Abstract
Photoredox catalysis as a powerful strategy for the activation of small molecules requires the use of reactants which are suitable to undergo single-electron transfer with the formation of radicals. In this perspective, we highlight the unique ability of organoboronic acid derivatives to form radicals under photoredox catalysis conditions with particular emphasis placed on the methods of activation of B-C bonds. Key to facilitate the activation relies on use of easily oxidizable organoboronate complexes: organotrifluoroborates, alkoxyorganoboronates or nitrogen-containing Lewis base adducts. The low reduction potentials of these compounds allows facile single-electron oxidation to generate non-stabilized alkyl radicals, including primary radicals, under mild conditions. The use of molecular oxygen is also a common way to activate boronic acids in photocatalytic reactions. The role of the oxygen relies on addition of the oxygen anion-radical formed in the photocatalytic cycle to the boron center affording the easily oxidizable boronate adduct. Amongst the variety of activation methods, the protocols avoiding the use of external Lewis base are especially valuable. This has been demonstrated in visible-light-mediated alkenylation of alkylboronic acids using alkenylsulfones as coupling partners. The radical species resulting from alkylboronic acid derivatives could be utilized in the formation of C–X or C–C bonds including enantioselective photoreactions. The application of boronic acids in the visible light-driven installation of side chains at dehydroalanine residues in proteins shows the increasing role of these compounds in future syntheses of complex natural products.
Keywords: Photocatalysis, radicals, boronic acids, alkyltrifluoroborates, alkoxyorganoborates, photochemistry.
[http://dx.doi.org/10.1002/3527606548]
[http://dx.doi.org/10.1021/cr00039a007]
(b) Xu, L.; Zhang, S.; Li, P. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chem. Soc. Rev., 2015, 44(24), 8848-8858.
[http://dx.doi.org/10.1039/C5CS00338E] [PMID: 26393673]
[http://dx.doi.org/10.1021/acssensors.1c00462] [PMID: 33844515]
[http://dx.doi.org/10.1039/c2cc30230f] [PMID: 22434374]
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
(b) Xuan, J.; Xiao, W.J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223] [PMID: 22711502]
(c) Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem., 2016, 81(16), 6898-6926.
[http://dx.doi.org/10.1021/acs.joc.6b01449] [PMID: 27477076]
(d) Kancherla, R.; Muralirajan, K.; Sagadevan, A.; Rueping, M. Visible light-induced excited-state transition-metal catalysis. Trends Chem., 2019, 1(5), 510-523.
[http://dx.doi.org/10.1016/j.trechm.2019.03.012]
(e) McAtee, R.C.; McClain, E.J.; Stephenson, C.R.J. Illuminating photoredox catalysis. Trends Chem., 2019, 1(1), 111-125.
[http://dx.doi.org/10.1016/j.trechm.2019.01.008]
(f) Courant, T.; Masson, G. Recent progress in visible-light photoredox-catalyzed intermolecular 1,2-difunctionalization of double bonds via an ATRA-type mechanism. J. Org. Chem., 2016, 81(16), 6945-6952.
[http://dx.doi.org/10.1021/acs.joc.6b01058] [PMID: 27323289]
(g) Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev., 2016, 116(17), 10035-10074.
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
(h) Zhanga, M.; Zhu, Ch.; Ye, L.W. Recent advances in dual visible light photoredox and gold-catalyzed reactions. Synthesis, 2017, 49, 1150-1157.
(i) Lang, X.; Zhao, J.; Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev., 2016, 45(11), 3026-3038.
[http://dx.doi.org/10.1039/C5CS00659G] [PMID: 27094803]
(j) Sumida, Y.; Ohmiya, H. Direct excitation strategy for radical generation in organic synthesis. Chem. Soc. Rev., 2021, 50(11), 6320-6332.
[http://dx.doi.org/10.1039/D1CS00262G] [PMID: 33889895]
[http://dx.doi.org/10.2174/1385272825666210225103418]
(b) Duan, K.; Yan, X.; Liu, Y.; Li, Z. Recent progress in the radical chemistry of alkylborates and alkylboronates. Adv. Synth. Catal., 2018, 360(15), 2781-2795.
[http://dx.doi.org/10.1002/adsc.201701626]
(c) Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Boron chemistry in a new light. Chem. Sci. (Camb.), 2015, 6(10), 5366-5382.
[http://dx.doi.org/10.1039/C5SC02207J] [PMID: 28717443]
(d) Li, D.; Zhang, H.; Wang, Y. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). Chem. Soc. Rev., 2013, 42(21), 8416-8433.
[http://dx.doi.org/10.1039/c3cs60170f] [PMID: 23900268]
[http://dx.doi.org/10.1002/anie.201107028] [PMID: 22161996]
(b) Yang, H-M.; Liu, M-L.; Tu, J-W.; Miura-Stempel, E.; Campbell, M.G.; Chuang, G.J. Bimetallic photoredox catalysis: Visible light promoted aerobic hydroxylation of boronic acids with a dirhodium(II) catalyst. J. Org. Chem., 2020, 85(4), 2040-2047.
[http://dx.doi.org/10.1021/acs.joc.9b02777] [PMID: 31886669]
(c) Liu, M.; Huang, H.; Chen, Y. Cyclic iodine reagents enable allylic alcohols for alkyl boronate addition/rearrangement by photoredox catalysis. Chin. J. Chem., 2018, 36(12), 1209-1212.
[http://dx.doi.org/10.1002/cjoc.201800461]
(d) Ye, Y.; Sanford, M.S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc., 2012, 134(22), 9034-9037.
[http://dx.doi.org/10.1021/ja301553c] [PMID: 22624669]
[http://dx.doi.org/10.1002/adsc.201200588]
[http://dx.doi.org/10.1002/anie.201813917] [PMID: 30681266]
[http://dx.doi.org/10.1002/ange.201605548]
[http://dx.doi.org/10.1016/j.tetlet.2021.152829]
(b) Chen, Y.; Ni, N.; Cheng, D.; Xu, X. The coupling of alkylboronic acids with a-(trifluoromethyl)styrenes by lewis base/photoredox dual catalysis. Tetrahedron Lett., 2020, 61(43), 152425.
[http://dx.doi.org/10.1016/j.tetlet.2020.152425]
[http://dx.doi.org/10.1021/acs.orglett.1c00399] [PMID: 33709714]
[http://dx.doi.org/10.1021/acssuschemeng.0c05121]
(b) Wang, J.; Su, Y.; Quan, Z.; Li, J.; Yang, J.; Yuan, Y.; Huo, C. Visible-light promoted α-alkylation of glycine derivatives with alkyl boronic acids. Chem. Commun. (Camb.), 2021, 57(15), 1959-1962.
[http://dx.doi.org/10.1039/D0CC07688K] [PMID: 33502406]
[http://dx.doi.org/10.1039/D0CC05946C] [PMID: 32960192]
[http://dx.doi.org/10.1039/C6SC02653B] [PMID: 28451096]
(b) Zhang, L.; Liu, Z.Q. Molecular oxygen-mediated Minisci-type radical alkylation of heteroarenes with boronic acids. Org. Lett., 2017, 19(24), 6594-6597.
[http://dx.doi.org/10.1021/acs.orglett.7b03297] [PMID: 29185775]
[http://dx.doi.org/10.1021/acscatal.1c02823]
[http://dx.doi.org/10.1038/s41586-020-2733-7] [PMID: 32968259]
[http://dx.doi.org/10.1016/j.tetlet.2017.04.075]
(b) Kublicki, M.; Durka, K. Kliś T. Merging photocatalysis with allylboration. The photochemical perfluoroalkylation of unsaturated potassium alkyltrifluoroborates and synthesis of fluorinated alcohols. Tetrahedron Lett., 2018, 59(27), 2700-2703.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.086]
(c) Kublicki, M.; Ogonowski, B.; Wieczorkowski, D.; Durka, K. Kliś T. 1,4-phenylene-bis-((1-methyl-1-H-pyrazol-5-yl)boronic 8-oxyquinolinate) as a photoredox catalyst in the atom transfer radical addition of iodoperfluoroalkanes to alkenyl groups bearing organoboron compounds. Tetrahedron Lett., 2019, 60(29), 1918-1923.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.032]
[http://dx.doi.org/10.1039/D0QO00440E]
[http://dx.doi.org/10.1002/anie.201506147] [PMID: 26592731]
[http://dx.doi.org/10.1021/jacs.6b03399] [PMID: 27218134]
[http://dx.doi.org/10.1002/anie.201605548] [PMID: 27709749]
[http://dx.doi.org/10.1021/acscatal.1c04153]