Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Protein Tyrosine Phosphatase 1B (PTP1B): Insights

卷 22, 期 3, 2022

发表于: 11 March, 2022

页: [181 - 194] 页: 14

弟呕挨: 10.2174/1568009622666220128113400

价格: $65

摘要

在体内,酪氨酸磷酸化是一个可逆的动态过程,受蛋白酪氨酸激酶和磷酸酶的相反活性控制。这些蛋白质的缺陷或不当操作会导致酪氨酸磷酸化异常,从而导致许多人类疾病的发展,包括癌症。 PTP1B 是一种非跨膜磷酸酶,通常被认为是代谢信号通路的负调节剂,是治疗 II 型糖尿病和肥胖症的有希望的药物靶点。最近,由于其在其他疾病中的重要功能和治疗潜力,PTP1B 引起了相当大的兴趣。越来越多的研究表明,PTP1B 在癌症的发生和发展中起着至关重要的作用,并且可能成为新的癌症治疗的靶点。继上述方面的最新进展后,本综述重点关注 PTP1B 在不同类型癌症中的主要功能及其背后的潜在机制,以及 PTP1B 抑制剂在癌症治疗中的潜在药理作用。

关键词: 蛋白酪氨酸磷酸酶 (PTP)、蛋白酪氨酸磷酸酶 1B (PTP1B)、癌症、肿瘤启动子、肿瘤抑制因子、酪氨酸磷酸化。

Next »
图形摘要

[1]
Monteiro, H.P.; Arai, R.J.; Travassos, L.R. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxid. Redox Signal., 2008, 10(5), 843-889.
[http://dx.doi.org/10.1089/ars.2007.1853] [PMID: 18220476]
[2]
Lim, W.A.; Pawson, T. Phosphotyrosine signaling: Evolving a new cellular communication system. Cell, 2010, 142(5), 661-667.
[http://dx.doi.org/10.1016/j.cell.2010.08.023] [PMID: 20813250]
[3]
Sun, H.; Tonks, N.K. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem. Sci., 1994, 19(11), 480-485.
[http://dx.doi.org/10.1016/0968-0004(94)90134-1] [PMID: 7855891]
[4]
Frankson, R.; Yu, Z.H.; Bai, Y.; Li, Q.; Zhang, R.Y.; Zhang, Z.Y. Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Res., 2017, 77(21), 5701-5705.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1510] [PMID: 28855209]
[5]
Gurzov, E.N.; Stanley, W.J.; Brodnicki, T.C.; Thomas, H.E. Protein tyrosine phosphatases: Molecular switches in metabolism and diabetes. Trends Endocrinol. Metab., 2015, 26(1), 30-39.
[http://dx.doi.org/10.1016/j.tem.2014.10.004] [PMID: 25432462]
[6]
Loilome, W.; Dokduang, H. Protein kinases as targets for opisthorchis viverrini- associated cholangiocarcinoma therapy. Curr. Pharm. Des., 2017, 23(29), 4281-4289.
[http://dx.doi.org/10.2174/1381612823666170710145019] [PMID: 28699535]
[7]
Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov. Today, 2016, 21(1), 5-10.
[http://dx.doi.org/10.1016/j.drudis.2015.07.008] [PMID: 26210956]
[8]
Liu, F.T.; Li, N.G.; Zhang, Y.M.; Xie, W.C.; Yang, S.P.; Lu, T.; Shi, Z.H. Recent advance in the development of novel, selective and potent FGFR inhibitors. Eur. J. Med. Chem., 2020, 186, 111884.
[http://dx.doi.org/10.1016/j.ejmech.2019.111884] [PMID: 31761386]
[9]
Speir, M.; Nowell, C.J.; Chen, A.A.; O’Donnell, J.A.; Shamie, I.S.; Lakin, P.R.; D’Cruz, A.A.; Braun, R.O.; Babon, J.J.; Lewis, R.S.; Bliss-Moreau, M.; Shlomovitz, I.; Wang, S.; Cengia, L.H.; Stoica, A.I.; Hakem, R.; Kelliher, M.A.; O’Reilly, L.A.; Patsiouras, H.; Lawlor, K.E.; Weller, E.; Lewis, N.E.; Roberts, A.W.; Gerlic, M.; Croker, B.A. Ptpn6 inhibits caspase-8- and Ripk3/Mlkl-dependent inflammation. Nat. Immunol., 2020, 21(1), 54-64.
[http://dx.doi.org/10.1038/s41590-019-0550-7] [PMID: 31819256]
[10]
Abdollahi, P.; Kohn, M.; Borset, M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett., 2021, 501, 105-113.
[PMID: 33290866]
[11]
Tonks, N.K.; Diltz, C.D.; Fischer, E.H. Purification of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem., 1988, 263(14), 6722-6730.
[http://dx.doi.org/10.1016/S0021-9258(18)68702-2] [PMID: 2834386]
[12]
Ukkola, O.; Santaniemi, M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J. Intern. Med., 2002, 251(6), 467-475.
[http://dx.doi.org/10.1046/j.1365-2796.2002.00992.x] [PMID: 12028501]
[13]
Johnson, T.O.; Ermolieff, J.; Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov., 2002, 1(9), 696-709.
[http://dx.doi.org/10.1038/nrd895] [PMID: 12209150]
[14]
Liu, H.; Wu, Y.; Zhu, S.; Liang, W.; Wang, Z.; Wang, Y.; Lv, T.; Yao, Y.; Yuan, D.; Song, Y. PTP1B promotes cell proliferation and metastasis through activating Src and ERK1/2 in non-small cell lung cancer. Cancer Lett., 2015, 359(2), 218-225.
[http://dx.doi.org/10.1016/j.canlet.2015.01.020] [PMID: 25617799]
[15]
Wang, J.; Chen, X.; Liu, B.; Zhu, Z. Suppression of PTP1B in gastric cancer cells in vitro induces a change in the genome-wide expression profile and inhibits gastric cancer cell growth. Cell Biol. Int., 2010, 34(7), 747-753.
[http://dx.doi.org/10.1042/CBI20090447] [PMID: 20388125]
[16]
Suwaki, N.; Vanhecke, E.; Atkins, K.M.; Graf, M.; Swabey, K.; Huang, P.; Schraml, P.; Moch, H.; Cassidy, A.M.; Brewer, D.; