Abstract
The ongoing pandemic of Covid-19 caused by SARS-CoV-2 is a major threat to global public health, drawing attention to develop new therapeutics for treatment. Much research work is focused on identifying or repurposing new small molecules to serve as potential inhibitors by interacting with viral or host-cell molecular targets and understanding the nature of the virus in the host cells. Identifying small molecules as potent inhibitors at an early stage is advantageous in developing a molecule with higher potency and then finding a lead compound for the development of drug discovery. Small molecules can show their inhibition property by targeting either the SARS-CoV-2 main protease (Mpro) enzyme, papain-like protease (PLpro) enzyme, or helicase (Hel), or blocking the spike (S) protein angiotensin-converting enzyme 2 (ACE2) receptor. A very recent outbreak of a new variant (B.1.617.2—termed as Delta variant) of SARS-CoV-2 worldwide posed a greater challenge as it is resistant to clinically undergoing vaccine trials. Thus, the development of new drug molecules is of potential interest to combat SARS-CoV-2 disease, and for that, the fragment-based drug discovery (FBDD) approach could be one of the ways to bring out an effective solution. Two cysteine protease enzymes would be an attractive choice of target for fragment-based drug discovery to tune the molecular structure at an early stage with suitable functionality. In this short review, the recent development in small molecules as inhibitors against Covid-19 is discussed, and the opportunity for FBDD is envisioned optimistically to provide an outlook regarding Covid-19 that may pave the way in the direction of the Covid-19 drug development paradigm.
Keywords: Small molecules, Covid-19, Mpro and PLpro proteases, fragments, inhibitors, drug discovery.
Graphical Abstract
[http://dx.doi.org/10.1038/s41541-021-00292-w] [PMID: 33430428]
(b)Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020, 586(7830), 516-527.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
(c) Different COVID-19 vaccines. Available from: https://www. cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html (accessed on September 2, 2021).
(b) What are the Covid variants and will vaccines still work? Available from: https://www.bbc.com/news/health-55659820 (accessed on September 2, 2021).
(c)Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel- Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; Prot, M.; Gallais, F.; Gantner, P.; Velay, A.; Le Guen, J.; Kassis-Chikhani, N.; Edriss, D.; Belec, L.; Seve, A.; Courtellemont, L.; Péré, H.; Hocqueloux, L.; Fafi-Kremer, S.; Prazuck, T.; Mouquet, H.; Bruel, T.; Simon-Lorière, E.; Rey, F.A.; Schwartz, O. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 2021, 596(7871), 276-280.
[http://dx.doi.org/10.1038/s41586-021-03777-9] [PMID: 34237773]
[http://dx.doi.org/10.1186/s12859-018-2153-y]
(b)Savi, C.D.; Hughes, D.L.; Kvaerno, L. Quest for a COVID-19 cure by repurposing small-molecule drugs: Mechanism of action, clinical development, synthesis at scale, and outlook for supply. Org. Process Res. Dev., 2020, 24(6), 940-976.
[http://dx.doi.org/10.1021/acs.oprd.0c00233]
(c)Jang, W.D.; Jeon, S.; Kim, S.; Lee, S.Y. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proc. Natl. Acad. Sci. USA, 2021, 118(30), e2024302118.
[http://dx.doi.org/10.1073/pnas.2024302118] [PMID: 34234012]
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[http://dx.doi.org/10.1038/s41467-020-20768-y] [PMID: 33479198]
[http://dx.doi.org/10.1074/jbc.M109.043547] [PMID: 19801669]
[http://dx.doi.org/10.3390/v12111289] [PMID: 33187074]
[http://dx.doi.org/10.1016/j.jmb.2018.06.024] [PMID: 29924965]
[http://dx.doi.org/10.3389/fphar.2021.736511] [PMID: 34539415]
[http://dx.doi.org/10.1099/vir.0.19424-0] [PMID: 12917450]
[http://dx.doi.org/10.1016/j.mib.2004.06.007] [PMID: 15358261]
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[http://dx.doi.org/10.1074/jbc.M104097200] [PMID: 11431476]
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[http://dx.doi.org/10.1038/s41467-021-21060-3] [PMID: 33531496]
[http://dx.doi.org/10.3389/fmicb.2021.645713] [PMID: 34177827]
[http://dx.doi.org/10.1016/j.peptides.2004.06.018] [PMID: 15501516]
[http://dx.doi.org/10.1016/j.jmb.2009.07.062] [PMID: 19646449]
[http://dx.doi.org/10.1590/0074-02760200254] [PMID: 33027420]
[http://dx.doi.org/10.1177/11779322211025876] [PMID: 34220199]
[http://dx.doi.org/10.3389/fchem.2021.622898] [PMID: 33889562]
[http://dx.doi.org/10.1016/j.apsb.2020.08.014] [PMID: 32895623]
[http://dx.doi.org/10.1128/JVI.79.24.15189-15198.2005] [PMID: 16306590]
[http://dx.doi.org/10.1016/j.biopha.2021.111313] [PMID: 33556871]
[http://dx.doi.org/10.1038/s41598-021-86471-0] [PMID: 33795718]
[http://dx.doi.org/10.1038/s41467-020-16954-7] [PMID: 32581217]
[http://dx.doi.org/10.1093/emboj/cdf327] [PMID: 12093723]
[http://dx.doi.org/10.1074/jbc.AC120.016154] [PMID: 33060199]
[http://dx.doi.org/10.1038/s41467-020-18709-w] [PMID: 33028810]
[http://dx.doi.org/10.1038/srep20918] [PMID: 26879383]
[http://dx.doi.org/10.1021/acscombsci.0c00058] [PMID: 32402186]
[http://dx.doi.org/10.1155/2020/6307457] [PMID: 33425427]
[http://dx.doi.org/10.1039/D0CS01065K] [PMID: 34212944]
[http://dx.doi.org/10.1016/j.molstruc.2020.129026] [PMID: 32834115]
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[http://dx.doi.org/10.1007/s13337-021-00717-z] [PMID: 34226871]
[http://dx.doi.org/10.1021/acs.jproteome.0c00526] [PMID: 33347311]
[http://dx.doi.org/10.1002/anie.202016961] [PMID: 33655614]
[http://dx.doi.org/10.1016/j.bmc.2020.115860] [PMID: 33191083]
[http://dx.doi.org/10.1002/3527608761.ch1]
[http://dx.doi.org/10.1038/nrd.2016.109] [PMID: 27417849]
[http://dx.doi.org/10.3389/fmolb.2020.00180] [PMID: 32850968]
[http://dx.doi.org/10.1021/acs.jpclett.1c01064] [PMID: 33999630]
[http://dx.doi.org/10.1038/s41467-021-20900-6] [PMID: 33510133]
[http://dx.doi.org/10.1038/s41467-020-18096-2] [PMID: 32855413]
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[http://dx.doi.org/10.1371/journal.ppat.1005650] [PMID: 27166862]
[http://dx.doi.org/10.1021/acsinfecdis.0c00168] [PMID: 32428392]
[http://dx.doi.org/10.1021/acs.jmedchem.0c00502] [PMID: 32539378]
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
(b) Prediction of potential commercially inhibitors against SARSCoV-2 by multi-task deep model. Available from: https://arxiv.org/ftp/arxiv/papers/2003/2003.00728.pdf (accessed on November 9, 2021).
[http://dx.doi.org/10.1038/s41401-020-00556-6] [PMID: 33116249]
[http://dx.doi.org/10.1080/07391102.2020.1771424] [PMID: 32452282]
[http://dx.doi.org/10.1021/acs.jcim.1c00684] [PMID: 34403259]
[http://dx.doi.org/10.1186/s13578-021-00564-x] [PMID: 33640032]
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106114] [PMID: 32712334]
[http://dx.doi.org/10.1016/j.apsb.2021.06.016]
[http://dx.doi.org/10.1038/s41598-021-90551-6] [PMID: 34040117]
[http://dx.doi.org/10.1038/s41594-020-0440-6] [PMID: 32382072]
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[http://dx.doi.org/10.1038/s41392-021-00653-w] [PMID: 34117216]
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
(b)Lim, X.Y.; Chan, J.S.W.; Tan, T.Y.C.; Teh, B.P.; Razak, M.R.M.A.; Mohamad, S.; Mohamed, A.F.S. Andrographis paniculata (Burm. F.) Wall. Ex Nees, andrographolide, and andrographolide analogues as SARS-CoV-2 antivirals? A Rapid Review. Nat. Prod. Commun. , 2021, 16(5), 1-15.
[http://dx.doi.org/10.1177/1934578X211016610]
(c)Shi, T.H.; Huang, Y.L.; Chen, C.C.; Pi, W.C.; Hsu, Y-L.; Lo, L.C.; Chen, W.Y.; Fu, S.L.; Lin, C.H. Andro-grapholide and its fluorescent derivative inhibit the main pro-teases of 2019-nCoV and SARS-CoV through covalent link-age. Biochem. Biophys. Res. Commun., 2020, 533(3), 467-473.
[http://dx.doi.org/10.1016/j.bbrc.2020.08.086] [PMID: 32977949]
[http://dx.doi.org/10.1038/s41467-020-19662-4] [PMID: 33208735]
[http://dx.doi.org/10.1021/acsinfecdis.0c00874] [PMID: 33417425]
[http://dx.doi.org/10.1038/s41467-020-18710-3] [PMID: 33028832]
[http://dx.doi.org/10.1007/s10858-020-00327-9] [PMID: 32533387]
[http://dx.doi.org/10.1111/cbdd.13914] [PMID: 34148292]
[http://dx.doi.org/10.1016/j.molstruc.2021.130366] [PMID: 33814612]
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[http://dx.doi.org/10.1186/s43141-021-00152-z] [PMID: 33797663]
[http://dx.doi.org/10.3791/62414] [PMID: 34125095]
[http://dx.doi.org/10.1016/j.ddtec.2010.12.001] [PMID: 24103770]