Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Activatable Small Molecule Probes for Photoacoustic Imaging: Dyes and Applications

Author(s): Jean Michel Merkes, Fabian Kiessling* and Srinivas Banala*

Volume 29, Issue 39, 2022

Published on: 15 August, 2022

Page: [6008 - 6029] Pages: 22

DOI: 10.2174/0929867329666220208093735

Price: $65

Abstract

Photoacoustic imaging (PAI) is a non-invasive modality for molecular imaging and is on the way to becoming a routine clinical diagnostic tool. The advantage of PAI over many other currently used modalities is its ability to potentially image in vivo a variety of enzymatic and physiological processes as well as metabolites in real time at high tissue depths. For this purpose, photoacoustic signal generating chromophores, which have the ability to change their signal characteristics upon reaction, to their environments or trapping reactive species, are important. This review article provides an overview of the concepts for activatable small molecule probes for photoacoustic imaging, highlights the requirements for structural and optical properties, and describes their responses to the selective triggers.

Keywords: Chromophores, NIR-imaging probes, fluorescence quenching, short-lived species imaging, metabolites imaging, trigger effects on PA properties.

[1]
Yang, J-M.; Ghim, C-M. Photoacoustic tomography opening new paradigms in biomedical imaging. In: Advanced Imaging and Bio Techniques for Convergence Science; Kim, J.K.; Kim, J.K.; Pack, C-G., Eds.; Springer Singapore: Singapore, 2021; pp. 239-341.
[http://dx.doi.org/10.1007/978-981-33-6064-8_11]
[2]
Lin, L.; Wang, L.V. Photoacoustic imaging. In: Optical Imaging in Human Disease and Biological Research; Wei, X.; Gu, B., Eds.; Springer : Singapore, 2021; pp. 147-175.
[http://dx.doi.org/10.1007/978-981-15-7627-0_8]
[3]
Liu, C.; Li, S.; Gu, Y.; Xiong, H.; Wong, W.T.; Sun, L. Multispectral photoacoustic imaging of tumor protease activity with a gold nanocage-based activatable probe. Mol. Imaging Biol., 2018, 20(6), 919-929.
[http://dx.doi.org/10.1007/s11307-018-1203-1] [PMID: 29736563]
[4]
Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol., 2006, 24(7), 848-851.
[http://dx.doi.org/10.1038/nbt1220] [PMID: 16823374]
[5]
Wang, L.V.; Hu, S. Photoacoustic tomography: In vivo Imaging from organelles to organs. Science 80, 2012, 335(6075), 1458-1462.
[http://dx.doi.org/10.1126/science.1216210]
[6]
Zhang, Y.; Hong, H.; Cai, W. Photoacoustic imaging. Cold Spring Harb. Protoc., 2011, 2011(9), 1015-1026.
[http://dx.doi.org/10.1101/pdb.top065508] [PMID: 21880823]
[7]
Hosseinaee, Z.; Tummon Simmons, J.A.; Reza, P.H. Dual-modal photoacoustic imaging and optical coherence tomography. Front. Phys., 2021, 8, 635.
[http://dx.doi.org/10.3389/fphy.2020.616618]
[8]
Attia, A.B.E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.S.; Bi, R.; Ntziachristos, V.; Olivo, M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics, 2019, 16, 100144.
[http://dx.doi.org/10.1016/j.pacs.2019.100144] [PMID: 31871888]
[9]
Kim, J.; Lee, D.; Jung, U.; Kim, C. Photoacoustic imaging platforms for multimodal imaging. Ultrasonography, 2015, 34(2), 88-97.
[http://dx.doi.org/10.14366/usg.14062] [PMID: 25754364]
[10]
Knox, H.J.; Chan, J. Acoustogenic probes: A new frontier in photoacoustic imaging. Acc. Chem. Res., 2018, 51(11), 2897-2905.
[http://dx.doi.org/10.1021/acs.accounts.8b00351] [PMID: 30379532]
[11]
Kim, C.; Chen, Z. Multimodal photoacoustic imaging: Systems, applications, and agents. Biomed. Eng. Lett., 2018, 8(2), 137-138.
[http://dx.doi.org/10.1007/s13534-018-0071-6] [PMID: 30603198]
[12]
Zackrisson, S.; van de Ven, S.M.W.Y.; Gambhir, S.S. Light in and sound out: Emerging translational strategies for photoacoustic imaging. Cancer Res., 2014, 74(4), 979-1004.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2387] [PMID: 24514041]
[13]
Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol., 2005, 23(3), 313-320.
[http://dx.doi.org/10.1038/nbt1074] [PMID: 15765087]
[14]
Kim, J.; Park, E.; Park, B.; Choi, W.; Lee, K.J.; Kim, C. Minireview towards clinical photoacoustic and ultrasound imaging: Probe improvement and real-time graphical user interface. Exp. Biol. Med. (Maywood), 2020, 245(4), 321-329.
[http://dx.doi.org/10.1177/1535370219889968] [PMID: 31916849]
[15]
Deng, H.; Qiao, H.; Dai, Q.; Ma, C. Deep learning in photoacoustic imaging: A review. J. Biomed. Opt., 2021, 26(4), 1-32.
[http://dx.doi.org/10.1117/1.JBO.26.4.040901] [PMID: 33837678]
[16]
Kim, H.; Chang, J.H. Multimodal photoacoustic imaging as a tool for sentinel lymph node identification and biopsy guidance. Biomed. Eng. Lett., 2018, 8(2), 183-191.
[http://dx.doi.org/10.1007/s13534-018-0068-1] [PMID: 30603202]
[17]
Song, K.H.; Stein, E.W.; Margenthaler, J.A.; Wang, L.V. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt., 2008, 13(5), 054033.
[http://dx.doi.org/10.1117/1.2976427] [PMID: 19021413]
[18]
Kang, J.; Chang, J.H.; Kim, S.M.; Lee, H.J.; Kim, H.; Wilson, B.C.; Song, T.K. Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: In vivo proof-of-principle and validation with nodal obstruction. Sci. Rep., 2016, 2017(7), 1-9.
[http://dx.doi.org/10.1038/srep45008] [PMID: 28327582]
[19]
Pan, D.; Cai, X.; Yalaz, C.; Senpan, A.; Omanakuttan, K.; Wickline, S.A.; Wang, L.V.; Lanza, G.M. Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles. ACS Nano, 2012, 6(2), 1260-1267.
[http://dx.doi.org/10.1021/nn203895n] [PMID: 22229462]
[20]
Dumani, D.S.; Sun, I.C.; Emelianov, S.Y. Ultrasound-guided immunofunctional photoacoustic imaging for diagnosis of lymph node metastases. Nanoscale, 2019, 11(24), 11649-11659.
[http://dx.doi.org/10.1039/C9NR02920F] [PMID: 31173038]
[21]
Luke, G.P.; Myers, J.N.; Emelianov, S.Y.; Sokolov, K.V. Sentinel lymph node biopsy revisited: Ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. Cancer Res., 2014, 74(19), 5397-5408.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0796] [PMID: 25106426]
[22]
Stoffels, I.; Morscher, S.; Helfrich, I.; Hillen, U.; Leyh, J.; Burton, N.C.; Sardella, T.C.; Claussen, J.; Poeppel, T.D.; Bachmann, H.S.; Roesch, A.; Griewank, K.; Schadendorf, D.; Gunzer, M.; Klode, J.; Klode, J. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med., 2015, 7(317), 317ra199.
[http://dx.doi.org/10.1126/scitranslmed.aad1278] [PMID: 26659573]
[23]
Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol., 2011, 29(5), 213-221.
[http://dx.doi.org/10.1016/j.tibtech.2011.01.006] [PMID: 21324541]
[24]
Mehrmohammadi, M.; Yoon, S.J.; Yeager, D.; Emelianov, S.Y. Photoacoustic imaging for cancer detection and staging. Curr. Mol. Imaging, 2013, 2(1), 89-105.
[http://dx.doi.org/10.2174/2211555211302010010] [PMID: 24032095]
[25]
Lan, L.; Xia, Y.; Li, R.; Liu, K.; Mai, J.; Medley, J.A.; Obeng-Gyasi, S.; Han, L.K.; Wang, P.; Cheng, J-X. A fiber optoacoustic guide with augmented reality for precision breast-conserving surgery. Light Sci. Appl., 2018, 7(1), 2.
[http://dx.doi.org/10.1038/s41377-018-0006-0] [PMID: 30839601]
[26]
Lee, C.Y.; Fujino, K.; Motooka, Y.; Gregor, A.; Bernards, N.; Ujiie, H.; Kinoshita, T.; Chung, K.Y.; Han, S.H.; Yasufuku, K. Photoacoustic imaging to localize indeterminate pulmonary nodules: A preclinical study. PLoS One, 2020, 15(4), e0231488.
[http://dx.doi.org/10.1371/journal.pone.0231488] [PMID: 32315347]
[27]
May, J.P.; Hysi, E.; Wirtzfeld, L.A.; Undzys, E.; Li, S-D.; Kolios, M.C. Photoacoustic imaging of cancer treatment response: early detection of therapeutic effect from thermosensitive liposomes. PLoS One, 2016, 11(10), e0165345.
[http://dx.doi.org/10.1371/journal.pone.0165345] [PMID: 27788199]
[28]
Zhang, R.; Zhao, L.Y.; Zhao, C.Y.; Wang, M.; Liu, S.R.; Li, J.C.; Zhao, R.N.; Wang, R.J.; Yang, F.; Zhu, L.; He, X.J.; Li, C.H.; Jiang, Y.X.; Yang, M. Exploring the diagnostic value of photoacoustic imaging for breast cancer: the identification of regional photoacoustic signal differences of breast tumors. Biomed. Opt. Express, 2021, 12(3), 1407-1421.
[http://dx.doi.org/10.1364/BOE.417056] [PMID: 33796362]
[29]
Nyayapathi, N.; Xia, J. Photoacoustic imaging of breast cancer: A mini review of system design and image features. J. Biomed. Opt., 2019, 24(12), 1-13.
[http://dx.doi.org/10.1117/1.JBO.24.12.121911] [PMID: 31677256]
[30]
Fadhel, M.N.; Appak Baskoy, S.; Wang, Y.; Hysi, E.; Kolios, M.C. Use of photoacoustic imaging for monitoring vascular disrupting cancer treatments. J. Biophotonics, 2020, 2020, e202000209.
[http://dx.doi.org/10.1002/jbio.202000209] [PMID: 32888381]
[31]
Lui, K-H.; Li, S.; Lo, W.S.; Gu, Y.; Wong, W-T. In vivo photoacoustic imaging for monitoring treatment outcome of corneal neovascularization with metformin eye drops. Biomed. Opt. Express, 2021, 12(6), 3597-3606.
[http://dx.doi.org/10.1364/BOE.423982] [PMID: 34221681]
[32]
Hysi, E.; Fadhel, M.N.; Wang, Y.; Sebastian, J.A.; Giles, A.; Czarnota, G.J.; Exner, A.A.; Kolios, M.C. Photoacoustic imaging biomarkers for monitoring biophysical changes during nanobubble-mediated radiation treatment. Photoacoustics, 2020, 20, 100201.
[http://dx.doi.org/10.1016/j.pacs.2020.100201] [PMID: 32775198]
[33]
Yang, X.; Chen, Y-H.; Xia, F.; Sawan, M. Photoacoustic imaging for monitoring of stroke diseases: A review. Photoacoustics, 2021, 23, 100287.
[http://dx.doi.org/10.1016/j.pacs.2021.100287] [PMID: 34401324]
[34]
Karmacharya, M.B.; Sultan, L.R.; Sehgal, C.M. Photoacoustic monitoring of oxygenation changes induced by therapeutic ultrasound in murine hepatocellular carcinoma. Sci. Rep., 2021, 11(1), 4100.
[http://dx.doi.org/10.1038/s41598-021-83439-y] [PMID: 33603035]
[35]
Lavaud, J.; Henry, M.; Gayet, P.; Fertin, A.; Vollaire, J.; Usson, Y.; Coll, J.L.; Josserand, V. Noninvasive monitoring of liver metastasis development via combined multispectral photoacoustic imaging and fluorescence diffuse optical tomography. Int. J. Biol. Sci., 2020, 16(9), 1616-1628.
[http://dx.doi.org/10.7150/ijbs.40896] [PMID: 32226306]
[36]
Zhang, C.; Qiu, Z.; Zhang, L.; Pang, Q.; Yang, Z.; Qin, J.K.; Liang, H.; Zhao, S. Design and synthesis of a ratiometric photoacoustic imaging probe activated by selenol for visual monitoring of pathological progression of autoimmune hepatitis. Chem. Sci. (Camb.), 2021, 12(13), 4883-4888.
[http://dx.doi.org/10.1039/D0SC06573K] [PMID: 34163738]
[37]
Tzoumas, S.; Nunes, A.; Olefir, I.; Stangl, S.; Symvoulidis, P.; Glasl, S.; Bayer, C.; Multhoff, G.; Ntziachristos, V. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun., 2016, 7, 12121.
[http://dx.doi.org/10.1038/ncomms12121] [PMID: 27358000]
[38]
Lawrence, D.J.; Escott, M.E.; Myers, L.; Intapad, S.; Lindsey, S.H.; Bayer, C.L. Spectral photoacoustic imaging to estimate in vivo placental oxygenation during preeclampsia. Sci. Rep., 2019, 9(1), 558.
[http://dx.doi.org/10.1038/s41598-018-37310-2] [PMID: 30679723]
[39]
Regensburger, A.P.; Fonteyne, L.M.; Jüngert, J.; Wagner, A.L.; Gerhalter, T.; Nagel, A.M.; Heiss, R.; Flenkenthaler, F.; Qurashi, M.; Neurath, M.F.; Klymiuk, N.; Kemter, E.; Fröhlich, T.; Uder, M.; Woelfle, J.; Rascher, W.; Trollmann, R.; Wolf, E.; Waldner, M.J.; Knieling, F. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat. Med., 2019, 25(12), 1905-1915.
[http://dx.doi.org/10.1038/s41591-019-0669-y] [PMID: 31792454]
[40]
Karlas, A.; Pleitez, M.A.; Aguirre, J.; Ntziachristos, V. Optoacoustic imaging in endocrinology and metabolism. Nat. Rev. Endocrinol., 2021, 17(6), 323-335.
[http://dx.doi.org/10.1038/s41574-021-00482-5] [PMID: 33875856]
[41]
Reber, J.; Willershäuser, M.; Karlas, A.; Paul-Yuan, K.; Diot, G.; Franz, D.; Fromme, T.; Ovsepian, S.V.; Bézière, N.; Dubikovskaya, E.; Karampinos, D.C.; Holzapfel, C.; Hauner, H.; Klingenspor, M.; Ntziachristos, V. Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients. Cell Metab., 2018, 27(3), 689-701.e4.
[http://dx.doi.org/10.1016/j.cmet.2018.02.002] [PMID: 29514074]
[42]
Cao, Y.; Kole, A.; Hui, J.; Zhang, Y.; Mai, J.; Alloosh, M.; Sturek, M.; Cheng, J.X. Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography. Sci. Rep., 2018, 8(1), 2400.
[http://dx.doi.org/10.1038/s41598-018-20881-5] [PMID: 29402963]
[43]
Wang, R.; Pan, T.; Huang, L.; Liao, C.; Li, Q.; Jiang, H.; Yang, J. Photoacoustic imaging in evaluating early intestinal ischemia injury and reperfusion injury in rat models. Quant. Imaging Med. Surg., 2021, 11(7), 2968-2979.
[http://dx.doi.org/10.21037/qims-20-1160] [PMID: 34249627]
[44]
Knieling, F.; Neufert, C.; Hartmann, A.; Claussen, J.; Urich, A.; Egger, C.; Vetter, M.; Fischer, S.; Pfeifer, L.; Hagel, A.; Kielisch, C.; Görtz, R.S.; Wildner, D.; Engel, M.; Röther, J.; Uter, W.; Siebler, J.; Atreya, R.; Rascher, W.; Strobel, D.; Neurath, M.F.; Waldner, M.J. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N. Engl. J. Med., 2017, 376(13), 1292-1294.
[http://dx.doi.org/10.1056/NEJMc1612455] [PMID: 28355498]
[45]
Jo, J.; Xu, G.; Cao, M.; Marquardt, A.; Francis, S.; Gandikota, G.; Wang, X. A functional study of human inflammatory arthritis using photoacoustic imaging. Sci. Rep., 2017, 7(1), 15026.
[http://dx.doi.org/10.1038/s41598-017-15147-5] [PMID: 29101339]
[46]
Jo, J.; Tian, C.; Xu, G.; Sarazin, J.; Schiopu, E.; Gandikota, G.; Wang, X. Photoacoustic tomography for human musculoskeletal imaging and inflammatory arthritis detection. Photoacoustics, 2018, 12, 82-89.
[http://dx.doi.org/10.1016/j.pacs.2018.07.004] [PMID: 30596016]
[47]
Rajian, J.R.; Shao, X.; Chamberland, D.L.; Wang, X. Characterization and treatment monitoring of inflammatory arthritis by photoacoustic imaging: A study on adjuvant-induced arthritis rat model. Biomed. Opt. Express, 2013, 4(6), 900-908.
[http://dx.doi.org/10.1364/BOE.4.000900] [PMID: 23761851]
[48]
Wang, B.; Wang, C.; Zhong, F.; Pang, W.; Guo, L.; Peng, K.; Xiao, J. 3D acoustic resolution-based photoacoustic endoscopy with dynamic focusing. Quant. Imaging Med. Surg., 2021, 11(2), 685-696.
[http://dx.doi.org/10.21037/qims-20-625] [PMID: 33532268]
[49]
Ecclestone, B.R.; Abbasi, S.; Bell, K.; Dinakaran, D.; Bigras, G.; Mackey, J.R.; Haji Reza, P. Towards virtual biopsies of gastrointestinal tissues using photoacoustic remote sensing microscopy. Quant. Imaging Med. Surg., 2021, 11(3), 1070-1077.
[http://dx.doi.org/10.21037/qims-20-722] [PMID: 33654678]
[50]
Liang, L.; Shen, Y.; Dong, Z.; Gu, X. Photoacoustic image-guided corpus cavernosum intratunical injection of adipose stem cell-derived exosomes loaded polydopamine thermosensitive hydrogel for erectile dysfunction treatment. Bioact. Mater., 2021, 9(9), 147-156.
[http://dx.doi.org/10.1016/j.bioactmat.2021.07.024] [PMID: 34820562]
[51]
Teng, C.W.; Huang, V.; Arguelles, G.R.; Zhou, C.; Cho, S.S.; Harmsen, S.; Lee, J.Y.K. Applications of indocyanine green in brain tumor surgery: Review of clinical evidence and emerging technologies. Neurosurg. Focus, 2021, 50(1), E4.
[http://dx.doi.org/10.3171/2020.10.FOCUS20782] [PMID: 33386005]
[52]
Pleitez, M.A.; Khan, A.A.; Soldà, A.; Chmyrov, A.; Reber, J.; Gasparin, F.; Seeger, M.R.; Schätz, B.; Herzig, S.; Scheideler, M.; Ntziachristos, V. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol., 2020, 38(3), 293-296.
[http://dx.doi.org/10.1038/s41587-019-0359-9] [PMID: 31873214]
[53]
Wang, B.; Su, J.L.; Amirian, J.; Litovsky, S.H.; Smalling, R.; Emelianov, S. Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging. Opt. Express, 2010, 18(5), 4889-4897.
[http://dx.doi.org/10.1364/OE.18.004889] [PMID: 20389501]
[54]
Abuteen, A.; Zanganeh, S.; Akhigbe, J.; Samankumara, L.P.; Aguirre, A.; Biswal, N.; Braune, M.; Vollertsen, A.; Röder, B.; Brückner, C.; Zhu, Q. The evaluation of NIR-absorbing porphyrin derivatives as contrast agents in photoacoustic imaging. Phys. Chem. Chem. Phys., 2013, 15(42), 18502-18509.
[http://dx.doi.org/10.1039/c3cp52193a] [PMID: 24071709]
[55]
Wang, B.; Zhao, Q.; Barkey, N.M.; Morse, D.L.; Jiang, H.; Barkey, N.M.; Morse, D.L. Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green. Med. Phys., 2012, 39(5), 2512-2517.
[http://dx.doi.org/10.1118/1.3700401] [PMID: 22559621]
[56]
Hatamimoslehabadi, M.; Bellinger, S.; La, J.; Ahmad, E.; Frenette, M.; Yelleswarapu, C.; Rochford, J. Correlation of photophysical properties with the photoacoustic emission for a selection of established chromophores. J. Phys. Chem. C, 2017, 121(43), 24168-24178.
[http://dx.doi.org/10.1021/acs.jpcc.7b07598]
[57]
Frenette, M.; Hatamimoslehabadi, M.; Bellinger-Buckley, S.; Laoui, S.; La, J.; Bag, S.; Mallidi, S.; Hasan, T.; Bouma, B.; Yelleswarapu, C.; Rochford, J. Shining light on the dark side of imaging: excited state absorption enhancement of a bis-styryl BODIPY photoacoustic contrast agent. J. Am. Chem. Soc., 2014, 136(45), 15853-15856.
[http://dx.doi.org/10.1021/ja508600x] [PMID: 25329769]
[58]
Salaun, J. Optically Active Cyclopropanes. Chem. Rev., 1989, 89, 1247-1270.
[http://dx.doi.org/10.1021/cr00095a017]
[59]
Wang, Y.; Weng, J.; Wen, X.; Hu, Y.; Ye, D. Recent advances in stimuli-responsive in situ self-assembly of small molecule probes for in vivo imaging of enzymatic activity. Biomater. Sci., 2021, 9(2), 406-421.
[http://dx.doi.org/10.1039/D0BM00895H] [PMID: 32627767]
[60]
Chun, J.; Choi, M.; Lee, S. J.; Hong, G. Applications of Time-Temperature Integrator (TTI) as a quality indicator of grounded pork patty. Korean J. Food Sci. An., 2013, 33(4), 439-447.
[61]
Freeman, R.; Liu, X.; Willner, I. Amplified multiplexed analysis of DNA by the exonuclease III-catalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots. Nano Lett., 2011, 11(10), 4456-4461.
[http://dx.doi.org/10.1021/nl202761g] [PMID: 21905746]
[62]
Hao, Y.; Chen, W.; Wang, L.; Zhou, B.; Zang, Q.; Chena, S.; Liu, Y.-N. A naphthalimide-based azo colorimetric and ratiometric probe: Synthesis and its application in rapid detection of cyanide anions. Anal. Methods, 2014, 8, 2478-2483.
[http://dx.doi.org/10.1039/c3ay41931b]
[63]
Johansson, M.K.; Cook, R.M.; Xu, J.; Raymond, K.N. Time gating improves sensitivity in energy transfer assays with terbium chelate/dark quencher oligonucleotide probes. J. Am. Chem. Soc., 2004, 126(50), 16451-16455.
[http://dx.doi.org/10.1021/ja0452368] [PMID: 15600347]
[64]
Chang, J.W.W.; Chan, P.W.H. Highly efficient ruthenium(II) porphyrin catalyzed amidation of aldehydes. Angew. Chem. Int. Ed. Engl., 2008, 47(6), 1138-1140.
[http://dx.doi.org/10.1002/anie.200704695] [PMID: 18163374]
[65]
Liang, J-L.; Yuan, S-X.; Huang, J-S.; Yu, W-Y.; Che, C-M. Highly diastereo- and enantioselective intramolecular amidation of saturated C-H bonds catalyzed by ruthenium porphyrins. Angew. Chem. Int. Ed., 2002, 41(18), 3465-3468.
[http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D] [PMID: 12298066]
[66]
Brown, E.; Brunker, J.; Bohndiek, S.E. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis. Model. Mech., 2019, 12(7), dmm039636.
[http://dx.doi.org/10.1242/dmm.039636] [PMID: 31337635]
[67]
Reinhardt, C.J.; Zhou, E.Y.; Jorgensen, M.D.; Partipilo, G.; Chan, J. A ratiometric acoustogenic probe for in vivo imaging of endogenous Nitric Oxide. J. Am. Chem. Soc., 2018, 140(3), 1011-1018.
[http://dx.doi.org/10.1021/jacs.7b10783] [PMID: 29313677]
[68]
Zhou, E.Y.; Knox, H.J.; Liu, C.; Zhao, W.; Chan, J. A conformationally restricted Aza-BODIPY platform for stimulus-responsive probes with enhanced photoacoustic properties. J. Am. Chem. Soc., 2019, 141(44), 17601-17609.
[http://dx.doi.org/10.1021/jacs.9b06694] [PMID: 31660741]
[69]
Knox, H.J.; Hedhli, J.; Kim, T.W.; Khalili, K.; Dobrucki, L.W.; Chan, J. A bioreducible N-oxide-based probe for photoacoustic imaging of hypoxia. Nat. Commun., 2017, 8(1), 1794.
[http://dx.doi.org/10.1038/s41467-017-01951-0] [PMID: 29176550]
[70]
Chen, M.; Knox, H.J.; Tang, Y.; Liu, W.; Nie, L.; Chan, J.; Yao, J. Simultaneous photoacoustic imaging of intravascular and tissue oxygenation. Opt. Lett., 2019, 44(15), 3773-3776.
[http://dx.doi.org/10.1364/OL.44.003773] [PMID: 31368965]
[71]
Knox, H.J.; Kim, T.W.; Zhu, Z.; Chan, J. Photophysical tuning of N-Oxide-based probes enables ratiometric photoacoustic imaging of tumor hypoxia. ACS Chem. Biol., 2018, 13(7), 1838-1843.
[http://dx.doi.org/10.1021/acschembio.8b00099] [PMID: 29521492]
[72]
Anderson, M.; Moshnikova, A.; Engelman, D.M.; Reshetnyak, Y.K.; Andreev, O.A. Probe for the measurement of cell surface pH in vivo and ex vivo. Proc. Natl. Acad. Sci. USA, 2016, 113(29), 8177-8181.
[http://dx.doi.org/10.1073/pnas.1608247113] [PMID: 27382181]
[73]
Korenchan, D.E.; Flavell, R.R.; Spatiotemporal, P.H. Spatiotemporal pH heterogeneity as a promoter of cancer progression and therapeutic resistance. Cancers (Basel), 2019, 11(7), 1026.
[http://dx.doi.org/10.3390/cancers11071026] [PMID: 31330859]
[74]
Walsh, J.J.; Parent, M.; Akif, A.; Adam, L.C.; Maritim, S.; Mishra, S.K.; Khan, M.H.; Coman, D.; Hyder, F. Imaging hallmarks of the tumor microenvironment in glioblastoma progression. Front. Oncol., 2021, 11, 692650.
[http://dx.doi.org/10.3389/fonc.2021.692650] [PMID: 34513675]
[75]
Hulikova, A.; Harris, A.L.; Vaughan-Jones, R.D.; Swietach, P. Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia. J. Cell. Physiol., 2013, 228(4), 743-752.
[http://dx.doi.org/10.1002/jcp.24221] [PMID: 22949268]
[76]
Cao, Y.; Qian, R.C.; Li, D.W.; Long, Y.T. Raman/fluorescence dual-sensing and imaging of intracellular pH distribution. Chem. Commun. (Camb.), 2015, 51(99), 17584-17587.
[http://dx.doi.org/10.1039/C5CC07697H] [PMID: 26477858]
[77]
Anemone, A.; Consolino, L.; Arena, F.; Capozza, M.; Longo, D.L. Imaging tumor acidosis: A survey of the available techniques for mapping in vivo tumor pH. Cancer Metast. Rev., 2019, 38(1-2), 25-49.
[http://dx.doi.org/10.1007/s10555-019-09782-9] [PMID: 30762162]
[78]
De Leon-Rodriguez, L.M.; Lubag, A.J.M.; Malloy, C.R.; Martinez, G.V.; Gillies, R.J.; Sherry, A.D. Responsive MRI agents for sensing metabolism in vivo. Acc. Chem. Res., 2009, 42(7), 948-957.
[http://dx.doi.org/10.1021/ar800237f] [PMID: 19265438]
[79]
Chen, Y. Recent advances in fluorescent probes for extracellular pH detection and imaging. Anal. Biochem., 2021, 612(612), 113900.
[http://dx.doi.org/10.1016/j.ab.2020.113900] [PMID: 32926864]
[80]
Wang, S.; Ren, W.X.; Hou, J-T.; Won, M.; An, J.; Chen, X.; Shu, J.; Kim, J.S. Fluorescence imaging of pathophysiological microenvironments. Chem. Soc. Rev., 2021, 50(16), 8887-8902.
[http://dx.doi.org/10.1039/D1CS00083G] [PMID: 34195735]
[81]
Chatni, M.R.; Yao, J.; Danielli, A.; Favazza, C.P.; Maslov, K.I.; Wang, L.V. Functional photoacoustic microscopy of pH. J. Biomed. Opt., 2011, 16(10), 100503.
[http://dx.doi.org/10.1117/1.3644495] [PMID: 22029342]
[82]
Jo, J.; Lee, C.H.; Kopelman, R.; Wang, X. in vivo quantitative imaging of tumor pH by nanosonophore assisted multispectral photoacoustic imaging. Nat. Commun., 2017, 8(1), 471.
[http://dx.doi.org/10.1038/s41467-017-00598-1] [PMID: 28883396]
[83]
Ray, A.; Yoon, H.K.; Koo Lee, Y.E.; Kopelman, R.; Wang, X. Sonophoric nanoprobe aided pH measurement in vivo using photoacoustic spectroscopy. Analyst (Lond.), 2013, 138(11), 3126-3130.
[http://dx.doi.org/10.1039/c3an00093a] [PMID: 23598348]
[84]
Wesolowska, O.; Molnar, J.; Westman, G.; Samuelsson, K.; Kawase, M.; Ocsovszki, I.; Motohashi, N.; Michalak, K. Benzo[a]phenoxazines: A new group of potent P-glycoprotein inhibitors. In vivo, 2006, 20(1), 109-113.
[PMID: 16433037]
[85]
Chen, Q.; Liu, X.; Chen, J.; Zeng, J.; Cheng, Z.; Liu, Z. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging. Adv. Mater., 2015, 27(43), 6820-6827.
[http://dx.doi.org/10.1002/adma.201503194] [PMID: 26418312]
[86]
Brown, J.E.; Diaz, L.; Christoff-Tempesta, T.; Nesbitt, K.M.; Reed-Betts, J.; Sanchez, J.; Davies, K.W. Characterization of nitrazine yellow as a photoacoustically active pH reporter molecule. Anal. Chem., 2015, 87(7), 3623-3630.
[http://dx.doi.org/10.1021/ac503515k] [PMID: 25741857]
[87]
Huang, W.; Chen, R.; Peng, Y.; Duan, F.; Huang, Y.; Guo, W.; Chen, X.; Nie, L. In vivo quantitative photoacoustic diagnosis of gastric and intestinal dysfunctions with a broad ph-responsive sensor. ACS Nano, 2019, 13(8), 9561-9570.
[http://dx.doi.org/10.1021/acsnano.9b04541] [PMID: 31361949]
[88]
Huang, G.; Si, Z.; Yang, S.; Li, C.; Xing, D. Dextran based PH-sensitive near-infrared nanoprobe for in vivo differential-absorption dual-wavelength photoacoustic imaging of tumors. J. Mater. Chem., 2012, 22(42), 22575.
[http://dx.doi.org/10.1039/c2jm33990k]
[89]
Yan, B.; Qin, H.; Huang, C.; Li, C.; Chen, Q.; Xing, D. Single-wavelength excited photoacoustic-fluorescence microscopy for in vivo pH mapping. Opt. Lett., 2017, 42(7), 1253-1256.
[http://dx.doi.org/10.1364/OL.42.001253] [PMID: 28362742]
[90]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[91]
Kietadisorn, R.; Juni, R.P.; Moens, A.L. Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am. J. Physiol. Endocrinol. Metab., 2012, 302(5), E481-E495.
[http://dx.doi.org/10.1152/ajpendo.00540.2011] [PMID: 22167522]
[92]
Gelderman, K.A.; Hultqvist, M.; Olsson, L.M.; Bauer, K.; Pizzolla, A.; Olofsson, P.; Holmdahl, R. Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid. Redox Signal., 2007, 9(10), 1541-1567.
[http://dx.doi.org/10.1089/ars.2007.1569] [PMID: 17678439]
[93]
Griendling, K.K.; Touyz, R.M.; Zweier, J.L.; Dikalov, S.; Chilian, W.; Chen, Y-R.; Harrison, D.G.; Bhatnagar, A. American Heart Association Council on Basic Cardiovascular Sciences. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: A scientific statement from the american heart association. Circ. Res., 2016, 119(5), e39-e75.
[http://dx.doi.org/10.1161/RES.0000000000000110] [PMID: 27418630]
[94]
Arnold, W.P.; Mittal, C.K.; Katsuki, S.; Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA, 1977, 74(8), 3203-3207.
[http://dx.doi.org/10.1073/pnas.74.8.3203] [PMID: 20623]
[95]
Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol., 2013, 13(5), 349-361.
[http://dx.doi.org/10.1038/nri3423] [PMID: 23618831]
[96]
Patel, R.P.; McAndrew, J.; Sellak, H.; White, C.R.; Jo, H.; Freeman, B.A.; Darley-Usmar, V.M. Biological aspects of reactive nitrogen species. Biochim. Biophys. Acta, 1999, 1411(2-3), 385-400.
[http://dx.doi.org/10.1016/S0005-2728(99)00028-6] [PMID: 10320671]
[97]
Baud, L.; Ardaillou, R. Reactive oxygen species: Production and role in the kidney. Am. J. Physiol., 1986, 251(5 Pt 2), F765-F776.
[http://dx.doi.org/10.1152/ajprenal.1986.251.5.F765] [PMID: 3022602]
[98]
Fukumura, D.; Kashiwagi, S.; Jain, R.K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer, 2006, 6(7), 521-534.
[http://dx.doi.org/10.1038/nrc1910] [PMID: 16794635]
[99]
Knott, A.B.; Bossy-Wetzel, E. Nitric oxide in health and disease of the nervous system. Antioxid. Redox Signal., 2009, 11(3), 541-554.
[http://dx.doi.org/10.1089/ars.2008.2234] [PMID: 18715148]
[100]
Zhao, Y.; Vanhoutte, P.M.; Leung, S.W.S. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci., 2015, 129(2), 83-94.
[http://dx.doi.org/10.1016/j.jphs.2015.09.002] [PMID: 26499181]
[101]
Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol., 2015, 6, 334-343.
[http://dx.doi.org/10.1016/j.redox.2015.08.009] [PMID: 26335399]
[102]
Snyder, S. H. Nitric Oxide: First in a new class of neurotransmitters? Science (80.), 1992, 257(5069), 494-496.
[http://dx.doi.org/10.1126/science.1353273]
[103]
Gardner, S.H.; Brady, C.J.; Keeton, C.; Yadav, A.K.; Mallojjala, S.C.; Lucero, M.Y.; Su, S.; Yu, Z.; Hirschi, J.S.; Mirica, L.M.; Chan, J. A general approach to convert hemicyanine dyes into highly optimized photoacoustic scaffolds for analyte sensing. Angew. Chemie Int., 2021, 60(34), 18860-18866.
[http://dx.doi.org/10.1002/anie.202105905]
[104]
Merkes, J.M.; Rueping, M.; Kiessling, F.; Banala, S. Photoacoustic detection of superoxide using oxoporphyrinogen and porphyrin. ACS Sens., 2019, 4(8), 2001-2008.
[http://dx.doi.org/10.1021/acssensors.9b00224] [PMID: 31262172]
[105]
Zheng, J.; Zeng, Q.; Zhang, R.; Xing, D.; Zhang, T. Dynamic-reversible photoacoustic probe for continuous ratiometric sensing and imaging of redox status in vivo. J. Am. Chem. Soc., 2019, 141(49), 19226-19230.
[http://dx.doi.org/10.1021/jacs.9b10353] [PMID: 31770490]
[106]
Merkes, J. M.; Hasenbach, A.; Kiessling, F.; Hermann, S.; Banala, S. Sensing reactive oxygen species with photoacoustic imaging using conjugation-extended BODIPYs. ACS Sens., 2021, 6(12), 4379-4388.
[http://dx.doi.org/10.1021/acssensors.1c01674]
[107]
Lyu, Y.; Pu, K. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv. Sci. (Weinh.), 2017, 4(6), 1600481.
[http://dx.doi.org/10.1002/advs.201600481] [PMID: 28638783]
[108]
Cheng, P.; Pu, K. Activatable phototheranostic materials for imaging-guided cancer therapy. ACS Appl. Mater. Interfaces, 2020, 12(5), 5286-5299.
[http://dx.doi.org/10.1021/acsami.9b15064] [PMID: 31730329]
[109]
Chen, Q.; Liang, C.; Sun, X.; Chen, J.; Yang, Z.; Zhao, H.; Feng, L.; Liu, Z. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics viain vivo chromogenic assay. Proc. Natl. Acad. Sci. USA, 2017, 114(21), 5343-5348.
[http://dx.doi.org/10.1073/pnas.1701976114] [PMID: 28484000]
[110]
Liu, J.; Wang, S.; Cai, X.; Zhou, S.; Liu, B. Hydrogen peroxide degradable conjugated polymer nanoparticles for fluorescence and photoacoustic bimodal imaging. Chem. Commun. (Camb.), 2018, 54(20), 2518-2521.
[http://dx.doi.org/10.1039/C7CC09856A] [PMID: 29460934]
[111]
Wang, P.; Yang, W.; Shen, S.; Wu, C.; Wen, L.; Cheng, Q.; Zhang, B.; Wang, X. Differential diagnosis and precision therapy of two typical malignant cutaneous tumors leveraging their tumor microenvironment: A photomedicine strategy. ACS Nano, 2019, 13(10), 11168-11180.
[http://dx.doi.org/10.1021/acsnano.9b04070] [PMID: 31585038]
[112]
Kim, T.; Zhang, Q.; Li, J.; Zhang, L.; Jokerst, J.V.A. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano, 2018, 12(6), 5615-5625.
[http://dx.doi.org/10.1021/acsnano.8b01362] [PMID: 29746090]
[113]
Jiang, C.; Huang, Y.; He, T.; Huang, P.; Lin, J. A dual-round signal amplification strategy for colorimetric/photoacoustic/fluorescence triple read-out detection of prostate specific antigen. Chem. Commun. (Camb.), 2020, 56(36), 4942-4945.
[http://dx.doi.org/10.1039/D0CC01086C] [PMID: 32239063]
[114]
Ye, J.; Li, Z.; Fu, Q.; Li, Q.; Zhang, X.; Su, L.; Yang, H.; Song, J. Quantitative photoacoustic diagnosis and precise treatment of inflammation in vivo using activatable theranostic nanoprobe. Adv. Funct. Mater., 2020, 30(38), 2001771.
[http://dx.doi.org/10.1002/adfm.202001771]
[115]
Xie, C.; Zhen, X.; Lyu, Y.; Pu, K. Nanoparticle regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging. Adv. Mater., 2017, 29(44), 1703693.
[http://dx.doi.org/10.1002/adma.201703693] [PMID: 29024155]
[116]
Hariri, A.; Zhao, E.; Jeevarathinam, A.S.; Lemaster, J.; Zhang, J.; Jokerst, J.V. Molecular imaging of oxidative stress using an LED-based photoacoustic imaging system. Sci. Rep., 2019, 9(1), 11378.
[http://dx.doi.org/10.1038/s41598-019-47599-2] [PMID: 31388020]
[117]
Chen, X.; Ren, X.; Zhang, L.; Liu, Z.; Hai, Z. Mitochondria-targeted fluorescent and photoacoustic imaging of hydrogen peroxide in inflammation. Anal. Chem., 2020, 92(20), 14244-14250.
[http://dx.doi.org/10.1021/acs.analchem.0c03506] [PMID: 32985876]
[118]
Lu, X.; Zhao, M.; Chen, P.; Fan, Q.; Wang, W.; Huang, W. Enhancing hydrophilicity of photoacoustic probes for effective ratiometric imaging of hydrogen peroxide. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(27), 4531-4538.
[http://dx.doi.org/10.1039/C8TB01158C] [PMID: 32254670]
[119]
Weber, J.; Bollepalli, L.; Belenguer, A.M.; Antonio, M.D.; De Mitri, N.; Joseph, J.; Balasubramanian, S.; Hunter, C.A.; Bohndiek, S.E. An activatable cancer-targeted hydrogen peroxide probe for photoacoustic and fluorescence imaging. Cancer Res., 2019, 79(20), 5407-5417.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0691] [PMID: 31455691]
[120]
Ding, H.; Cai, Y.; Gao, L.; Liang, M.; Miao, B.; Wu, H.; Liu, Y.; Xie, N.; Tang, A.; Fan, K.; Yan, X.; Nie, G. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett., 2019, 19(1), 203-209.
[http://dx.doi.org/10.1021/acs.nanolett.8b03709] [PMID: 30539641]
[121]
Sand, C.; Peters, S.L.M.; Pfaffendorf, M.; van Zwieten, P.A. Effects of hypochlorite and hydrogen peroxide on cardiac autonomic receptors and vascular endothelial function. Clin. Exp. Pharmacol. Physiol., 2003, 30(4), 249-253.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03822.x] [PMID: 12680842]
[122]
Pattison, D.I.; Davies, M.J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol., 2001, 14(10), 1453-1464.
[http://dx.doi.org/10.1021/tx0155451] [PMID: 11599938]
[123]
Daugherty, A.; Dunn, J.L.; Rateri, D.L.; Heinecke, J.W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest., 1994, 94(1), 437-444.
[http://dx.doi.org/10.1172/JCI117342] [PMID: 8040285]
[124]
Hammerschmidt, S.; Büchler, N.; Wahn, H. Tissue lipid peroxidation and reduced glutathione depletion in hypochlorite-induced lung injury. Chest, 2002, 121(2), 573-581.
[http://dx.doi.org/10.1378/chest.121.2.573] [PMID: 11834674]
[125]
Steinbeck, M.J.; Nesti, L.J.; Sharkey, P.F.; Parvizi, J. Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease. J. Orthop. Res., 2007, 25(9), 1128-1135.
[http://dx.doi.org/10.1002/jor.20400] [PMID: 17474133]
[126]
Pan, B.; Ren, H.; Lv, X.; Zhao, Y.; Yu, B.; He, Y.; Ma, Y.; Niu, C.; Kong, J.; Yu, F.; Sun, W.B.; Zhang, Y.; Willard, B.; Zheng, L. Hypochlorite-induced oxidative stress elevates the capability of HDL in promoting breast cancer metastasis. J. Transl. Med., 2012, 10(1), 65.
[http://dx.doi.org/10.1186/1479-5876-10-65] [PMID: 22462581]
[127]
Yin, C.; Zhen, X.; Fan, Q.; Huang, W.; Pu, K. Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite. ACS Nano, 2017, 11(4), 4174-4182.
[http://dx.doi.org/10.1021/acsnano.7b01092] [PMID: 28296388]
[128]
Liu, L.; Jiang, L.; Yuan, W.; Liu, Z.; Liu, D.; Wei, P.; Zhang, X.; Yi, T. Dual-modality detection of early-stage drug-induced acute kidney injury by an activatable probe. ACS Sens., 2020, 5(8), 2457-2466.
[http://dx.doi.org/10.1021/acssensors.0c00640] [PMID: 32702967]
[129]
Palmer, R.M.J.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327(6122), 524-526.
[http://dx.doi.org/10.1038/327524a0] [PMID: 3495737]
[130]
Loscalzo, J. The identification of nitric oxide as endothelium-derived relaxing factor. Circ. Res., 2013, 113(2), 100-103.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301577] [PMID: 23833290]
[131]
Furchgott, R.F.; Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980, 288(5789), 373-376.
[http://dx.doi.org/10.1038/288373a0] [PMID: 6253831]
[132]
Yun, H-Y.; Dawson, V.L.; Dawson, T.M. Nitric oxide in health and disease of the nervous system. Mol. Psychiatry, 1997, 2(4), 300-310.
[http://dx.doi.org/10.1038/sj.mp.4000272] [PMID: 9246670]
[133]
Wink, D.A.; Hines, H.B.; Cheng, R.Y.S.; Switzer, C.H.; Flores-Santana, W.; Vitek, M.P.; Ridnour, L.A.; Colton, C.A. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol., 2011, 89(6), 873-891.
[http://dx.doi.org/10.1189/jlb.1010550] [PMID: 21233414]
[134]
Bogdan, C. Nitric oxide and the immune response. Nat. Immunol., 2001, 2(10), 907-916.
[http://dx.doi.org/10.1038/ni1001-907] [PMID: 11577346]
[135]
MacMicking, J.; Xie, Q.W.; Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol., 1997, 15(1), 323-350.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.323] [PMID: 9143691]
[136]
Reinhardt, C.J.; Xu, R.; Chan, J. Nitric oxide imaging in cancer enabled by steric relaxation of a photoacoustic probe platform. Chem. Sci. (Camb.), 2020, 11(6), 1587-1592.
[http://dx.doi.org/10.1039/C9SC05600A]
[137]
Lucero, M.Y.; East, A.K.; Reinhardt, C.J.; Sedgwick, A.C.; Su, S.; Lee, M.C.; Chan, J. Development of NIR-II photoacoustic probes tailored for deep-tissue sensing of nitric oxide. J. Am. Chem. Soc., 2021, 143(18), 7196-7202.
[http://dx.doi.org/10.1021/jacs.1c03004] [PMID: 33905646]
[138]
Zhou, E.Y.; Knox, H.J.; Reinhardt, C.J.; Partipilo, G.; Nilges, M.J.; Chan, J. Near-infrared photoactivatable nitric oxide donors with integrated photoacoustic monitoring. J. Am. Chem. Soc., 2018, 140(37), 11686-11697.
[http://dx.doi.org/10.1021/jacs.8b05514] [PMID: 30198716]
[139]
Wang, S.; Li, Z.; Liu, Y.; Feng, G.; Zheng, J.; Yuan, Z.; Zhang, X. Activatable photoacoustic and fluorescent probe of nitric oxide for cellular and in vivo imaging. Sens. Actuators B Chem., 2018, 267, 403-411.
[http://dx.doi.org/10.1016/j.snb.2018.04.052]
[140]
Alvarez, B.; Radi, R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 2003, 25(3-4), 295-311.
[http://dx.doi.org/10.1007/s00726-003-0018-8] [PMID: 14661092]
[141]
Cobbs, C.S.; Samanta, M.; Harkins, L.E.; Gillespie, G.Y.; Merrick, B.A.; MacMillan-Crow, L.A. Evidence for peroxynitrite-mediated modifications to p53 in human gliomas: possible functional consequences. Arch. Biochem. Biophys., 2001, 394(2), 167-172.
[http://dx.doi.org/10.1006/abbi.2001.2540] [PMID: 11594730]
[142]
Cobbs, C.S.; Whisenhunt, T.R.; Wesemann, D.R.; Harkins, L.E.; Van Meir, E.G.; Samanta, M. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res., 2003, 63(24), 8670-8673.
[PMID: 14695179]
[143]
Bezner, B.J.; Ryan, L.S.; Lippert, A.R. Reaction-based luminescent probes for reactive sulfur, oxygen, and nitrogen species: Analytical techniques and recent progress. Anal. Chem., 2020, 92(1), 309-326.
[http://dx.doi.org/10.1021/acs.analchem.9b04990] [PMID: 31679337]
[144]
Qin, X.; Li, F.; Zhang, Y.; Ma, G.; Feng, T.; Luo, Y.; Huang, P.; Lin, J. In vivo photoacoustic detection and imaging of peroxynitrite. Anal. Chem., 2018, 90(15), 9381-9385.
[http://dx.doi.org/10.1021/acs.analchem.8b01992] [PMID: 29963863]
[145]
Zhuang, H.; Li, B.; Zhao, M.; Wei, P.; Yuan, W.; Zhang, M.; Han, X.; Chen, Y.; Yi, T. Real-time monitoring and accurate diagnosis of drug-induced hepatotoxicity in vivo by ratio-fluorescence and photoacoustic imaging of peroxynitrite. Nanoscale, 2020, 12(18), 10216-10225.
[http://dx.doi.org/10.1039/D0NR00963F] [PMID: 32356536]
[146]
Liu, H-W.; Zhang, H.; Lou, X.; Teng, L.; Yuan, J.; Yuan, L.; Zhang, X-B.; Tan, W. Imaging of peroxynitrite in drug-induced acute kidney injury with a near-infrared fluorescence and photoacoustic dual-modal molecular probe. Chem. Commun. (Camb.), 2020, 56(58), 8103-8106.
[http://dx.doi.org/10.1039/D0CC01621G] [PMID: 32555855]
[147]
Zhang, J.; Zhen, X.; Zeng, J.; Pu, K. A dual-modal molecular probe for near-infrared fluorescence and photoacoustic imaging of peroxynitrite. Anal. Chem., 2018, 90(15), 9301-9307.
[http://dx.doi.org/10.1021/acs.analchem.8b01879] [PMID: 29940731]
[148]
Zhang, J.; Zhen, X.; Upputuri, P.K.; Pramanik, M.; Chen, P.; Pu, K. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater., 2017, 29(6), 1604764.
[http://dx.doi.org/10.1002/adma.201604764] [PMID: 27906478]
[149]
Bresolí-Obach, R.; Frattini, M.; Abbruzzetti, S.; viappiani, C.; Agut, M.; Nonell, S. Tetramethylbenzidine: An acoustogenic photoacoustic probe for reactive oxygen species detection. Sensors (Basel), 2020, 20(20), 5952.
[http://dx.doi.org/10.3390/s20205952] [PMID: 33096750]
[150]
Kaim, W.; Schwederski, B.; Klein, A. Bioinorganic Chemistry-Inorganic Elements in the Chemistry of Life: An Introduction and Guide, 2nd ed.; Wiley-VCH, 2013.
[151]
Nordberg, G.; Fowler, B.; Nordberg, M. Handbook on the Toxicology of Metals; Elsevier, 2015.
[http://dx.doi.org/10.1016/C2011-0-07884-5]
[152]
Li, H.; Zhang, P.; Smaga, L.P.; Hoffman, R.A.; Chan, J. Photoacoustic probes for ratiometric imaging of copper(II). J. Am. Chem. Soc., 2015, 137(50), 15628-15631.
[http://dx.doi.org/10.1021/jacs.5b10504] [PMID: 26652006]
[153]
Liu, Y.; Wang, S.; Ma, Y.; Lin, J.; Wang, H-Y.; Gu, Y.; Chen, X.; Huang, P. Ratiometric photoacoustic molecular imaging for methylmercury detection in living subjects. Adv. Mater., 2017, 29(17), 1606129.
[http://dx.doi.org/10.1002/adma.201606129] [PMID: 28224711]
[154]
Zeng, L.; Ma, G.; Xu, H.; Mu, J.; Li, F.; Gao, X.; Deng, Z.; Qu, J.; Huang, P.; Lin, J. In vivo chemoselective photoacoustic imaging of copper(II) in plant and animal subjects. Small, 2019, 15(6), e1803866.
[http://dx.doi.org/10.1002/smll.201803866] [PMID: 30645025]
[155]
Zhang, C.; Gao, R.; Zhang, L.; Liu, C.; Yang, Z.; Zhao, S. Design and synthesis of a ratiometric photoacoustic probe for in situ imaging of zinc ions in deep tissue in vivo. Anal. Chem., 2020, 92(9), 6382-6390.
[http://dx.doi.org/10.1021/acs.analchem.9b05431] [PMID: 32154705]
[156]
Ning, J.; Lin, X.; Su, F.; Sun, A.; Liu, H.; Luo, J.; Wang, L.; Tian, Y. Development of a molecular K+ probe for colorimetric/fluorescent/photoacoustic detection of K. Anal. Bioanal. Chem., 2020, 412(25), 6947-6957.
[http://dx.doi.org/10.1007/s00216-020-02826-y] [PMID: 32712812]
[157]
Roberts, S.; Seeger, M.; Jiang, Y.; Mishra, A.; Sigmund, F.; Stelzl, A.; Lauri, A.; Symvoulidis, P.; Rolbieski, H.; Preller, M.; Deán-Ben, X.L.; Razansky, D.; Orschmann, T.; Desbordes, S.C.; Vetschera, P.; Bach, T.; Ntziachristos, V.; Westmeyer, G.G. Calcium sensor for photoacoustic imaging. J. Am. Chem. Soc., 2018, 140(8), 2718-2721.
[http://dx.doi.org/10.1021/jacs.7b03064] [PMID: 28945084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy