Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Comparative Transcriptome Analysis of Flower Senescence of Camellia lutchuensis

Author(s): Weixin Liu, Hengfu Yin, Yi Feng, Suhang Yu, Zhengqi Fan, Xinlei Li and Jiyuan Li*

Volume 23, Issue 1, 2022

Published on: 03 February, 2022

Page: [66 - 76] Pages: 11

DOI: 10.2174/1389202923666220203104340

Price: $65

Abstract

Background: Flower senescence is the last stage of flower development and affects the ornamental and economic value of flower plants. There is still less known on flower senescence of the ornamental plant Camellia lutchuensis, a precious species of Camellia with significant commercial application value.

Methods: Transcriptome sequencing was used to investigate the flower senescence in five developmental stages of C. lutchuensis.

Results: By Illumina HiSeq sequencing, we generated approximately 101.16 Gb clean data and 46649 differentially expressed unigenes. Based on the different expression pattern, differentially expressed unigenes were classified into 10 Sub Class. And Sub Class 9 including 8252 unigenes, was highly expressed in the flower senescent stage, suggesting it had a potential regulatory relationship of flower senescence. First, we found that ethylene biosynthesis genes ACSs, ACOs, receptor ETR genes and signaling genes EINs, ERFs all upregulated during flower senescence, suggesting ethylene might play a key role in the flower senescence of C. lutchuensis. Furthermore, reactive oxygen species (ROS) production related genes peroxidase (POD), lipase (LIP), polyphenoloxidase (PPO), and ROS scavenging related genes glutathione S-transferase (GST), glutathione reductase (GR) and superoxide dismutase (SOD) were induced in senescent stage, suggesting ROS might be involved in the flower senescence. Besides, the expression of monoterpenoid and isoflavonoid biosynthesis genes, transcription factors (WRKY, NAC, MYB and C2H2), senescence-associated gene SAG20 also were increased during flower senescence.

Conclusion: In C. lutchuensis, ethylene pathway might be the key to regulate flower senescence, and ROS signal might play a role in the flower senescence.

Keywords: Camellia lutchuensis, flower senescence, transcriptome, differentially expressed genes, ethylene, reactive oxygen species.

« Previous
Graphical Abstract

[1]
Yang, C.P.; Xia, Z.Q.; Hu, J.; Zhuang, Y.F.; Pan, Y.W.; Liu, J.P. Transcriptome analysis of Oncidium petals provides new insights into the initiation of petal senescence. J. Hortic. Sci. Biotechnol., 2018, 94(1), 12-23.
[http://dx.doi.org/10.1080/14620316.2018.1432297]
[2]
Tsanakas, G.F.; Manioudaki, M.E.; Economou, A.S.; Kalaitzis, P. De novo transcriptome analysis of petal senescence in Gardenia jasminoides Ellis. BMC Genomics, 2014, 15, 554.
[http://dx.doi.org/10.1186/1471-2164-15-554] [PMID: 24993183]
[3]
Skutnik, E.; Łukaszewska, A.; Rabiza-Świder, J. Effects of postharvest treatments with nanosilver on senescence of cut lisianthus (Eustoma grandiflorum (Raf.) Shinn.) flowers. Agronomy (Basel), 2021, 11(2), 215.
[http://dx.doi.org/10.3390/agronomy11020215]
[4]
Wu, L.; Ma, N.; Jia, Y.; Zhang, Y.; Feng, M.; Jiang, C.Z.; Ma, C.; Gao, J. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiol., 2017, 173(1), 853-862.
[http://dx.doi.org/10.1104/pp.16.01064] [PMID: 27879388]
[5]
Tan, Y.; Liu, J.; Huang, F.; Guan, J.; Zhong, S.; Tang, N.; Zhao, J.; Yang, W.; Yu, Y. PhGRL2 protein, interacting with PhACO1, is involved in flower senescence in the petunia. Mol. Plant, 2014, 7(8), 1384-1387.
[http://dx.doi.org/10.1093/mp/ssu024] [PMID: 24618881]
[6]
Rogers, H.; Munné-Bosch, S. Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: Similar but different. Plant Physiol., 2016, 171(3), 1560-1568.
[http://dx.doi.org/10.1104/pp.16.00163] [PMID: 27208233]
[7]
Phetsirikoon, S.; Paull, R.E.; Chen, N.; Ketsa, S.; van Doorn, W.G. Increased hydrolase gene expression and hydrolase activity in the abscission zone involved in chilling-induced abscission of Dendrobium flowers. Postharvest Biol. Technol., 2016, 117, 217-229.
[http://dx.doi.org/10.1016/j.postharvbio.2016.03.002]
[8]
Pattaravayo, R.; Ketsa, S.; van Doorn, W.G. Sucrose feeding of cut Dendrobium inflorescences promotes bud opening, inhibits abscission of open flowers, and delays tepal senescence. Postharvest Biol. Technol., 2013, 77, 7-10.
[http://dx.doi.org/10.1016/j.postharvbio.2012.09.014]
[9]
van Doorn, W.G. Is petal senescence due to sugar starvation? Plant Physiol., 2004, 134(1), 35-42.
[http://dx.doi.org/10.1104/pp.103.033084] [PMID: 14730063]
[10]
Yamada, T.; Ichimura, K.; van Doorn, W.G. DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia. J. Exp. Bot., 2006, 57(14), 3543-3552.
[http://dx.doi.org/10.1093/jxb/erl100] [PMID: 16957019]
[11]
Yamada, T.; Takatsu, Y.; Kasumi, M.; Ichimura, K.; van Doorn, W.G. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil). Planta, 2006, 224(6), 1279-1290.
[http://dx.doi.org/10.1007/s00425-006-0307-z] [PMID: 16738861]
[12]
van Doorn, W.G. Programmed cell death in cut flowers. Acta Hortic; , 2015. 1060, pp. 35-38.
[13]
Zhao, H.; Zhong, S.; Sang, L.; Zhang, X.; Chen, Z.; Wei, Q.; Chen, G.; Liu, J.; Yu, Y. PaACL silencing accelerates flower senescence and changes the proteome to maintain metabolic homeostasis in Petunia hybrida. J. Exp. Bot., 2020, 71(16), 4858-4876.
[http://dx.doi.org/10.1093/jxb/eraa208] [PMID: 32364241]
[14]
Yin, J.; Chang, X.; Kasuga, T.; Bui, M.; Reid, M.S.; Jiang, C.Z. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Hortic. Res., 2015, 2, 15059.
[http://dx.doi.org/10.1038/hortres.2015.59] [PMID: 26715989]
[15]
Tripathi, S.K.; Tuteja, N. Integrated signaling in flower senescence: An overview. Plant Signal. Behav., 2007, 2(6), 437-445.
[http://dx.doi.org/10.4161/psb.2.6.4991] [PMID: 19517004]
[16]
Ma, N.; Ma, C.; Liu, Y.; Shahid, M.O.; Wang, C.; Gao, J. Petal senescence: A hormone view. J. Exp. Bot., 2018, 69(4), 719-732.
[http://dx.doi.org/10.1093/jxb/ery009] [PMID: 29425359]
[17]
In, B.C.; Ha, S.T.T.; Lee, Y.S.; Lim, J.H. Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biol. Technol., 2017, 131, 74-83.
[http://dx.doi.org/10.1016/j.postharvbio.2017.05.003]
[18]
Yamazaki, K.; Suzuki, T.; Iigo, M.; Aiso-Sanada, H.; Kurokura, T.; Yamane, K. Effects of trehalose and sucrose on gene expression related to senescence of cut Astilbe (Astilbe × arendsii Arends) flowers. Hortic. J., 2020, 89(5), 628-638.
[http://dx.doi.org/10.2503/hortj.UTD-182]
[19]
Villanueva, E.; Fujibayashi-Yoshii, N.; Matsuzaki, S.; Yamazaki, K.; Burana, C.; Yamane, K. Effects of trehalose and sucrose on the vase life and physiology of cut astilbe (astilbe × arendsii arends) flowers. Hortic. J., 2018, 88(2), 276-283.
[http://dx.doi.org/10.2503/hortj.UTD-031]
[20]
Kondo, M.; Nakajima, T.; Shibuya, K.; Ichimura, K. Comparison of petal senescence between cut and intact carnation flowers using potted plants. Sci. Hortic. (Amsterdam), 2020, 272, 109564.
[http://dx.doi.org/10.1016/j.scienta.2020.109564]
[21]
Deng, Y.; Wang, C.; Huo, J.; Hu, W.; Liao, W. The involvement of NO in ABA-delayed the senescence of cut roses by maintaining water content and antioxidant enzymes activity. Sci. Hortic. (Amsterdam), 2019, 247, 35-41.
[http://dx.doi.org/10.1016/j.scienta.2018.12.006]
[22]
Guo, J.; Liu, J.; Wei, Q.; Wang, R.; Yang, W.; Ma, Y.; Chen, G.; Yu, Y. Proteomes and ubiquitylomes analysis reveals the involvement of ubiquitination in protein degradation in petunias. Plant Physiol., 2017, 173(1), 668-687.
[http://dx.doi.org/10.1104/pp.16.00795] [PMID: 27810942]
[23]
Naing, A.H.; Kim, C.K. Application of nano-silver particles to control the postharvest biology of cut flowers: A review. Sci. Hortic. (Amsterdam), 2020, 270, 109463.
[http://dx.doi.org/10.1016/j.scienta.2020.109463]
[24]
Gómez-Merino, F.C.; Castillo-González, A.M.; Ramírez- Martínez, M.; Trejo-Téllez, L.I. Lanthanum delays senescence and improves postharvest quality in cut tulip (Tulipa gesneriana L.) flowers. Sci. Rep., 2020, 10(1), 19437.
[http://dx.doi.org/10.1038/s41598-020-76266-0] [PMID: 33173093]
[25]
Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A.; Sochacki, D. Effect of preservatives on senescence of cut daffodil (Narcissus L.) flowers. J. Hortic. Sci. Biotechnol., 2019, 95(3), 331-340.
[http://dx.doi.org/10.1080/14620316.2019.1679042]
[26]
Liu, J.; Fan, Y.; Zou, J.; Fang, Y.; Wang, L.; Wang, M.; Jiang, X.; Liu, Y.; Gao, J.; Zhang, C. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels. Plant J., 2017, 92(6), 1157-1169.
[http://dx.doi.org/10.1111/tpj.13751] [PMID: 29072877]
[27]
Li, X.; Fan, Z.; Guo, H.; Ye, N.; Lyu, T.; Yang, W.; Wang, J.; Wang, J.T.; Wu, B.; Li, J.; Yin, H. Comparative genomics analysis reveals gene family expansion and changes of expression patterns associated with natural adaptations of flowering time and secondary metabolism in yellow Camellia. Funct. Integr. Genomics, 2018, 18(6), 659-671.
[http://dx.doi.org/10.1007/s10142-018-0617-9] [PMID: 29948459]
[28]
Oyama-Okubo, N.; Tanikawa, N.; Nakayama, M.; Suzuki, K.; Kondo, M. Screening of genetic resources of Camellia lutchuensis for fragrant camellia breeding; analysis of floral scent compounds. Acta Hortic., 2009, (813), 399-406.
[http://dx.doi.org/10.17660/ActaHortic.2009.813.51]
[29]
Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; Chen, Z.; Mauceli, E.; Hacohen, N.; Gnirke, A.; Rhind, N.; di Palma, F.; Birren, B.W.; Nusbaum, C.; Lindblad-Toh, K.; Friedman, N.; Regev, A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 2011, 29(7), 644-652.
[http://dx.doi.org/10.1038/nbt.1883] [PMID: 21572440]
[30]
de Hoon, M.J.; Imoto, S.; Nolan, J.; Miyano, S. Open source clustering software. Bioinformatics, 2004, 20(9), 1453-1454.
[http://dx.doi.org/10.1093/bioinformatics/bth078] [PMID: 14871861]
[31]
Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[32]
Liu, W.; Peng, B.; Song, A.; Jiang, J.; Chen, F. Sugar transporter, CmSWEET17, promotes bud outgrowth in Chrysanthemum Morifolium. Genes (Basel), 2019, 11(1), 26.
[http://dx.doi.org/10.3390/genes11010026] [PMID: 31878242]
[33]
Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci., 2017, 8, 475.
[http://dx.doi.org/10.3389/fpls.2017.00475] [PMID: 28421102]
[34]
Yu, X.; Xu, Y.; Yan, S. Salicylic acid and ethylene coordinately promote leaf senescence. J. Integr. Plant Biol., 2021, 63(5), 823-827.
[http://dx.doi.org/10.1111/jipb.13074] [PMID: 33501782]
[35]
Liu, J.; Zhao, J.; Xiao, Z.; Chang, X.; Chen, G.; Yu, Y. Expression and functional analysis of PhEOL1 and PhEOL2 during flower senescence in petunia. Funct. Plant Biol., 2016, 43(5), 413-422.
[http://dx.doi.org/10.1071/FP15311] [PMID: 32480472]
[36]
In, B.C.; Binder, B.M.; Falbel, T.G.; Patterson, S.E. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). J. Exp. Bot., 2013, 64(16), 4923-4937.
[http://dx.doi.org/10.1093/jxb/ert281] [PMID: 24078672]
[37]
Liu, D.; Liu, X.; Meng, Y.; Sun, C.; Tang, H.; Jiang, Y.; Khan, M.A.; Xue, J.; Ma, N.; Gao, J. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration. J. Exp. Bot., 2013, 64(8), 2333-2344.
[http://dx.doi.org/10.1093/jxb/ert092] [PMID: 23599274]
[38]
Ju, C.; Chang, C. Mechanistic insights in ethylene perception and signal transduction. Plant Physiol., 2015, 169(1), 85-95.
[http://dx.doi.org/10.1104/pp.15.00845] [PMID: 26246449]
[39]
Li, Q.; Zhang, L.; Pan, F.; Guo, W.; Chen, B.; Yang, H.; Wang, G.; Li, X. Transcriptomic analysis reveals ethylene signal transduction genes involved in pistil development of pumpkin. PeerJ, 2020, 8, e9677.
[http://dx.doi.org/10.7717/peerj.9677] [PMID: 32879792]
[40]
Wang, H.; Stier, G.; Lin, J.; Liu, G.; Zhang, Z.; Chang, Y.; Reid, M.S.; Jiang, C.Z. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of ETR1-1, a mutant ethylene receptor. PLoS One, 2013, 8(7), e65800.
[http://dx.doi.org/10.1371/journal.pone.0065800] [PMID: 23874385]
[41]
Thongkum, M.; Burns, P.; Bhunchoth, A.; Warin, N.; Chatchawankanphanich, O.; van Doorn, W.G. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals. J. Plant Physiol., 2015, 176, 96-100.
[http://dx.doi.org/10.1016/j.jplph.2014.12.008] [PMID: 25590685]
[42]
Binder, B.M. Ethylene signaling in plants. J. Biol. Chem., 2020, 295(22), 7710-7725.
[http://dx.doi.org/10.1074/jbc.REV120.010854] [PMID: 32332098]
[43]
Cheng, C.; Yu, Q.; Wang, Y.; Wang, H.; Dong, Y.; Ji, Y.; Zhou, X.; Li, Y.; Jiang, C.Z.; Gan, S.S.; Zhao, L.; Fei, Z.; Gao, J.; Ma, N. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida). Plant Cell, 2021, 33(4), 1229-1251.
[http://dx.doi.org/10.1093/plcell/koab031] [PMID: 33693903]
[44]
Naing, A.H.; Soe, M.T.; Kyu, S.Y.; Kim, C.K. Nano-silver controls transcriptional regulation of ethylene- and senescence-associated genes during senescence in cut carnations. Sci. Hortic. (Amsterdam), 2021, 287, 110280.
[http://dx.doi.org/10.1016/j.scienta.2021.110280]
[45]
Liu, F.; Hu, L.; Cai, Y.; Lin, H.; Liu, J.; Yu, Y. Molecular characterization and functional analysis of two petunia PhEILs. Front. Plant Sci., 2016, 7, 1606.
[http://dx.doi.org/10.3389/fpls.2016.01606] [PMID: 27847510]
[46]
Sun, Y.; Li, J.Q.; Yan, J.Y.; Yuan, J.J.; Li, G.X.; Wu, Y.R.; Xu, J.M.; Huang, R.F.; Harberd, N.P.; Ding, Z.J.; Zheng, S.J. Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor. J. Integr. Plant Biol., 2020, 62(8), 1193-1212.
[http://dx.doi.org/10.1111/jipb.12986] [PMID: 32619040]
[47]
Liu, J.; Li, J.; Wang, H.; Fu, Z.; Liu, J.; Yu, Y. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J. Exp. Bot., 2011, 62(2), 825-840.
[http://dx.doi.org/10.1093/jxb/erq324] [PMID: 20974735]
[48]
Chen, W.H.; Li, P.F.; Chen, M.K.; Lee, Y.I.; Yang, C.H. Forever young flower negatively regulates ethylene response DNA-binding factors by activating an ethylene-responsive factor to control arabidopsis floral organ senescence and abscission. Plant Physiol., 2015, 168(4), 1666-1683.
[http://dx.doi.org/10.1104/pp.15.00433] [PMID: 26063506]
[49]
Rogers, H.J. From models to ornamentals: How is flower senescence regulated? Plant Mol. Biol., 2013, 82(6), 563-574.
[http://dx.doi.org/10.1007/s11103-012-9968-0] [PMID: 22983713]
[50]
Rogers, H.J. Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant Cell Environ., 2012, 35(2), 217-233.
[http://dx.doi.org/10.1111/j.1365-3040.2011.02373.x] [PMID: 21635270]
[51]
van Doorn, W.G.; Woltering, E.J. Physiology and molecular biology of petal senescence. J. Exp. Bot., 2008, 59(3), 453-480.
[http://dx.doi.org/10.1093/jxb/erm356] [PMID: 18310084]
[52]
Niu, F.; Cui, X.; Zhao, P.; Sun, M.; Yang, B.; Deyholos, M.K.; Li, Y.; Zhao, X.; Jiang, Y.Q. WRKY42 transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in Arabidopsis thaliana. Plant J., 2020, 104(1), 171-184.
[http://dx.doi.org/10.1111/tpj.14914] [PMID: 32634860]
[53]
Hoeberichts, F.A.; van Doorn, W.G.; Vorst, O.; Hall, R.D.; van Wordragen, M.F. Sucrose prevents up-regulation of senescence-associated genes in carnation petals. J. Exp. Bot., 2007, 58(11), 2873-2885.
[http://dx.doi.org/10.1093/jxb/erm076] [PMID: 17630294]
[54]
Kar, M.; Mishra, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol., 1976, 57(2), 315-319.
[http://dx.doi.org/10.1104/pp.57.2.315] [PMID: 16659474]
[55]
Cavaiuolo, M.; Cocetta, G.; Ferrante, A. The antioxidants changes in ornamental flowers during development and senescence. Antioxidants, 2013, 2(3), 132-155.
[http://dx.doi.org/10.3390/antiox2030132] [PMID: 26784342]
[56]
Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol., 2011, 155(1), 2-18.
[http://dx.doi.org/10.1104/pp.110.167569] [PMID: 21205630]
[57]
Noctor, G.; Mhamdi, A.; Queval, G.; Foyer, C.H. Regulating the redox gatekeeper: Vacuolar sequestration puts glutathione disulfide in its place. Plant Physiol., 2013, 163(2), 665-671.
[http://dx.doi.org/10.1104/pp.113.223545] [PMID: 23958862]
[58]
Hossain, Z.; Mandal, A.K.; Kumar Datta, S.; Krishna Biswas, A. Decline in ascorbate peroxidase activity-a prerequisite factor for tepal senescence in gladiolus. J. Plant Physiol., 2006, 163(2), 186-194.
[http://dx.doi.org/10.1016/j.jplph.2005.03.004] [PMID: 16399009]
[59]
Bailly, C; Corbineau, F; van Doorn, WG Free radical scavenging and senescence in Iris tepals. 2001, 39, 649-656.
[http://dx.doi.org/10.1016/S0981-9428(01)01289-X]
[60]
Fan, Z.; Li, J.; Li, X.; Yin, H. Composition analysis of floral scent within genus Camellia uncovers substantial interspecific variations. Sci. Hortic. (Amsterdam), 2019, 250, 207-213.
[http://dx.doi.org/10.1016/j.scienta.2019.02.050]
[61]
Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol., 2018, 220(3), 692-702.
[http://dx.doi.org/10.1111/nph.14178] [PMID: 27604856]
[62]
Jung, J.; Grossmann, K. Effectiveness of new terpenoid derivatives, abscisic acid and its methyl ester on transpiration and leaf senescence of barley. J. Plant Physiol., 1985, 121(4), 361-367.
[http://dx.doi.org/10.1016/S0176-1617(85)80029-8]
[63]
Siah, C.H.; Namasivayam, P.; Mohamed, R. Transcriptome reveals senescing callus tissue of Aquilaria malaccensis, an endangered tropical tree, triggers similar response as wounding with respect to terpenoid biosynthesis. Tree Genet. Genomes, 2016, 12(2), 33.
[http://dx.doi.org/10.1007/s11295-016-0993-z]
[64]
Liu, H.; Liu, Y.; Cheng, N.; Zhang, Y. De novo transcriptome assembly of transgenic tobacco (Nicotiana tabacum NC89) with early senescence characteristic. Physiol. Mol. Biol. Plants, 2021, 27(2), 237-249.
[http://dx.doi.org/10.1007/s12298-021-00953-z] [PMID: 33707866]
[65]
Gao, F.H.; Hu, X.H.; Li, W.; Liu, H.; Zhang, Y.J.; Guo, Z.Y.; Xu, M.H.; Wang, S.T.; Jiang, B.; Liu, F.; Zhao, Y.Z.; Fang, Y.; Chen, F.Y.; Wu, Y.L. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer, 2010, 10, 610.
[http://dx.doi.org/10.1186/1471-2407-10-610] [PMID: 21054888]
[66]
Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; Giampieri, F.; Battino, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Yousefi, B.; Jeandet, P.; Xu, S.; Shirooie, S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv., 2020, 38, 107316.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.005] [PMID: 30458225]
[67]
Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol., 2021, 63(1), 180-209.
[PMID: 33325112]
[68]
Agati, G.; Biricolti, S.; Guidi, L.; Ferrini, F.; Fini, A.; Tattini, M. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J. Plant Physiol., 2011, 168(3), 204-212.
[http://dx.doi.org/10.1016/j.jplph.2010.07.016] [PMID: 20850892]
[69]
Mattila, H.; Valev, D.; Havurinne, V.; Khorobrykh, S.; Virtanen, O.; Antinluoma, M.; Mishra, K.B.; Tyystjärvi, E. Degradation of chlorophyll and synthesis of flavonols during autumn senescence-the story told by individual leaves. AoB Plants, 2018, 10(3), ply028.
[http://dx.doi.org/10.1093/aobpla/ply028] [PMID: 29977486]
[70]
Sekhon, R.S.; Childs, K.L.; Santoro, N.; Foster, C.E.; Buell, C.R.; de Leon, N.; Kaeppler, S.M. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant Physiol., 2012, 159(4), 1730-1744.
[http://dx.doi.org/10.1104/pp.112.199224] [PMID: 22732243]
[71]
Ma, X.; Zhang, Y.; Turečková, V.; Xue, G.P.; Fernie, A.R.; Mueller-Roeber, B.; Balazadeh, S. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in Tomato. Plant Physiol., 2018, 177(3), 1286-1302.
[http://dx.doi.org/10.1104/pp.18.00292] [PMID: 29760199]
[72]
Fan, Z.Q.; Tan, X.L.; Shan, W.; Kuang, J.F.; Lu, W.J.; Chen, J.Y. Characterization of a transcriptional regulator, BrWRKY6, associated with gibberellin-suppressed leaf senescence of Chinese flowering cabbage. J. Agric. Food Chem., 2018, 66(8), 1791-1799.
[http://dx.doi.org/10.1021/acs.jafc.7b06085] [PMID: 29400954]
[73]
Woo, H.R.; Kim, H.J.; Lim, P.O.; Nam, H.G. Leaf senescence: Systems and dynamics aspects. Annu. Rev. Plant Biol., 2019, 70, 347-376.
[74]
Yang, W.; Liu, J.; Tan, Y.; Zhong, S.; Tang, N.; Chen, G.; Yu, Y. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia. Plant Cell Rep., 2015, 34(9), 1561-1568.
[http://dx.doi.org/10.1007/s00299-015-1808-7] [PMID: 25987314]
[75]
Quirino, B.F.; Noh, Y.S.; Himelblau, E.; Amasino, R.M. Molecular aspects of leaf senescence. Trends Plant Sci., 2000, 5(7), 278-282.
[http://dx.doi.org/10.1016/S1360-1385(00)01655-1] [PMID: 10871899]
[76]
Wang, C.; Dai, S.; Zhang, Z.L.; Lao, W.; Wang, R.; Meng, X.; Zhou, X. Ethylene and salicylic acid synergistically accelerate leaf senescence in Arabidopsis. J. Integr. Plant Biol., 2021, 63(5), 828-833.
[http://dx.doi.org/10.1111/jipb.13075] [PMID: 33501715]
[77]
Breeze, E.; Wagstaff, C.; Harrison, E.; Bramke, I.; Rogers, H.; Stead, A.; Thomas, B.; Buchanan-Wollaston, V. Gene expression patterns to define stages of post-harvest senescence in Alstroemeria petals. Plant Biotechnol. J., 2004, 2(2), 155-168.
[http://dx.doi.org/10.1111/j.1467-7652.2004.00059.x] [PMID: 17147607]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy