141

Price: $65

Abstract

Background: The demand for millet-based diets has increased significantly in recent years due to their beneficial effects on human health. Foxtail Millet (Setaria italica (L.) P. Beauv, previously known as Panicum italicum L., referred as FTM in this manuscript) seeds have been not only used as astringent and diuretic agents, but they are also used to treat dyspepsia and rheumatism. Recent studies have shown that solvent extracts from FTM seeds exhibited antioxidant and antiinflammatory activities. However, the nature and antiproliferative potential of phytochemical constituents of solvent extracts are not much explored.

Objectives: Major objectives of this study are to generate and characterize the phytochemical-rich fractions from Foxtail millet seeds, test the antioxidant activity, and antiproliferative potential against cell lines representing carcinomas of the breast, and determine the mechanisms of cell growth inhibition.

Method: Phytochemical-rich fractions were generated by extracting the seeds using 70% ethanol (FTM-FP) and 10% alkali (FTM-BP). Antioxidant potential was determined by ferric reducing antioxidant power (FRAP) assay and DPPH radical scavenging activity assays. The antiproliferative potential was determined using sulforhodamine-B assay. The impact on cell cycle and DNA fragmentation was analyzed by staining the cells with DAPI followed by analyzing the stained cells using NC-3000.

Results: Analysis of the results showed the presence of phenolics and flavonoids in the FTM-FP and FTM-BP fractions. Both fractions exhibited antiproliferative potential against breast cancer cell lines. Mechanistically, both fractions induced G2/M cell cycle arrest and increased the fragmentation of DNA, which lead to the accumulation of cells in the Sub-G1 phase.

Conclusion: In summary, results of this study demonstrated the potential of foxtail millet phytochemical fractions for retarding the proliferative potential of breast cancer cells.

Keywords: Foxtail millet, phenolic compounds, antiproliferative potential, phytochemicals, flavonoids, breast cancer.

Graphical Abstract

[1]
Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; Krznaric, Z.; Laird, B.; Larsson, M.; Laviano, A.; Mühlebach, S.; Muscaritoli, M.; Oldervoll, L.; Ravasco, P.; Solheim, T.; Strasser, F. de van der Schueren, M.; Preiser, J.C. ESPEN guidelines on nutrition in cancer pa-tients. Clin. Nutr., 2017, 36(1), 11-48.
[http://dx.doi.org/10.1016/j.clnu.2016.07.015] [PMID: 27637832]
[2]
Donaldson, M.S. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr. J., 2004, 3(19), 19.
[http://dx.doi.org/10.1186/1475-2891-3-19] [PMID: 15496224]
[3]
Anitha, S.; Kane-Potaka, J.; Tsusaka, T.W.; Tripathi, D.; Upadhyay, S.; Kavishwar, A.; Jalagam, A.; Sharma, N.; Nedumaran, S. Acceptance and impact of millet-based mid-day meal on the nutritional status of adolescent school going children in a peri urban region of karnataka state in India. Nutrients, 2019, 11(9), 1-16.
[http://dx.doi.org/10.3390/nu11092077] [PMID: 31484377]
[4]
Zhang, B.; Xu, Y.; Liu, S.; Lv, H.; Hu, Y.; Wang, Y.; Li, Z.; Wang, J.; Ji, X.; Ma, H.; Wang, X.; Wang, S. Dietary supplementation of foxtail millet ameliorates colitis-associated colorectal cancer in mice via activation of gut receptors and suppression of the STAT3 pathway. Nutrients, 2020, 12(8), 1-20.
[http://dx.doi.org/10.3390/nu12082367] [PMID: 32784751]
[5]
Balasubramanian, S.; Yadav, D.N.; Kaur, J.; Anand, T. Development and shelf-life evaluation of pearl millet based upma dry mix. J. Food Sci. Technol., 2014, 51(6), 1110-1117.
[http://dx.doi.org/10.1007/s13197-012-0616-0] [PMID: 24876643]
[6]
Verma, S.; Srivastava, S.; Tiwari, N. Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products. J. Food Sci. Technol., 2015, 52(8), 5147-5155.
[http://dx.doi.org/10.1007/s13197-014-1617-y] [PMID: 26243936]
[7]
Kumari, D.; Madhujith, T.; Chandrasekara, A. Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka. Food Sci. Nutr., 2016, 5(3), 474-485.
[http://dx.doi.org/10.1002/fsn3.415] [PMID: 28572932]
[8]
Xiang, J.; Zhang, M.; Apea-Bah, F.B.; Beta, T. Hydroxycinnamic acid amide (HCAA) derivatives, flavonoid C-glycosides, phenolic acids and antioxidant properties of foxtail millet. Food Chem., 2019, 295, 214-223.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.058] [PMID: 31174752]
[9]
Shi, J.; Shan, S.; Li, H.; Song, G.; Li, Z. Anti-inflammatory effects of millet bran derived-bound polyphenols in LPS-induced HT-29 cell via ROS/miR-149/Akt/NF-κB signaling pathway. Oncotarget, 2017, 8(43), 74582-74594.
[http://dx.doi.org/10.18632/oncotarget.20216] [PMID: 29088809]
[10]
Rao, M.S. krishna, M Non-starch polysaccharides and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana, Indaf-15). Food Chem., 2001, 72(2), 187-192.
[http://dx.doi.org/10.1016/S0308-8146(00)00217-X]
[11]
Subba Rao, M.V.; Muralikrishna, G. Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (ragi, Eleusine cora-cana Indaf-15). J. Agric. Food Chem., 2002, 50(4), 889-892.
[http://dx.doi.org/10.1021/jf011210d] [PMID: 11829663]
[12]
Subba Rao, M.V.; Muralikrishna, G. Structural analysis of arabinoxylans isolated from native and malted finger millet (Eleusine coracana, ragi). Carbohydr. Res., 2004, 339(14), 2457-2463.
[http://dx.doi.org/10.1016/j.carres.2004.07.005] [PMID: 15388362]
[13]
Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature, 1951, 168(4265), 167.
[http://dx.doi.org/10.1038/168167a0] [PMID: 14875032]
[14]
Miller, G.L.J.A.c. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959, 31(3), 426-428.
[http://dx.doi.org/10.1021/ac60147a030]
[15]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[16]
Chanda, J.; Mukherjee, P.K.; Biswas, R.; Biswas, S.; Tiwari, A.K.; Pargaonkar, A. UPLC-QTOF-MS analysis of a carbonic anhydrase-inhibiting extract and fractions of Luffa acutangula (L.) Roxb (ridge gourd). Phytochem. Anal., 2019, 30(2), 148-155.
[http://dx.doi.org/10.1002/pca.2800] [PMID: 30402952]
[17]
Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford), 2010. 2010, (bap024)1-9.
[http://dx.doi.org/10.1093/database/bap024]
[18]
Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 1999, 299, 15-27.
[http://dx.doi.org/10.1016/S0076-6879(99)99005-5] [PMID: 9916193]
[19]
Bovilla, V.R.; Anantharaju, P.G.; Dornadula, S.; Veeresh, P.M.; Kuruburu, M.G.; Bettada, V.G.; Ramkumar, K.M.; Madhunapantula, S.V.J.A.P.J.T.B. Caffeic acid and protocatechuic acid modulate Nrf2 and inhibit Ehrlich ascites carcinomas in mice. Asian Pacific J. Trop. Biomed., 2021, 11(6), 244-253.
[20]
Aksoy, L.; Kolay, E. Ağılönü, Y.; Aslan, Z.; Kargıoğlu, M. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi J. Biol. Sci., 2013, 20(3), 235-239.
[http://dx.doi.org/10.1016/j.sjbs.2013.02.003] [PMID: 23961240]
[21]
Madhunapantula, S.V.; Desai, D.; Sharma, A.; Huh, S.J.; Amin, S.; Robertson, G.P. PBISe, a novel selenium-containing drug for the treatment of malignant melanoma. Mol. Cancer Ther., 2008, 7(5), 1297-1308.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2267] [PMID: 18483317]
[22]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[23]
Rok, J.; Rzepka, Z.; Beberok, A.; Pawlik, J. Wrześniok, D. Cellular and molecular aspects of anti-melanoma effect of minocycline-a study of cytotoxicity and apoptosis on human melanotic melanoma cells. Int. J. Mol. Sci., 2020, 21(18), 1-12.
[http://dx.doi.org/10.3390/ijms21186917] [PMID: 32967177]
[24]
Chodkowski, M. Serafińska, I.; Brzezicka, J.; Bańbura, M.W.; Cymerys, J. Application of nucleocounter for the comprehensive assessment of murine cultured neurons during infection with Equine Herpesvirus type 1 (EHV-1). Pol. J. Vet. Sci., 2017, 20(4), 831-834.
[PMID: 29611646]
[25]
Beberok, A. Wrześniok, D.; Szlachta, M.; Rok, J.; Rzepka, Z.; Respondek, M.; Buszman, E. Lomefloxacin induces oxidative stress and apoptosis in COLO829 melanoma cells. Int. J. Mol. Sci., 2017, 18(10), 1-18.
[http://dx.doi.org/10.3390/ijms18102194] [PMID: 29053584]
[26]
Beberok, A. Wrześniok, D.; Rok, J.; Rzepka, Z.; Respondek, M.; Buszman, E. Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. Int. J. Oncol., 2018, 52(5), 1727-1737.
[http://dx.doi.org/10.3892/ijo.2018.4310] [PMID: 29532860]
[27]
Chikkegowda, P.; Pookunoth, B.C.; Bovilla, V.R.; Veeresh, P.M.; Leihang, Z.; Thippeswamy, T.; Padukudru, M.A.; Hathur, B.; Kanchugarakoppal, R.S. Basappa; Madhunapantula, S.V. Design, synthesis, characterization, and crystal structure studies of nrf2 modulators for inhibiting cancer cell growth in vitro and in vivo. ACS Omega, 2021, 6(15), 10054-10071.
[http://dx.doi.org/10.1021/acsomega.0c06345] [PMID: 34056161]
[28]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[29]
Vélez, C.; Cox, O.; Rosado-Berrios, C.A.; Molina, D.; Arroyo, L.; Carro, S.; Filikov, A.; Kumar, V.; Malhotra, S.V.; Cordero, M.; Zayas, B. Novel nitrobenzazolo[3,2-a]quinolinium salts induce cell death through a mechanism involving DNA damage, cell cycle changes, and mitochondrial permeabilization. Open J. Apoptosis, 2013, 2(2), 13-22.
[http://dx.doi.org/10.4236/ojapo.2013.22002] [PMID: 25243104]
[30]
Chandrasekara, A.; Shahidi, F. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J. Agric. Food Chem., 2011, 59(1), 428-436.
[http://dx.doi.org/10.1021/jf103896z] [PMID: 21133411]
[31]
Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J., 2016, 15(1), 99.
[http://dx.doi.org/10.1186/s12937-016-0217-2] [PMID: 27903278]
[32]
Anantharaju, P.G.; Reddy, D.B.; Padukudru, M.A.; Chitturi, C.M.K.; Vimalambike, M.G.; Madhunapantula, S.V. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC). PLoS One, 2017, 12(11), 1-23.
[33]
Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol., 2015, 52(9), 5790-5798.
[http://dx.doi.org/10.1007/s13197-014-1704-0] [PMID: 26344993]
[34]
Singh, K.; Bhori, M.; Kasu, Y.A.; Bhat, G.; Marar, T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm. J., 2018, 26(2), 177-190.
[http://dx.doi.org/10.1016/j.jsps.2017.12.013] [PMID: 30166914]
[35]
Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; Chen, H.; Qin, W.; Wu, H.; Chen, S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 2016, 21(10), 1-19.
[http://dx.doi.org/10.3390/molecules21101374] [PMID: 27754463]
[36]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2016, 15(1), 1-22.
[37]
Russo, G.L.; Stampone, E.; Cervellera, C.; Borriello, A. Regulation of p27Kip1 and p57Kip2 Functions by natural polyphenols. Biomolecules, 2020, 10(9), 1-31.
[http://dx.doi.org/10.3390/biom10091316] [PMID: 32933137]
[38]
Anantharaju, P.G.; Reddy, B.D.; Padukudru, M.A.; Kumari Chitturi, C.M.; Vimalambike, M.G.; Madhunapantula, S.V. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC). Cancer Biol. Ther., 2017, 18(7), 492-504.
[http://dx.doi.org/10.1080/15384047.2017.1324374] [PMID: 28506198]
[39]
Bao, L.; Diao, H.; Dong, N.; Su, X.; Wang, B.; Mo, Q.; Yu, H.; Wang, X.; Chen, C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol. Toxicol., 2016, 32(6), 469-482.
[http://dx.doi.org/10.1007/s10565-016-9347-8] [PMID: 27423454]
[40]
Buurman, R.; Sandbothe, M.; Schlegelberger, B.; Skawran, B. HDAC inhibition activates the apoptosome via Apaf1 upregulation in hepatocellular carcinoma. Eur. J. Med. Res., 2016, 21(1), 1-6.
[http://dx.doi.org/10.1186/s40001-016-0217-x]
[41]
Gowda, R.; Madhunapantula, S.V.; Desai, D.; Amin, S.; Robertson, G.P. Selenium-containing histone deacetylase inhibitors for melanoma management. Cancer Biol. Ther., 2012, 13(9), 756-765.
[http://dx.doi.org/10.4161/cbt.20558] [PMID: 22669577]
[42]
Jose, A.; Chaitanya, M.V.N.L.; Kannan, E.; Madhunapantula, S.V. Tricaproin isolated from Simarouba glauca inhibits the growth of human colorectal carcinoma cell lines by targeting class-1 histone deacetylases. Front. Pharmacol., 2018, 9(127), 127.
[http://dx.doi.org/10.3389/fphar.2018.00127] [PMID: 29593526]
[43]
Marks, P.A.; Xu, W.S. Histone deacetylase inhibitors: Potential in cancer therapy. J. Cell. Biochem., 2009, 107(4), 600-608.
[http://dx.doi.org/10.1002/jcb.22185] [PMID: 19459166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy