Review Article

纳米金的微生物合成及其应用

卷 23, 期 7, 2022

发表于: 12 April, 2022

页: [752 - 760] 页: 9

弟呕挨: 10.2174/1389450123666220128152408

价格: $65

摘要

背景:纳米颗粒在我们的日常生活中扮演着非常重要的角色,在农业和生物领域有着广泛的应用,如抗氧化剂和抗菌化合物。其中,金纳米粒子(AuNPs)是一种高度复杂、应用广泛的纳米粒子。近年来,金纳米粒子因其光学性质、电子性质、物理化学性质和表面等离子共振(SPR)等特点而受到广泛关注。镀金纳米颗粒与金属纳米颗粒类似,由于其量子尺寸和位置的影响,与其他铁或金属原子相比,具有许多不同寻常的化学和物理性质。金纳米颗粒可用于制药产品,如抗菌和抗生物膜剂、抗癌药物的靶向递送、生物传感器、生物催化、暴露于土壤和大气的有毒化学品的生物修复改性、染料还原等。然而,这种方法既昂贵又与对自然环境有害。在这种情况下,当纯微生物作为适应性强、无毒和生物兼容的生理和化学方法时,微生物介导的金纳米颗粒合成最近发生了迅速的变化。本文综述了近年来金纳米粒子的聚变研究进展。微生物来源包括细菌、藻类真菌。这些工作激发了人们如何应用和合成金纳米颗粒。本文还着重介绍了金纳米颗粒的分类过程、结构及其在发展中应用的各种要求。 目的:研究金纳米颗粒及其应用前景。 方法:对“谷歌Scholar”、“NCBI”、“PubMed”、“Science Direct”等网站上发表的不同类型的研究论文进行综述。 结论:金属纳米颗粒适用于许多新兴技术。因为需要金纳米颗粒的融合,我们需要了解自然界中发现的微生物。

