Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Resveratrol and Cervical Cancer: A New Therapeutic Option

Author(s): Rana Shafabakhsh, Russel J. Reiter, Michael Aschner, Hamed Mirzaei* and Zatollah Asemi*

Volume 23, Issue 2, 2023

Published on: 08 April, 2022

Page: [159 - 169] Pages: 11

DOI: 10.2174/1389557522666220128155525

Price: $65

Abstract

Globally, cervical cancer is the second most common cancer and the third main cause of death related to cancer in women. The cervical cancer mortality rate is higher in underdeveloped and developing vs. developed countries. Chronic infection with human papilloma virus (HPV) can trigger cervical cancer by an interplay of a variety of pathways and molecules (i.e., inflammatory mediators, oxidative stress and apoptosis), leading to carcinogenesis and cancer progression. Cervical carcinoma is treatable in the early stages, while it progresses to metastasis at advanced stages; however, generally, it is poorly manageable with current treatment options. For future advances in the treatment of metastatic or recurrent cervical cancer carcinoma, the identification of new therapeutic platforms is necessary. A new generation of drugs, herbs and spices may provide novel opportunities for cancer therapy. Among the herb-based components, resveratrol has several beneficial effects given its anticancer activities (e.g., anti-angiogenesis, anti-proliferation, anti-metastatic and pro-apoptotic). Hence, this therapeutic agent may prove to have promising potential if clinically corroborated to possess anticancer efficacy. Here, we summarize the chemopreventive and treatment actions of resveratrol for cervical cancer as well as its mechanism of action.

Keywords: Cervical cancer, resveratrol, therapy, molecular mechanism, pathology, natural compound

[1]
Qureshi, R.; Arora, H.; Rizvi, M.A. EMT in cervical cancer: Its role in tumour progression and response to therapy. Cancer Lett., 2015, 356(2 Pt B), 321-331.
[http://dx.doi.org/10.1016/j.canlet.2014.09.021] [PMID: 25281477]
[2]
Tsikouras, P.; Zervoudis, S.; Manav, B.; Tomara, E.; Iatrakis, G.; Romanidis, C.; Bothou, A.; Galazios, G. Cervical cancer: Screening, diagnosis and staging. J. BUON, 2016, 21(2), 320-325.
[PMID: 27273940]
[3]
Choo, K.B.; Huang, C.J.; Chen, C.M.; Han, C.P.; Au, L.C. Jun-B oncogene aberrations in cervical cancer cell lines. Cancer Lett., 1995, 93(2), 249-253.
[http://dx.doi.org/10.1016/0304-3835(95)03817-G] [PMID: 7621436]
[4]
de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology, 2004, 324(1), 17-27.
[http://dx.doi.org/10.1016/j.virol.2004.03.033] [PMID: 15183049]
[5]
O’Connor, T.E.; West, W.H.; Marshall, G.D.; Orr, D.W.; Lewis, M.; Oldham, R.K. Principles of biotherapy and its application to the treat-ment of disseminated renal cancer. Semin. Surg. Oncol., 1988, 4(3), 155-160.
[http://dx.doi.org/10.1002/ssu.2980040303] [PMID: 3055159]
[6]
Forman, D.; de Martel, C.; Lacey, C.J.; Soerjomataram, I.; Lortet-Tieulent, J.; Bruni, L.; Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; Fran-ceschi, S. Global burden of human papillomavirus and related diseases. Vaccine, 2012, 30(Suppl. 5), F12-F23.
[http://dx.doi.org/10.1016/j.vaccine.2012.07.055] [PMID: 23199955]
[7]
Yi, T.; Zhang, H.; Cai, Z. Analysis of Rhizoma Polygoni Cuspidati by HPLC and HPLC-ESI/MS. Phytochem. Anal., 2007, 18(5), 387-392.
[http://dx.doi.org/10.1002/pca.993] [PMID: 17624903]
[8]
Feng, J. Comparative analysis of the major constituents in three related polygonaceous medicinal plants using pressurized liquid extraction and HPLC-ESI/MS. Anal. Methods, 2016, 8(7), 1557-1564.
[http://dx.doi.org/10.1039/C5AY02941D]
[9]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms. Cancer Cell Int., 2019, 19, 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[10]
Hoseini, A.; Namazi, G.; Farrokhian, A.; Reiner, Ž.; Aghadavod, E.; Bahmani, F.; Asemi, Z. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct., 2019, 10(9), 6042-6051.
[http://dx.doi.org/10.1039/C9FO01075K] [PMID: 31486447]
[11]
Kosmeder, J.W., II; Pezzuto, J.M.; Pezzuto, J.M. Bhat, KPL Biological effects of resveratrol. Antioxid. Redox Signal., 2001, 3(6), 1041-1064.
[http://dx.doi.org/10.1089/152308601317203567] [PMID: 11813979]
[12]
Zhao, C. Optimization of liquid ammonia pretreatment conditions for maximizing sugar release from giant reed (Arundo donax L.). Biomass Bioenergy, 2017, 98, 61-69.
[http://dx.doi.org/10.1016/j.biombioe.2017.01.001]
[13]
Qiao, X. Structural characterization of corn stover lignin after hydrogen peroxide presoaking prior to ammonia fiber expansion pretreat-ment. Energy Fuels, 2018, 32(5), 6022-6030.
[http://dx.doi.org/10.1021/acs.energyfuels.8b00951]
[14]
Zhang, M. Determination of water content in corn stover silage using near-infrared spectroscopy. Int. J. Agric. Biol. Eng., 2019, 12(6), 143-148.
[http://dx.doi.org/10.25165/j.ijabe.20191206.4914]
[15]
Heredia, A.; Davis, C.; Redfield, R. Synergistic inhibition of HIV-1 in activated and resting peripheral blood mononuclear cells, monocyte-derived macrophages, and selected drug-resistant isolates with nucleoside analogues combined with a natural product, resveratrol. J. Acquir. Immune Defic. Syndr., 2000, 25(3), 246-255.
[http://dx.doi.org/10.1097/00126334-200011010-00006] [PMID: 11115955]
[16]
Docherty, J.J.; Fu, M.M.; Stiffler, B.S.; Limperos, R.J.; Pokabla, C.M.; DeLucia, A.L. Resveratrol inhibition of herpes simplex virus repli-cation. Antiviral Res., 1999, 43(3), 145-155.
[http://dx.doi.org/10.1016/S0166-3542(99)00042-X] [PMID: 10551373]
[17]
Docherty, J.J.; Smith, J.S.; Fu, M.M.; Stoner, T.; Booth, T. Effect of topically applied resveratrol on cutaneous Herpes simplex virus infec-tions in hairless mice. Antiviral Res., 2004, 61(1), 19-26.
[http://dx.doi.org/10.1016/j.antiviral.2003.07.001] [PMID: 14670590]
[18]
Dhanasekaran, D.N.; Song, Y.S. Int J Mol Sci,
[19]
Aggarwal, B.B. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol., 2003, 3(9), 745-756.
[http://dx.doi.org/10.1038/nri1184] [PMID: 12949498]
[20]
Manna, S.K.; Mukhopadhyay, A.; Aggarwal, B.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol., 2000, 164(12), 6509-6519.
[http://dx.doi.org/10.4049/jimmunol.164.12.6509] [PMID: 10843709]
[21]
Rahman, I.; Biswas, S.K.; Kirkham, P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol., 2006, 72(11), 1439-1452.
[http://dx.doi.org/10.1016/j.bcp.2006.07.004] [PMID: 16920072]
[22]
Sun, X.; Xu, Q.; Zeng, L.; Xie, L.; Zhao, Q.; Xu, H.; Wang, X.; Jiang, N.; Fu, P.; Sang, M. Resveratrol suppresses the growth and metastatic potential of cervical cancer by inhibiting STAT3Tyr705 phosphorylation. Cancer Med., 2020, 9(22), 8685-8700.
[http://dx.doi.org/10.1002/cam4.3510] [PMID: 33040485]
[23]
Liu, Z.; Li, Y.; She, G.; Zheng, X.; Shao, L.; Wang, P.; Pang, M.; Xie, S.; Sun, Y. Resveratrol induces cervical cancer HeLa cell apoptosis through the activation and nuclear translocation promotion of FOXO3a. Pharmazie, 2020, 75(6), 250-254.
[PMID: 32539920]
[24]
Wu, C.; Kajitani, N.; Schwartz, S. Splicing and polyadenylation of human papillomavirus type 16 mRNAs. Int. J. Mol. Sci., 2017, 18(2), E366.
[http://dx.doi.org/10.3390/ijms18020366] [PMID: 28208770]
[25]
Raff, A.B.; Woodham, A.W.; Raff, L.M.; Skeate, J.G.; Yan, L.; Da Silva, D.M.; Schelhaas, M.; Kast, W.M. The evolving field of human papillomavirus receptor research: A review of binding and entry. J. Virol., 2013, 87(11), 6062-6072.
[http://dx.doi.org/10.1128/JVI.00330-13] [PMID: 23536685]
[26]
Xu, F.; Cao, M.; Shi, Q.; Chen, H.; Wang, Y.; Li, X. Integration of the full-length HPV16 genome in cervical cancer and Caski and Siha cell lines and the possible ways of HPV integration. Virus Genes, 2015, 50(2), 210-220.
[http://dx.doi.org/10.1007/s11262-014-1164-7] [PMID: 25823917]
[27]
Andersen, A.S.; Koldjaer Sølling, A.S.; Ovesen, T.; Rusan, M. The interplay between HPV and host immunity in head and neck squamous cell carcinoma. Int. J. Cancer, 2014, 134(12), 2755-2763.
[http://dx.doi.org/10.1002/ijc.28411] [PMID: 23913554]
[28]
Moody, C.A.; Laimins, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer, 2010, 10(8), 550-560.
[http://dx.doi.org/10.1038/nrc2886] [PMID: 20592731]
[29]
Pim, D.; Banks, L. Interaction of viral oncoproteins with cellular target molecules: Infection with high-risk vs low-risk human papillomavi-ruses. APMIS, 2010, 118(6-7), 471-493.
[http://dx.doi.org/10.1111/j.1600-0463.2010.02618.x] [PMID: 20553529]
[30]
Galloway, D.A.; Gewin, L.C.; Myers, H.; Luo, W.; Grandori, C.; Katzenellenbogen, R.A.; McDougall, J.K. Regulation of telomerase by human papillomaviruses. Cold Spring Harb. Symp. Quant. Biol., 2005, 70, 209-215.
[http://dx.doi.org/10.1101/sqb.2005.70.041] [PMID: 16869756]
[31]
Balsitis, S.; Dick, F.; Lee, D.; Farrell, L.; Hyde, R.K.; Griep, A.E.; Dyson, N.; Lambert, P.F. Examination of the pRb-dependent and pRb-independent functions of E7 in vivo. J. Virol., 2005, 79(17), 11392-11402.
[http://dx.doi.org/10.1128/JVI.79.17.11392-11402.2005] [PMID: 16103190]
[32]
Cheng, Y.M.; Chou, C.Y.; Hsu, Y.C.; Chen, M.J.; Wing, L.Y. The role of human papillomavirus type 16 E6/E7 oncoproteins in cervical epithelial-mesenchymal transition and carcinogenesis. Oncol. Lett., 2012, 3(3), 667-671.
[http://dx.doi.org/10.3892/ol.2011.512] [PMID: 22740973]
[33]
Ojesina, A.I.; Lichtenstein, L.; Freeman, S.S.; Pedamallu, C.S.; Imaz-Rosshandler, I.; Pugh, T.J.; Cherniack, A.D.; Ambrogio, L.; Cibulskis, K.; Bertelsen, B.; Romero-Cordoba, S.; Treviño, V.; Vazquez-Santillan, K.; Guadarrama, A.S.; Wright, A.A.; Rosenberg, M.W.; Duke, F.; Kaplan, B.; Wang, R.; Nickerson, E.; Walline, H.M.; Lawrence, M.S.; Stewart, C.; Carter, S.L.; McKenna, A.; Rodriguez-Sanchez, I.P. Es-pinosa-Castilla, M.; Woie, K.; Bjorge, L.; Wik, E.; Halle, M.K.; Hoivik, E.A.; Krakstad, C.; Gabiño, N.B.; Gómez-Macías, G.S.; Valdez-Chapa, L.D.; Garza-Rodríguez, M.L.; Maytorena, G.; Vazquez, J.; Rodea, C.; Cravioto, A.; Cortes, M.L.; Greulich, H.; Crum, C.P.; Neu-berg, D.S.; Hidalgo-Miranda, A.; Escareno, C.R.; Akslen, L.A.; Carey, T.E.; Vintermyr, O.K.; Gabriel, S.B.; Barrera-Saldaña, H.A.; Melen-dez-Zajgla, J.; Getz, G.; Salvesen, H.B.; Meyerson, M. Landscape of genomic alterations in cervical carcinomas. Nature, 2014, 506(7488), 371-375.
[http://dx.doi.org/10.1038/nature12881] [PMID: 24390348]
[34]
Lazo, P.A. The molecular genetics of cervical carcinoma. Br. J. Cancer, 1999, 80(12), 2008-2018.
[http://dx.doi.org/10.1038/sj.bjc.6690635] [PMID: 10471054]
[35]
Adams, A.K.; Wise-Draper, T.M.; Wells, S.I. Human papillomavirus induced transformation in cervical and head and neck cancers. Cancers (Basel), 2014, 6(3), 1793-1820.
[http://dx.doi.org/10.3390/cancers6031793] [PMID: 25226287]
[36]
Visalli, G.; Riso, R.; Facciolà, A.; Mondello, P.; Caruso, C.; Picerno, I.; Di Pietro, A.; Spataro, P.; Bertuccio, M.P. Higher levels of oxidati-ve DNA damage in cervical cells are correlated with the grade of dysplasia and HPV infection. J. Med. Virol., 2016, 88(2), 336-344.
[http://dx.doi.org/10.1002/jmv.24327] [PMID: 26174792]
[37]
Tindle, R.W. Immune evasion in human papillomavirus-associated cervical cancer. Nat. Rev. Cancer, 2002, 2(1), 59-65.
[http://dx.doi.org/10.1038/nrc700] [PMID: 11902586]
[38]
Boccardo, E.; Lepique, A.P.; Villa, L.L. The role of inflammation in HPV carcinogenesis. Carcinogenesis, 2010, 31(11), 1905-1912.
[http://dx.doi.org/10.1093/carcin/bgq176] [PMID: 20819779]
[39]
Senapati, R.; Senapati, N.N.; Dwibedi, B. Molecular mechanisms of HPV mediated neoplastic progression. Infect. Agent. Cancer, 2016, 11, 59.
[http://dx.doi.org/10.1186/s13027-016-0107-4] [PMID: 27933097]
[40]
Termini, L.; Filho, A.L.; Maciag, P.C.; Etlinger, D.; Alves, V.A.; Nonogaki, S.; Soares, F.A.; Villa, L.L. Deregulated expression of super-oxide dismutase-2 correlates with different stages of cervical neoplasia. Dis. Markers, 2011, 30(6), 275-281.
[http://dx.doi.org/10.1155/2011/178475] [PMID: 21725155]
[41]
Vandermark, E.R.; Deluca, K.A.; Gardner, C.R.; Marker, D.F.; Schreiner, C.N.; Strickland, D.A.; Wilton, K.M.; Mondal, S.; Woodworth, C.D. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization. Virology, 2012, 425(1), 53-60.
[http://dx.doi.org/10.1016/j.virol.2011.12.023] [PMID: 22284893]
[42]
Komai, K.; Niwa, Y.; Sasazawa, Y.; Simizu, S. Pirin regulates epithelial to mesenchymal transition independently of Bcl3-Slug signaling. FEBS Lett., 2015, 589(6), 738-743.
[http://dx.doi.org/10.1016/j.febslet.2015.01.040] [PMID: 25680527]
[43]
Brzóska, K.; Stępkowski, T.M.; Kruszewski, M. Basal PIR expression in HeLa cells is driven by NRF2 via evolutionary conserved anti-oxidant response element. Mol. Cell. Biochem., 2014, 389(1-2), 99-111.
[http://dx.doi.org/10.1007/s11010-013-1931-0] [PMID: 24390086]
[44]
Carrillo, D. Upregulation of PIR gene expression induced by human papillomavirus E6 and E7 in epithelial oral and cervical cells. Open Biol., 2017, 7(11), 170111.
[http://dx.doi.org/10.1098/rsob.170111]
[45]
Spitkovsky, D.; Hehner, S.P.; Hofmann, T.G.; Möller, A.; Schmitz, M.L. The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex. J. Biol. Chem., 2002, 277(28), 25576-25582.
[http://dx.doi.org/10.1074/jbc.M201884200] [PMID: 11986318]
[46]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[47]
Deivendran, S.; Marzook, K.H.; Radhakrishna Pillai, M. The role of inflammation in cervical cancer. Adv. Exp. Med. Biol., 2014, 816, 377-399.
[http://dx.doi.org/10.1007/978-3-0348-0837-8_15] [PMID: 24818731]
[48]
Filippova, M.; Parkhurst, L.; Duerksen-Hughes, P.J. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J. Biol. Chem., 2004, 279(24), 25729-25744.
[http://dx.doi.org/10.1074/jbc.M401172200] [PMID: 15073179]
[49]
Garnett, T.O.; Duerksen-Hughes, P.J. Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch. Virol., 2006, 151(12), 2321-2335.
[http://dx.doi.org/10.1007/s00705-006-0821-0] [PMID: 16862386]
[50]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to gene-tic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[http://dx.doi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[51]
De Marco, F.; Bucaj, E.; Foppoli, C.; Fiorini, A.; Blarzino, C.; Filipi, K.; Giorgi, A.; Schininà, M.E.; Di Domenico, F.; Coccia, R.; Butter-field, D.A.; Perluigi, M. Oxidative stress in HPV-driven viral carcinogenesis: Redox proteomics analysis of HPV-16 dysplastic and neo-plastic tissues. PLoS One, 2012, 7(3), e34366.
[http://dx.doi.org/10.1371/journal.pone.0034366] [PMID: 22470562]
[52]
Basile, J.R.; Zacny, V.; Münger, K. The cytokines tumor necrosis factor-alpha (TNF-alpha) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 onco-protein. J. Biol. Chem., 2001, 276(25), 22522-22528.
[http://dx.doi.org/10.1074/jbc.M010505200] [PMID: 11306566]
[53]
Xie, T.X.; Wei, D.; Liu, M.; Gao, A.C.; Ali-Osman, F.; Sawaya, R.; Huang, S. Stat3 activation regulates the expression of matrix metallo-proteinase-2 and tumor invasion and metastasis. Oncogene, 2004, 23(20), 3550-3560.
[http://dx.doi.org/10.1038/sj.onc.1207383] [PMID: 15116091]
[54]
McCormack, S.J.; Brazinski, S.E.; Moore, J.L., Jr; Werness, B.A.; Goldstein, D.J. Activation of the focal adhesion kinase signal transduc-tion pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene, 1997, 15(3), 265-274.
[http://dx.doi.org/10.1038/sj.onc.1201186] [PMID: 9233761]
[55]
Du, M.; Fan, X.; Hong, E.; Chen, J.J. Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. Biochem. Biophys. Res. Commun., 2002, 296(4), 962-969.
[http://dx.doi.org/10.1016/S0006-291X(02)02041-7] [PMID: 12200142]
[56]
Martin, S.L.; Hardy, T.M.; Tollefsbol, T.O. Medicinal chemistry of the epigenetic diet and caloric restriction. Curr. Med. Chem., 2013, 20(32), 4050-4059.
[http://dx.doi.org/10.2174/09298673113209990189] [PMID: 23895687]
[57]
Bergman, Y.; Cedar, H. DNA methylation dynamics in health and disease. Nat. Struct. Mol. Biol., 2013, 20(3), 274-281.
[http://dx.doi.org/10.1038/nsmb.2518] [PMID: 23463312]
[58]
Kurdistani, S.K. Histone modifications as markers of cancer prognosis: A cellular view. Br. J. Cancer, 2007, 97(1), 1-5.
[http://dx.doi.org/10.1038/sj.bjc.6603844] [PMID: 17592497]
[59]
Okano, M.; Xie, S.; Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet., 1998, 19(3), 219-220.
[http://dx.doi.org/10.1038/890] [PMID: 9662389]
[60]
Robertson, K.D. DNA methylation, methyltransferases, and cancer. Oncogene, 2001, 20(24), 3139-3155.
[http://dx.doi.org/10.1038/sj.onc.1204341] [PMID: 11420731]
[61]
Chen, T.; Li, E. Establishment and maintenance of DNA methylation patterns in mammals. Curr. Top. Microbiol. Immunol., 2006, 301, 179-201.
[http://dx.doi.org/10.1007/3-540-31390-7_6] [PMID: 16570848]
[62]
Yang, L.; Rau, R.; Goodell, M.A. DNMT3A in haematological malignancies. Nat. Rev. Cancer, 2015, 15(3), 152-165.
[http://dx.doi.org/10.1038/nrc3895] [PMID: 25693834]
[63]
Kala, R.; Shah, H.N.; Martin, S.L.; Tollefsbol, T.O. Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage res-ponse by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer, 2015, 15, 672.
[http://dx.doi.org/10.1186/s12885-015-1693-z] [PMID: 26459286]
[64]
Kala, R.; Tollefsbol, T.O. A novel combinatorial epigenetic therapy using resveratrol and pterostilbene for restoring Estrogen Receptor-α (ERα) expression in ERα-negative breast cancer cells. PLoS One, 2016, 11(5), e0155057.
[http://dx.doi.org/10.1371/journal.pone.0155057] [PMID: 27159275]
[65]
Ni, M.; Chen, Y.; Lim, E.; Wimberly, H.; Bailey, S.T.; Imai, Y.; Rimm, D.L.; Liu, X.S.; Brown, M. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell, 2011, 20(1), 119-131.
[http://dx.doi.org/10.1016/j.ccr.2011.05.026] [PMID: 21741601]
[66]
Saxena, N.K.; Sharma, D. Epigenetic reactivation of estrogen receptor: promising tools for restoring response to endocrine therapy. Mol. Cell. Pharmacol., 2010, 2(5), 191-202.
[PMID: 21499573]
[67]
Papoutsis, A.J.; Lamore, S.D.; Wondrak, G.T.; Selmin, O.I.; Romagnolo, D.F. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J. Nutr., 2010, 140(9), 1607-1614.
[http://dx.doi.org/10.3945/jn.110.123422] [PMID: 20631324]
[68]
Jin, W.; Chen, L.; Chen, Y.; Xu, S.G.; Di, G.H.; Yin, W.J.; Wu, J.; Shao, Z.M. UHRF1 is associated with epigenetic silencing of BRCA1 in sporadic breast cancer. Breast Cancer Res. Treat., 2010, 123(2), 359-373.
[http://dx.doi.org/10.1007/s10549-009-0652-2] [PMID: 19943104]
[69]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[70]
Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature, 2000, 403(6765), 41-45.
[http://dx.doi.org/10.1038/47412] [PMID: 10638745]
[71]
Teiten, M.H.; Dicato, M.; Diederich, M. Curcumin as a regulator of epigenetic events. Mol. Nutr. Food Res., 2013, 57(9), 1619-1629.
[http://dx.doi.org/10.1002/mnfr.201300201] [PMID: 23754571]
[72]
Pervaiz, S. Resveratrol: From grapevines to mammalian biology. FASEB J., 2003, 17(14), 1975-1985.
[http://dx.doi.org/10.1096/fj.03-0168rev] [PMID: 14597667]
[73]
Kumar, A.; Dhar, S.; Rimando, A.M.; Lage, J.M.; Lewin, J.R.; Zhang, X.; Levenson, A.S. Epigenetic potential of resveratrol and analogs in preclinical models of prostate cancer. Ann. N. Y. Acad. Sci., 2015, 1348(1), 1-9.
[http://dx.doi.org/10.1111/nyas.12817] [PMID: 26214308]
[74]
Kai, L.; Samuel, S.K.; Levenson, A.S. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int. J. Cancer, 2010, 126(7), 1538-1548.
[http://dx.doi.org/10.1002/ijc.24928] [PMID: 19810103]
[75]
Li, G.; Rivas, P.; Bedolla, R.; Thapa, D.; Reddick, R.L.; Ghosh, R.; Kumar, A.P. Dietary resveratrol prevents development of high-grade prostatic intraepithelial neoplastic lesions: Involvement of SIRT1/S6K axis. Cancer Prev. Res. (Phila.), 2013, 6(1), 27-39.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0349] [PMID: 23248098]
[76]
Balandeh, E.; Mohammadshafie, K.; Mahmoudi, Y.; Hossein Pourhanifeh, M.; Rajabi, A.; Bahabadi, Z.R.; Mohammadi, A.H.; Rahimian, N.; Hamblin, M.R.; Mirzaei, H. Roles of non-coding RNAs and angiogenesis in glioblastoma. Front. Cell Dev. Biol., 2021, 9, 716462.
[http://dx.doi.org/10.3389/fcell.2021.716462] [PMID: 34646821]
[77]
Mahjoubin-Tehran, M.; Rezaei, S.; Jesmani, A.; Birang, N.; Morshedi, K.; Khanbabaei, H.; Khan, H.; Piranviseh, A.; Nejati, M.; Aschner, M.; Mirzaei, H. New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed. Pharmacother., 2021, 140, 111753.
[http://dx.doi.org/10.1016/j.biopha.2021.111753] [PMID: 34044272]
[78]
Tan, W.; Liu, B.; Qu, S.; Liang, G.; Luo, W.; Gong, C. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol. Lett., 2018, 15(3), 2735-2742.
[PMID: 29434998]
[79]
Otsuka, K.; Yamamoto, Y.; Ochiya, T. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer. Oncotarget, 2018, 9(37), 24718-24730.
[http://dx.doi.org/10.18632/oncotarget.25339] [PMID: 29872500]
[80]
Du, M.; Zhang, Z.; Gao, T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells. Biol. Res., 2017, 50(1), 36.
[http://dx.doi.org/10.1186/s40659-017-0141-8] [PMID: 29041990]
[81]
Urban, P.; Lautier, T.; Pompon, D.; Truan, G. Ligand access channels in cytochrome P450 enzymes: A review. Int. J. Mol. Sci., 2018, 19(6), E1617.
[http://dx.doi.org/10.3390/ijms19061617] [PMID: 29848998]
[82]
Mittal, B.; Tulsyan, S.; Kumar, S.; Mittal, R.D.; Agarwal, G. Cytochrome P450 in cancer susceptibility and treatment. Adv. Clin. Chem., 2015, 71, 77-139.
[http://dx.doi.org/10.1016/bs.acc.2015.06.003] [PMID: 26411412]
[83]
Ware, W.R. Natural cancer therapy and prevention targeted on cancer cells and cancer stem cells based on the cytochrome P45O enzyme CYP1B1: A commentary. Altern. Ther. Health Med., 2017, 23(5), 50-58.
[PMID: 28646805]
[84]
Spyrou, I.; Sifakis, S.; Ploumidis, A.; Papalampros, A.E.; Felekouras, E.; Tsatsakis, A.M.; Spandidos, D.A.; Androutsopoulos, V.P. Ex-pression profile of CYP1A1 and CYP1B1 enzymes in endometrial tumors. Tumour Biol., 2014, 35(10), 9549-9556.
[http://dx.doi.org/10.1007/s13277-014-2240-2] [PMID: 24957043]
[85]
Dhaini, H.R.; Thomas, D.G.; Giordano, T.J.; Johnson, T.D.; Biermann, J.S.; Leu, K.; Hollenberg, P.F.; Baker, L.H. Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J. Clin. Oncol., 2003, 21(13), 2481-2485.
[http://dx.doi.org/10.1200/JCO.2003.06.015] [PMID: 12829666]
[86]
Tangpricha, V.; Flanagan, J.N.; Whitlatch, L.W.; Tseng, C.C.; Chen, T.C.; Holt, P.R.; Lipkin, M.S.; Holick, M.F. 25-Hydroxyvitamin D-1alpha-hydroxylase in normal and malignant colon tissue. Lancet, 2001, 357(9269), 1673-1674.
[http://dx.doi.org/10.1016/S0140-6736(00)04831-5] [PMID: 11425375]
[87]
Lakhani, N.J.; Sarkar, M.A.; Venitz, J.; Figg, W.D. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy, 2003, 23(2), 165-172.
[http://dx.doi.org/10.1592/phco.23.2.165.32088] [PMID: 12587805]
[88]
Dawling, S.; Roodi, N.; Parl, F.F. Methoxyestrogens exert feedback inhibition on cytochrome P450 1A1 and 1B1. Cancer Res., 2003, 63(12), 3127-3132.
[PMID: 12810639]
[89]
Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; Farmer, P.B.; Stanley, L.A.; Bur-ke, M.D. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer, 2002, 86(5), 774-778.
[http://dx.doi.org/10.1038/sj.bjc.6600197] [PMID: 11875742]
[90]
Oskarsson, A.; Spatafora, C.; Tringali, C.; Andersson, Å.O. Inhibition of CYP17A1 activity by resveratrol, piceatannol, and synthetic resveratrol analogs. Prostate, 2014, 74(8), 839-851.
[http://dx.doi.org/10.1002/pros.22801] [PMID: 24610083]
[91]
Zhang, P.; Li, H.; Yang, B.; Yang, F.; Zhang, L.L.; Kong, Q.Y.; Chen, X.Y.; Wu, M.L.; Liu, J. Biological significance and therapeutic impli-cation of resveratrol-inhibited Wnt, Notch and STAT3 signaling in cervical cancer cells. Genes Cancer, 2014, 5(5-6), 154-164.
[http://dx.doi.org/10.18632/genesandcancer.15] [PMID: 25061499]
[92]
Li, Y.G.; Xia, H.J.; Tao, J.P.; Xin, P.; Liu, M.Y.; Li, J.B.; Zhu, W.; Wei, M. GRIM 19 mediated Stat3 activation is a determinant for resve-ratrol induced proliferation and cytotoxicity in cervical tumor derived cell lines. Mol. Med. Rep., 2015, 11(2), 1272-1277.
[http://dx.doi.org/10.3892/mmr.2014.2797] [PMID: 25351437]
[93]
Kim, Y.S.; Sull, J.W.; Sung, H.J. Suppressing effect of resveratrol on the migration and invasion of human metastatic lung and cervical cancer cells. Mol. Biol. Rep., 2012, 39(9), 8709-8716.
[http://dx.doi.org/10.1007/s11033-012-1728-3] [PMID: 22696189]
[94]
Dhandayuthapani, S.; Marimuthu, P.; Hörmann, V.; Kumi-Diaka, J.; Rathinavelu, A. Induction of apoptosis in HeLa cells via caspase activation by resveratrol and genistein. J. Med. Food, 2013, 16(2), 139-146.
[http://dx.doi.org/10.1089/jmf.2012.0141] [PMID: 23356442]
[95]
Li, L.; Qiu, R.L.; Lin, Y.; Cai, Y.; Bian, Y.; Fan, Y.; Gao, X.J. Resveratrol suppresses human cervical carcinoma cell proliferation and elevates apoptosis via the mitochondrial and p53 signaling pathways. Oncol. Lett., 2018, 15(6), 9845-9851.
[http://dx.doi.org/10.3892/ol.2018.8571] [PMID: 29928358]
[96]
Wu, Y.; Zhao, D.; Zhuang, J.; Zhang, F.; Xu, C. Caspase-8 and caspase-9 functioned differently at different stages of the cyclic stretch-induced apoptosis in human periodontal ligament cells. PLoS One, 2016, 11(12), e0168268.
[http://dx.doi.org/10.1371/journal.pone.0168268] [PMID: 27942018]
[97]
Zhang, P.; Yang, B.; Yao, Y.Y.; Zhong, L.X.; Chen, X.Y.; Kong, Q.Y.; Wu, M.L.; Li, C.; Li, H.; Liu, J. PIAS3, SHP2 and SOCS3 expres-sion patterns in cervical cancers: Relevance with activation and resveratrol-caused inactivation of STAT3 signaling. Gynecol. Oncol., 2015, 139(3), 529-535.
[http://dx.doi.org/10.1016/j.ygyno.2015.09.087] [PMID: 26432044]
[98]
Zoberi, I.; Bradbury, C.M.; Curry, H.A.; Bisht, K.S.; Goswami, P.C.; Roti Roti, J.L.; Gius, D. Radiosensitizing and anti-proliferative effects of resveratrol in two human cervical tumor cell lines. Cancer Lett., 2002, 175(2), 165-173.
[http://dx.doi.org/10.1016/S0304-3835(01)00719-4] [PMID: 11741744]
[99]
Kramer, M.P.; Wesierska-Gadek, J. Monitoring of long-term effects of resveratrol on cell cycle progression of human HeLa cells after administration of a single dose. Ann. N. Y. Acad. Sci., 2009, 1171, 257-263.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04884.x] [PMID: 19723063]
[100]
García-Zepeda, S.P.; García-Villa, E.; Díaz-Chávez, J.; Hernández-Pando, R.; Gariglio, P. Resveratrol induces cell death in cervical cancer cells through apoptosis and autophagy. Eur. J. Cancer Prev., 2013, 22(6), 577-584.
[http://dx.doi.org/10.1097/CEJ.0b013e328360345f] [PMID: 23603746]
[101]
Hong, Bin W.; Da, L.H.; Xue, Y.; Jing, B. Pterostilbene (3′,5′-dimethoxy-resveratrol) exerts potent antitumor effects in HeLa human cervi-cal cancer cells via disruption of mitochondrial membrane potential, apoptosis induction and targeting m-TOR/PI3K/Akt signalling pathway. J. BUON, 2018, 23(5), 1384-1389.
[PMID: 30570862]
[102]
Lee, K.W.; Chung, K.S.; Lee, J.H.; Choi, J.H.; Choi, S.Y.; Kim, S.; Lee, J.Y.; Lee, K.T. Resveratrol analog, N-(4-methoxyphenyl)-3,5-dimethoxybenzamide induces G2/M phase cell cycle arrest and apoptosis in HeLa human cervical cancer cells. Food Chem. Toxicol., 2019, 124, 101-111.
[http://dx.doi.org/10.1016/j.fct.2018.11.062] [PMID: 30508562]
[103]
Chatterjee, K.; AlSharif, D.; Mazza, C. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein E6 in cervical cancer cells. Nutrients, 2018, 10(2), 243.
[http://dx.doi.org/10.3390/nu10020243]
[104]
Tomoaia, G.; Horovitz, O.; Mocanu, A.; Nita, A.; Avram, A.; Racz, C.P.; Soritau, O.; Cenariu, M.; Tomoaia-Cotisel, M. Effects of doxoru-bicin mediated by gold nanoparticles and resveratrol in two human cervical tumor cell lines. Colloids Surf. B Biointerfaces, 2015, 135, 726-734.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.036] [PMID: 26340362]
[105]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[106]
Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J., 2008, 22(3), 659-661.
[http://dx.doi.org/10.1096/fj.07-9574LSF] [PMID: 17942826]
[107]
Pearson, K.J.; Baur, J.A.; Lewis, K.N.; Peshkin, L.; Price, N.L.; Labinskyy, N.; Swindell, W.R.; Kamara, D.; Minor, R.K.; Perez, E.; Jamie-son, H.A.; Zhang, Y.; Dunn, S.R.; Sharma, K.; Pleshko, N.; Woollett, L.A.; Csiszar, A.; Ikeno, Y.; Le Couteur, D.; Elliott, P.J.; Becker, K.G.; Navas, P.; Ingram, D.K.; Wolf, N.S.; Ungvari, Z.; Sinclair, D.A.; de Cabo, R. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab., 2008, 8(2), 157-168.
[http://dx.doi.org/10.1016/j.cmet.2008.06.011] [PMID: 18599363]
[108]
Tatlidede, E.; Sehirli, O.; Velioğlu-Oğünc, A.; Cetinel, S.; Yeğen, B.C.; Yarat, A.; Süleymanoğlu, S.; Sener, G. Resveratrol treatment pro-tects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic. Res., 2009, 43(3), 195-205.
[http://dx.doi.org/10.1080/10715760802673008] [PMID: 19169920]
[109]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[110]
Johnson, J.J.; Nihal, M.; Siddiqui, I.A.; Scarlett, C.O.; Bailey, H.H.; Mukhtar, H.; Ahmad, N. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol. Nutr. Food Res., 2011, 55(8), 1169-1176.
[http://dx.doi.org/10.1002/mnfr.201100117] [PMID: 21714124]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy