Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Perspective

Organoboronic Acids: A Chance for Improving Photochemistry

Author(s): Tomasz Kliś*

Volume 26, Issue 4, 2022

Published on: 10 March, 2022

Page: [348 - 355] Pages: 8

DOI: 10.2174/1385272826666220210141207

Abstract

Photoredox catalysis as a powerful strategy for the activation of small molecules requires the use of reactants which are suitable to undergo single-electron transfer with the formation of radicals. In this perspective, we highlight the unique ability of organoboronic acid derivatives to form radicals under photoredox catalysis conditions with particular emphasis placed on the methods of activation of B-C bonds. Key to facilitate the activation relies on use of easily oxidizable organoboronate complexes: organotrifluoroborates, alkoxyorganoboronates or nitrogen-containing Lewis base adducts. The low reduction potentials of these compounds allows facile single-electron oxidation to generate non-stabilized alkyl radicals, including primary radicals, under mild conditions. The use of molecular oxygen is also a common way to activate boronic acids in photocatalytic reactions. The role of the oxygen relies on addition of the oxygen anion-radical formed in the photocatalytic cycle to the boron center affording the easily oxidizable boronate adduct. Amongst the variety of activation methods, the protocols avoiding the use of external Lewis base are especially valuable. This has been demonstrated in visible-light-mediated alkenylation of alkylboronic acids using alkenylsulfones as coupling partners. The radical species resulting from alkylboronic acid derivatives could be utilized in the formation of C–X or C–C bonds including enantioselective photoreactions. The application of boronic acids in the visible light-driven installation of side chains at dehydroalanine residues in proteins shows the increasing role of these compounds in future syntheses of complex natural products.

Keywords: Photocatalysis, radicals, boronic acids, alkyltrifluoroborates, alkoxyorganoborates, photochemistry.

[1]
Hall, D.G.; Ishiyara, T.; Miyaura, N.; Suzuki, A.; Yoshida, K.; Hayashi, T.; Cham, D.M.T.; Lam, P.Y.S.; Kennedy, J.W.J.; Batey, R.A.; Matteson, D.S.; Carboni, B.; Car-reaux, F.; Ishihara, K.; Cho, B.T.; Jamies, T.D.; Yang, W.; Gao, X. Wang. B. Boronic Acids; Wiley: VCH: Weinheim, Germany, 2005.
[http://dx.doi.org/10.1002/3527606548]
[2]
(a) Miyaura, N.; Suzuki, N. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
(b) Xu, L.; Zhang, S.; Li, P. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chem. Soc. Rev., 2015, 44(24), 8848-8858.
[http://dx.doi.org/10.1039/C5CS00338E] [PMID: 26393673]
[3]
Williams, G.T.; Kedge, J.L.; Fossey, J.S. Molecular boronic acid-based saccharide sensors. ACS Sens., 2021, 6(4), 1508-1528.
[http://dx.doi.org/10.1021/acssensors.1c00462] [PMID: 33844515]
[4]
Li, H.; Wang, H.; Liu, Y.; Liu, Z. A benzoboroxole-functionalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem. Commun. (Camb.), 2012, 48(34), 4115-4117.
[http://dx.doi.org/10.1039/c2cc30230f] [PMID: 22434374]
[5]
(a) Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
(b) Xuan, J.; Xiao, W.J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223] [PMID: 22711502]
(c) Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem., 2016, 81(16), 6898-6926.
[http://dx.doi.org/10.1021/acs.joc.6b01449] [PMID: 27477076]
(d) Kancherla, R.; Muralirajan, K.; Sagadevan, A.; Rueping, M. Visible light-induced excited-state transition-metal catalysis. Trends Chem., 2019, 1(5), 510-523.
[http://dx.doi.org/10.1016/j.trechm.2019.03.012]
(e) McAtee, R.C.; McClain, E.J.; Stephenson, C.R.J. Illuminating photoredox catalysis. Trends Chem., 2019, 1(1), 111-125.
[http://dx.doi.org/10.1016/j.trechm.2019.01.008]
(f) Courant, T.; Masson, G. Recent progress in visible-light photoredox-catalyzed intermolecular 1,2-difunctionalization of double bonds via an ATRA-type mechanism. J. Org. Chem., 2016, 81(16), 6945-6952.
[http://dx.doi.org/10.1021/acs.joc.6b01058] [PMID: 27323289]
(g) Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev., 2016, 116(17), 10035-10074.
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
(h) Zhanga, M.; Zhu, Ch.; Ye, L.W. Recent advances in dual visible light photoredox and gold-catalyzed reactions. Synthesis, 2017, 49, 1150-1157.
(i) Lang, X.; Zhao, J.; Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev., 2016, 45(11), 3026-3038.
[http://dx.doi.org/10.1039/C5CS00659G] [PMID: 27094803]
(j) Sumida, Y.; Ohmiya, H. Direct excitation strategy for radical generation in organic synthesis. Chem. Soc. Rev., 2021, 50(11), 6320-6332.
[http://dx.doi.org/10.1039/D1CS00262G] [PMID: 33889895]
[6]
(a) Kliś T.; Kublicki, M. Organoboron compounds in visible light-driven photoredox catalysis. Curr. Org. Chem., 2021, 25(9), 994-1027.
[http://dx.doi.org/10.2174/1385272825666210225103418]
(b) Duan, K.; Yan, X.; Liu, Y.; Li, Z. Recent progress in the radical chemistry of alkylborates and alkylboronates. Adv. Synth. Catal., 2018, 360(15), 2781-2795.
[http://dx.doi.org/10.1002/adsc.201701626]
(c) Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Boron chemistry in a new light. Chem. Sci. (Camb.), 2015, 6(10), 5366-5382.
[http://dx.doi.org/10.1039/C5SC02207J] [PMID: 28717443]
(d) Li, D.; Zhang, H.; Wang, Y. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). Chem. Soc. Rev., 2013, 42(21), 8416-8433.
[http://dx.doi.org/10.1039/c3cs60170f] [PMID: 23900268]
[7]
(a) Zou, Y-Q.; Chen, J-R.; Liu, X-P.; Lu, L-Q.; Davis, R.L.; Jørgensen, K.A.; Xiao, W-J. Highly efficient aerobic oxidative hydroxylation of arylboronic acids: Photore-dox catalysis using visible light. Angew. Chem. Int. Ed. Engl., 2012, 51(3), 784-788.
[http://dx.doi.org/10.1002/anie.201107028] [PMID: 22161996]
(b) Yang, H-M.; Liu, M-L.; Tu, J-W.; Miura-Stempel, E.; Campbell, M.G.; Chuang, G.J. Bimetallic photoredox catalysis: Visible light promoted aerobic hydroxylation of boronic acids with a dirhodium(II) catalyst. J. Org. Chem., 2020, 85(4), 2040-2047.
[http://dx.doi.org/10.1021/acs.joc.9b02777] [PMID: 31886669]
(c) Liu, M.; Huang, H.; Chen, Y. Cyclic iodine reagents enable allylic alcohols for alkyl boronate addition/rearrangement by photoredox catalysis. Chin. J. Chem., 2018, 36(12), 1209-1212.
[http://dx.doi.org/10.1002/cjoc.201800461]
(d) Ye, Y.; Sanford, M.S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc., 2012, 134(22), 9034-9037.
[http://dx.doi.org/10.1021/ja301553c] [PMID: 22624669]
[8]
Yasu, Y.; Koike, T.; Akita, M. Visible light-induced selective generation of radicals from organoborates by photoredox catalysis. Adv. Synth. Catal., 2012, 354(18), 3414-3420.
[http://dx.doi.org/10.1002/adsc.201200588]
[9]
Shu, C.; Noble, A.; Aggarwal, V.K. Photoredox-catalyzed cyclobutene synthesis by a deboronative radical addition-polar cyclization cascade. Angew. Chem. Int. Ed. Engl., 2019, 58(12), 3870-3874.
[http://dx.doi.org/10.1002/anie.201813917] [PMID: 30681266]
[10]
Lima, F.; Kabeshov, M.A.; Tran, D.N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S.V. Visible light activation of boronic esters enables efficient photoredox C(sp2)–C(sp3) cross-couplings in flow. Angew. Chem. Int. Ed. Engl., 2016, 128(45), 14291-14295.
[http://dx.doi.org/10.1002/ange.201605548]
[11]
(a) Ren, S.; Fu, J.; Cheng, D.; Li, X.; Xu, X. A facile access for multisubstituted trifluoromethyl olefins by visible light catalysis. Tetrahedron Lett., 2021, 66, 152829.
[http://dx.doi.org/10.1016/j.tetlet.2021.152829]
(b) Chen, Y.; Ni, N.; Cheng, D.; Xu, X. The coupling of alkylboronic acids with a-(trifluoromethyl)styrenes by lewis base/photoredox dual catalysis. Tetrahedron Lett., 2020, 61(43), 152425.
[http://dx.doi.org/10.1016/j.tetlet.2020.152425]
[12]
Yue, F.; Dong, J.; Liu, Y.; Wang, Q. Visible-light-mediated alkenylation of alkyl boronic acids without an external Lewis base as an activator. Org. Lett., 2021, 23(7), 2477-2481.
[http://dx.doi.org/10.1021/acs.orglett.1c00399] [PMID: 33709714]
[13]
(a) Wei, L.; Zhang, J.; Xu, L. Visible-light-mediated aminoquinolate diarylboron-catalyzed metal-free hydroxylation of organoboronic acids under air and room tempera-ture. ACS Sustain. Chem. Eng., 2020, 8(37), 13894-13899.
[http://dx.doi.org/10.1021/acssuschemeng.0c05121]
(b) Wang, J.; Su, Y.; Quan, Z.; Li, J.; Yang, J.; Yuan, Y.; Huo, C. Visible-light promoted α-alkylation of glycine derivatives with alkyl boronic acids. Chem. Commun. (Camb.), 2021, 57(15), 1959-1962.
[http://dx.doi.org/10.1039/D0CC07688K] [PMID: 33502406]
[14]
Dong, J.; Yue, F.; Song, H.; Liu, Y.; Wang, Q. Visible-light-mediated photoredox minisci C-H alkylation with alkyl boronic acids using molecular oxygen as an oxidant. Chem. Commun. (Camb.), 2020, 56(83), 12652-12655.
[http://dx.doi.org/10.1039/D0CC05946C] [PMID: 32960192]
[15]
(a) Li, G-X.; Morales-Rivera, C.A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Photoredox-mediated Minisci C-H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chem. Sci. (Camb.), 2016, 7(10), 6407-6412.
[http://dx.doi.org/10.1039/C6SC02653B] [PMID: 28451096]
(b) Zhang, L.; Liu, Z.Q. Molecular oxygen-mediated Minisci-type radical alkylation of heteroarenes with boronic acids. Org. Lett., 2017, 19(24), 6594-6597.
[http://dx.doi.org/10.1021/acs.orglett.7b03297] [PMID: 29185775]
[16]
Ranjan, P.; Pillitteri, S.; Coppola, G.; Oliva, M.; Van der Eycken, E.V.; Sharma, U.K. Unlocking the accessibility of alkyl radicals from boronic acids through solvent-assisted organophotoredox activation. ACS Catal., 2021, 11(17), 10862-10870.
[http://dx.doi.org/10.1021/acscatal.1c02823]
[17]
Josephson, B.; Fehl, C.; Isenegger, P.G.; Nadal, S.; Wright, T.H.; Poh, A.W.J.; Bower, B.J.; Giltrap, A.M.; Chen, L.; Batchelor-McAuley, C.; Roper, G.; Arisa, O.; Sap, J.B.I.; Kawamura, A.; Baldwin, A.J.; Mohammed, S.; Compton, R.G.; Gouverneur, V.; Davis, B.G. Light-driven post-translational installation of reactive protein side chains. Nature, 2020, 585(7826), 530-537.
[http://dx.doi.org/10.1038/s41586-020-2733-7] [PMID: 32968259]
[18]
(a) Kublicki, M. Dąbrowski, M.; Durka, K.; Kliś T.; Serwatowski, J.; Woźniak, K. Visible light-promoted alkylation of unsaturated MIDA boronates using Ru(bpy)3Cl2 as the photoredox catalyst. Tetrahedron Lett., 2017, 58(22), 2162-2165.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.075]
(b) Kublicki, M.; Durka, K. Kliś T. Merging photocatalysis with allylboration. The photochemical perfluoroalkylation of unsaturated potassium alkyltrifluoroborates and synthesis of fluorinated alcohols. Tetrahedron Lett., 2018, 59(27), 2700-2703.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.086]
(c) Kublicki, M.; Ogonowski, B.; Wieczorkowski, D.; Durka, K. Kliś T. 1,4-phenylene-bis-((1-methyl-1-H-pyrazol-5-yl)boronic 8-oxyquinolinate) as a photoredox catalyst in the atom transfer radical addition of iodoperfluoroalkanes to alkenyl groups bearing organoboron compounds. Tetrahedron Lett., 2019, 60(29), 1918-1923.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.032]
[19]
Shu, X.; Xu, R.; Ma, Q.; Liao, S. Accessing alkyl boronic esters via visible lightmediated decarboxylative addition reactions of redox-active esters. Org. Chem. Front., 2020, 7(15), 2003-2007.
[http://dx.doi.org/10.1039/D0QO00440E]
[20]
El Khatib, M. Serafim, R.A.M.; Molander, G.A. α-Arylation/heteroarylation of chiral α-aminomethyltrifluoroborates via synergistic iridium photoredox/nickel cross-coupling catalysis. Angew. Chem. Int. Ed. Engl., 2016, 55(1), 254-258.
[http://dx.doi.org/10.1002/anie.201506147] [PMID: 26592731]
[21]
Huo, H.; Harms, K.; Meggers, E. Catalytic, enantioselective addition of alkyl radicals to alkenes via visible-light-activated photoredox catalysis with a chiral rhodium complex. J. Am. Chem. Soc., 2016, 138(22), 6936-6939.
[http://dx.doi.org/10.1021/jacs.6b03399] [PMID: 27218134]
[22]
Lima, F.; Kabeshov, M.A.; Tran, D.N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S.V. Visible light activation of boronic esters enables efficient photoredox C(sp2)-C(sp3) cross-couplings in flow. Angew. Chem. Int. Ed. Engl., 2016, 55(45), 14085-14089.
[http://dx.doi.org/10.1002/anie.201605548] [PMID: 27709749]
[23]
Sato, Y.; Goto, Y.; Nakamura, K.; Miyamoto, Y.; Sumida, Y.; Ohmiya, H. Goto. Y.; Nakamura. K.; Miyamoto. Y.; Sumida. Y.; Ohmiya. H. Light-driven N-heterocyclic carbene catalysis using alkylborates. ACS Catal., 2021, 11(21), 12886-12892.
[http://dx.doi.org/10.1021/acscatal.1c04153]

© 2024 Bentham Science Publishers | Privacy Policy