Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Computational Screening for Finding New Potent COX-2 Inhibitors as Anticancer Agents

Author(s): Ankita Sahu, Saurabh Verma*, Dibyabhaba Pradhan, Khalid Raza, Sahar Qazi and Arun Kumar Jain

Volume 20, Issue 2, 2023

Published on: 27 August, 2022

Page: [213 - 224] Pages: 12

DOI: 10.2174/1570180819666220128122553

Price: $65

Abstract

Background: Breast cancer ranks first in women and is the second most common type of cancer overall. It is the most important barrier to the rise of life expectancy, globally affecting disease modalities. Cyclooxygenase-2 (COX-2) has become a prominent hallmark as an inhibition target for breast cancer, and this therapeutic target for anti-inflammatory drugs regulates cell proliferation, angiogenesis, tumor growth and apoptosis. There is a need to explore new anti-cancerous drugs for searching the best possible hit candidates for cancer treatment. The computer-aided drug design approach was conducted to discover the new alternative COX-2 inhibitors.

Objective: The research framework of this study is to identify new potent inhibitors for the COX-2 receptor using computer-aided drug design.

Methods: In the present investigation, an in-silico approach was used to screen with the best established three biological databases (Zinc15, ChemSpider and BindingDB) and docked against the COX-2 protein structure (PDB ID: 5IKR). Molecular docking was carried out using the Schrodinger Maestro suite. The compounds were filtered out based on their physicochemical, ADMET, and other drug-like properties. Several computational approaches such as molecular docking, binding free energy calculation, ADMET analysis, protein-ligand interaction and MD simulation were performed to determine the suitability of correct ligands for the selected COX-2 target.

Results: The two ligands showed relatively better binding affinities (-10.028 kcal/mol for compound A and -10.007 kcal/mol for ZINC000048442590) than the standard (-9.751 kcal/mol). These compounds followed Lipinski’s rule and drug-likeness index, which exhibited a good predicted therapeutic druggability profile. The interaction of the protein-ligand complex correlates with the COX-2 receptor. The MD simulation of the protein-ligand complex showed good stability in the time period of 10ns.

Conclusion: It is the first study in which two new compounds ZINC000048442590 and compound A were found to be highly promising with active potential in inhibiting cyclooxygenase-2 enzyme could be effective as the potential drug candidates for breast cancer against COX-2 protein. Hopefully, in the future, these compounds as anti-inflammatory drug molecules could be used as new templates for the development of anticancer agents.

Keywords: COX-2 enzyme, Molecular docking, ADMET properties, Protein-ligand interaction, MD simulation

Graphical Abstract

[1]
Krakhmal, N.V.; Zavyalova, M.V.; Denisov, E.V.; Vtorushin, S.V.; Perelmuter, V.M. Cancer invasion: Patterns and mechanisms. Acta Nat. (Engl. Ed.), 2015, 7(2), 17-28.
[http://dx.doi.org/10.32607/20758251-2015-7-2-17-28] [PMID: 26085941]
[2]
Mathur, P.; Sathishkumar, K.; Chaturvedi, M.; Das, P.; Sudarshan, K.L.; Santhappan, S.; Nallasamy, V.; John, A.; Narasimhan, S.; Roselind, F.S. Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Glob. Oncol., 2020, 6(6), 1063-1075.
[http://dx.doi.org/10.1200/GO.20.00122] [PMID: 32673076]
[3]
Chandrasekharan, N.V.; Simmons, D.L. The cyclooxygenases. Genome Biol., 2004, 5(9), 241.
[http://dx.doi.org/10.1186/gb-2004-5-9-241] [PMID: 15345041]
[4]
Clària, J. Cyclooxygenase-2 biology. Curr. Pharm. Des., 2003, 9(27), 2177-2190.
[http://dx.doi.org/10.2174/1381612033454054] [PMID: 14529398]
[5]
Singh-Ranger, G.; Mokbel, K. The role of cyclooxygenase-2 (COX-2) in breast cancer, and implications of COX-2 inhibition. Eur. J. Surg. Oncol., 2002, 28(7), 729-737.
[http://dx.doi.org/10.1053/ejso.2002.1329] [PMID: 12431470]
[6]
Claar, D.; Hartert, T.V.; Peebles, R.S., Jr The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev. Respir. Med., 2015, 9(1), 55-72.
[http://dx.doi.org/10.1586/17476348.2015.992783] [PMID: 25541289]
[7]
Botting, R.M. Cyclooxygenase: Past, present and future. A tribute to John R. Vane (1927–2004). J. Therm. Biol., 2006, 31(1-2), 208-219.
[http://dx.doi.org/10.1016/j.jtherbio.2005.11.008]
[8]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[9]
Chow, L.W.C.; Loo, W.T.Y.; Toi, M. Current directions for COX-2 inhibition in breast cancer. Biomed. Pharmacother., 2005, 59(Suppl. 2), S281-S284.
[http://dx.doi.org/10.1016/S0753-3322(05)80046-0] [PMID: 16507393]
[10]
Ghosh, N.; Chaki, R.; Mandal, V.; Mandal, S.C. COX-2 as a target for cancer chemotherapy. Pharmacol. Rep., 2010, 62(2), 233-244.
[http://dx.doi.org/10.1016/S1734-1140(10)70262-0] [PMID: 20508278]
[11]
Bajorath, J. Computer-aided drug discovery. F1000 Res., 2015, 4.
[http://dx.doi.org/10.12688/f1000research.6653.1]
[12]
Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering anti-cancer drugs via computational methods. Front. Pharmacol., 2020, 11, 733.
[http://dx.doi.org/10.3389/fphar.2020.00733] [PMID: 32508653]
[13]
Jayasundara, K.; Hollis, A.; Krahn, M.; Mamdani, M.; Hoch, J.S.; Grootendorst, P. Estimating the clinical cost of drug development for orphan versus non-orphan drugs. Orphanet J. Rare Dis., 2019, 14(1), 12.
[http://dx.doi.org/10.1186/s13023-018-0990-4] [PMID: 30630499]
[14]
Rifaioglu, A.S.; Atas, H.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V.; Doğan, T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform., 2019, 20(5), 1878-1912.
[http://dx.doi.org/10.1093/bib/bby061] [PMID: 30084866]
[15]
Sahu, A.; Pradhan, D.; Raza, K.; Qazi, S.; Jain, A.K.; Verma, S. In silico library design, screening and MD simulation of COX-2 inhibitors for anticancer activity. Proceedings of the 12th International Conference, 2020, 70, 21-32.
[http://dx.doi.org/10.29007/z2wx]
[16]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[17]
Sirois, J.; Sayasith, K.; Brown, K.A.; Stock, A.E.; Bouchard, N.; Doré, M. Cyclooxygenase-2 and its role in ovulation: A 2004 account. Hum. Reprod. Update, 2004, 10(5), 373-385.
[http://dx.doi.org/10.1093/humupd/dmh032] [PMID: 15205395]
[18]
Sastry, M.G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[19]
Hollingsworth, S.A.; Karplus, P.A. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol. Concepts, 2010, 1(3-4), 271-283.
[http://dx.doi.org/10.1515/bmc.2010.022] [PMID: 21436958]
[20]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[21]
Zhou, A.Q.; O’Hern, C.S.; Regan, L. Revisiting the Ramachandran plot from a new angle. Protein Sci., 2011, 20(7), 1166-1171.
[http://dx.doi.org/10.1002/pro.644] [PMID: 21538644]
[22]
Elokely, K.M.; Doerksen, R.J. Docking challenge: Protein sampling and molecular docking performance. J. Chem. Inf. Model., 2013, 53(8), 1934-1945.
[http://dx.doi.org/10.1021/ci400040d] [PMID: 23530568]
[23]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[24]
Pence, H.E.; Williams, A. ChemSpider: An online chemical information resource. J. Chem. Educ., 2010, 87(11), 1123-1124.
[http://dx.doi.org/10.1021/ed100697w]
[25]
Ayers, M. ChemSpider: The free chemical database. Ref. Rev., 2012, 26(7), 45, 46.
[http://dx.doi.org/10.1108/09504121211271059]
[26]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[27]
Kristensen, T.G.; Nielsen, J.; Pedersen, C.N.S. Methods for similarity-based virtual screening. Comput. Struct. Biotechnol. J., 2013, 5(6), e201302009.
[http://dx.doi.org/10.5936/csbj.201302009] [PMID: 24688702]
[28]
Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des., 2010, 24(6-7), 591-604.
[http://dx.doi.org/10.1007/s10822-010-9349-1] [PMID: 20354892]
[29]
Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691.
[http://dx.doi.org/10.1007/s10822-007-9133-z] [PMID: 17899391]
[30]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[31]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[32]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[33]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[34]
Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev., 2016, 101, 34-41.
[http://dx.doi.org/10.1016/j.addr.2016.04.029] [PMID: 27154268]
[35]
Norinder, U.; Bergström, C.A.S. Prediction of ADMET properties. ChemMedChem, 2006, 1(9), 920-937.
[http://dx.doi.org/10.1002/cmdc.200600155] [PMID: 16952133]
[36]
Cheng, F.; Li, W.; Liu, G.; Tang, Y. In silico ADMET prediction: Recent advances, current challenges and future trends. Curr. Top. Med. Chem., 2013, 13(11), 1273-1289.
[http://dx.doi.org/10.2174/15680266113139990033] [PMID: 23675935]
[37]
Klebe, G. The foundations of protein–ligand interaction. In: From Molecules to Medicines; Sussman, J.L.; Spadon, P., Eds.; ;
In: NATO Science for Peace and Security Series A: Chemistry and Biology; Sussman, J.L.; Spadon, P., Eds.; Springer: Dordrecht, Netherlands, 2009, pp. 79-101.
[http://dx.doi.org/10.1007/978-90-481-2339-1_6]
[38]
Kuriata, A.; Gierut, A. M.; Oleniecki, T.; Ciemny, M. P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. CABS-Flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Res., 2018, 46, W338-W343.
[http://dx.doi.org/10.1093/nar/gky356]
[39]
Fogolari, F.; Corazza, A.; Yarra, V.; Jalaru, A.; Viglino, P.; Esposito, G. Bluues: A program for the analysis of the electrostatic properties of proteins based on generalized Born radii. BMC Bioinformatics, 2012, 13(S4), S18.
[http://dx.doi.org/10.1186/1471-2105-13-S4-S18] [PMID: 22536964]
[40]
Margreitter, C.; Petrov, D.; Zagrovic, B. Vienna-PTM web server: A toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Res., 2013, 41, W422-W426.
[http://dx.doi.org/10.1093/nar/gkt416]
[41]
Sahu, A.; Patra, P.K.; Yadav, M.K.; Varma, M. Identification and characterization of ErbB4 kinase inhibitors for effective breast cancer therapy. J. Recept. Signal Transduct. Res., 2017, 37(5), 470-480.
[http://dx.doi.org/10.1080/10799893.2017.1342129] [PMID: 28670936]
[42]
Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508.
[http://dx.doi.org/10.1021/acs.chemrev.9b00055] [PMID: 31244000]
[43]
Sun, Z.; Wang, X.; Zhang, J.Z.H. Theoretical understanding of the thermodynamics and interactions in transcriptional regulator TtgR–ligand binding. Phys. Chem. Chem. Phys., 2020, 22(3), 1511-1524.
[http://dx.doi.org/10.1039/C9CP05980F] [PMID: 31872826]
[44]
Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 2013, 2(1), 353.
[http://dx.doi.org/10.1186/2193-1801-2-353] [PMID: 23961417]
[45]
Ntie-Kang, F.; Mbah, J.A.; Lifongo, L.L.; Owono Owono, L.C.; Megnassan, E.; Meva’a Mbaze, L.; Judson, P.N.; Sippl, W.; Efange, S.M.N. Assessing the pharmacokinetic profile of the CamMedNP natural products database: An in silico approach. Org. Med. Chem. Lett., 2013, 3(1), 10.
[http://dx.doi.org/10.1186/2191-2858-3-10] [PMID: 24229455]
[46]
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[47]
Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev., 2006, 26(5), 531-568.
[http://dx.doi.org/10.1002/med.20067] [PMID: 16758486]

© 2024 Bentham Science Publishers | Privacy Policy