关键词: 金纳米粒子(AuNPs),表面等离子共振(SPR),微生物合成,抗生物膜,生态友好,生物传感器。

图形摘要

[1]
Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine 2010; 6(2): 257-62.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[2]
Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC. Biological approach of zinc oxide nanoparticles formation and its characterization. Adv Mater Lett 2011; 2(4): 313-7.
[http://dx.doi.org/10.5185/amlett.indias.204]
[3]
Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf B Biointerfaces 2010; 79(1): 5-18.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.029] [PMID: 20417070]
[4]
Narges E, Mehdi K, Mohammad HB. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184: 537-56.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[5]
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016; 7(1): 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[6]
Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA. Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv Colloid Interface Sci 2014; 209: 40-8.
[http://dx.doi.org/10.1016/j.cis.2013.12.011] [PMID: 24456802]
[7]
Michael F. The Bakerian Lecture. Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 1857; 147: 145-81.
[http://dx.doi.org/10.1098/rstl.1857.0011]
[8]
Singh TR, Shrivastava V. Synthesis of gold nanoparticles: A biological approach. Synthesis 2014; 3(2): 5.
[9]
Ahmad A, Mukherjee P, Senapati S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 2003; 28(4): 313-8.
[http://dx.doi.org/10.1016/S0927-7765(02)00174-1]
[10]
Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 2006; 69(5): 485-92.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[11]
Menon S. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technol 2017; 3(4): 516-27.
[http://dx.doi.org/10.1016/j.reffit.2017.08.002]
[12]
Xie J, Lee JY, Wang DIC, Ting YP. Silver nanoplates: From biological to biomimetic synthesis. ACS Nano 2007; 1(5): 429-39.
[http://dx.doi.org/10.1021/nn7000883] [PMID: 19206664]
[13]
He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria rhodopseudomonas capsulata. Mater Lett 2007; 61(18): 3984-7.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[14]
Whiteley C, Govender Y, Riddin T, Rai M. Enzymatic synthesis of platinum nanoparticles: Prokaryote and eukaryote systems. In: Rai M, Duran N.Metal Nanoparticles Microbiol. Berlin, Heidelberg: Springer 2011.
[http://dx.doi.org/10.1007/978-3-642-18312-6_5]
[15]
Brayner R, Barberousse H, Hemadi M, et al. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 2007; 7(8): 2696-708.
[http://dx.doi.org/10.1166/jnn.2007.600] [PMID: 17685286]
[16]
Das SK, Marsili E. A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect. Rev Environ Sci Biotechnol 2010; 9(3): 199-204.
[http://dx.doi.org/10.1007/s11157-010-9188-5]
[17]
Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett 2001; 1(10): 515-9.
[http://dx.doi.org/10.1021/nl0155274]
[18]
Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanopart Res 2007; 10(3): 507-17.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[19]
Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 2009; 15(63): 1231-4.
[http://dx.doi.org/10.1016/j.matlet.2009.02.042]
[20]
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules 2021; 11(6): 886.
[http://dx.doi.org/10.3390/biom11060886] [PMID: 34203733]
[21]
Kumar G, Rao B. Biosynthesis of silver anoparticles from marine yeast and theirantimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 2011; 3: 1100-11.
[22]
Sohn JS, Kwon YW, Jin J, Jo BW. DNA-templated preparation of gold nanoparticles. Molecules 2011; 16(10): 8143-51.
[http://dx.doi.org/10.3390/molecules16108143]
[23]
Suresh AK, Pelletier DA, Wang W, et al. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 2011; 7(5): 2148-52.
[http://dx.doi.org/10.1016/j.actbio.2011.01.023] [PMID: 21241833]
[24]
Pei L, Mori K, Adachi M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir 2004; 20(18): 7837-43.
[http://dx.doi.org/10.1021/la049262v] [PMID: 15323538]
[25]
Gole A, Dash C, Ramakrishnan V, et al. Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir 2001; 17(5): 1674-9.
[http://dx.doi.org/10.1021/la001164w]
[26]
Biosynthesis of metal nanoparticles using fungi and actinomycete- Publications of the IAS Fellows. Available from: . http://repository.ias.ac.in/47133/ (accessed 2021 -08 -13).
[27]
Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic study. Chemistry 2007; 13(11): 3160-8.
[http://dx.doi.org/10.1002/chem.200601492] [PMID: 17245786]
[28]
Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 1980; 141(2): 876-87.
[http://dx.doi.org/10.1128/jb.141.2.876-887.1980] [PMID: 6767692]
[29]
Sanghi R, Verma P, Puri S. Enzymatic formation of gold nanoparticles using & Phanerochaete chrysosporium. Adv Chem Eng Sci 2011; 01(03): 154-62.
[http://dx.doi.org/10.4236/aces.2011.13023]
[30]
Ettadili FE, Aghris S, Laghrib F, et al. Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. J Mol Struct 2022; 1248131538
[http://dx.doi.org/10.1016/j.molstruc.2021.131538]
[31]
Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 2009; 68(1): 88-92.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.022] [PMID: 18995994]
[32]
Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod 2020; 272122880
[http://dx.doi.org/10.1016/j.jclepro.2020.122880]
[33]
Parastoo P, Yahyaei B. Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. J Trace Elem Med Biol 2016; 34: 22-31.
[http://dx.doi.org/10.1016/j.jtemb.2015.11.004] [PMID: 26854241]
[34]
Bharde A, Kulkarni A, Rao M, Prabhune A, Sastry M. Bacterial enzyme mediated biosynthesis of gold nanoparticles. J Nanosci Nanotechnol 2007; 7(12): 4369-77.
[http://dx.doi.org/10.1166/jnn.2007.891] [PMID: 18283817]
[35]
Shah M, Badwaik V, Kherde Y, et al. Gold nanoparticles: Various methods of synthesis and antibacterial applications.In Front Biosci 2014; 19(8): 1320-44.
[36]
Yahyaei B, Peyvandi N, Akbari H, et al. Production, assessment, and impregnation of hyaluronic acid with silver nanoparticles that were produced by Streptococcus pyogenes for tissue engineering applications. Appl Biol Chem 2016; 59(2): 227-37.
[http://dx.doi.org/10.1007/s13765-016-0147-x]
[37]
Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005; 21(23): 10644-54.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[38]
West JL, Halas NJ. Applications of nanotechnology to biotechnology commentary. Curr Opin Biotechnol 2000; 11(2): 215-7.
[http://dx.doi.org/10.1016/S0958-1669(00)00082-3] [PMID: 10753774]
[39]
Biogenesis of nanoparticles - A current perspective - Manipal Academy of Higher Education, Manipal, India. Available from:. https://manipal.pure.elsevier.com/en/publications/biogenesis-of-nanoparticles-a-current-perspective (accessed 2021 -08 -13).
[40]
Marie CD, Didier A. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104: 293-346.
[41]
Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 2008; 41(12): 1721-30.
[http://dx.doi.org/10.1021/ar800035u] [PMID: 18712884]
[42]
Roduner E. Size matters: Why nanomaterials are different. Chem Soc Rev 2006; 35(7): 583-92.
[http://dx.doi.org/10.1039/b502142c] [PMID: 16791330]
[43]
Andreescu D, Sau TK, Goia DV. Stabilizer-free nanosized gold sols. J Colloid Interface Sci 2006; 298(2): 742-51.
[http://dx.doi.org/10.1016/j.jcis.2006.01.011] [PMID: 16473363]
[44]
Pimpang P, Choopun S. Monodispersity and stability of gold nanoparticles stabilized by using polyvinyl alcohol. In: Chiang Mai J Sci 2011; 38(1): 31-8.
[45]
Majzik A, Patakfalvi R, Hornok V, Dékány I. Growing and stability of gold nanoparticles and their functionalization by cysteine. Gold Bull 2009; 42(2): 113-23.
[http://dx.doi.org/10.1007/BF03214921]
[46]
Gao J, Huang X, Liu H, Zan F, Ren J. Colloidal stability of gold nanoparticles modified with thiol compounds: Bioconjugation and application in cancer cell imaging. Langmuir 2012; 28(9): 4464-71.
[http://dx.doi.org/10.1021/la204289k] [PMID: 22276658]
[47]
Li Q, Lu B, Zhang L, Lu C. Synthesis and stability evaluation of size-controlled gold nanoparticles via nonionic fluorosurfactant-assisted hydrogen peroxide reduction. J Mater Chem 2012; 22(27): 13564-70.
[http://dx.doi.org/10.1039/c2jm31528a]
[48]
Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Targeted photodynamic therapy of breast cancer cells using antibody–phthalocyanine–gold nanoparticle conjugates. Photochem Photobiol Sci 2011; 10(5): 822-31.
[http://dx.doi.org/10.1039/c1pp05014a]
[49]
SD. P.; WC, C. In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Natl Acad Sci USA 2010; 107(25): 11194-9.
[http://dx.doi.org/10.1073/pnas.1001367107] [PMID: 20534561]
[50]
Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132(13): 4678-84.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[51]
Sehgal N, Soni K, Gupta N, Kohli K. Microorganism assisted synthesis of gold nanoparticles: a review. Asian J Biomed Pharma Sci 2018; 8(64): 22-9.
[52]
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol 2020; 8: 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[54]
Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 2011; 82(4): 489-94.
[http://dx.doi.org/10.1016/j.chemosphere.2010.10.023] [PMID: 21055786]
[55]
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019; 271101989
[http://dx.doi.org/10.1016/j.cis.2019.101989] [PMID: 31330396]
[56]
Pang B, Köhler R, Roddatis V, et al. One-step synthesis of quadrilateral-shaped silver nanoplates with lamellar structures tuned by amylopectin derivatives. ACS Omega 2018; 3(6): 6841-8.
[http://dx.doi.org/10.1021/acsomega.8b00833] [PMID: 31458853]
[57]
Daniela NCL, Sebastian AMI, Miguel EC, Patricio AM, Jenny MB. Gold nanoparticles synthesized by Geobacillus sp. strain id17 a thermophilic bacterium isolated from deception island, Antarctica. Microb Cell Fact 2013; 12(1): 75.
[http://dx.doi.org/10.1186/1475-2859-12-75]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy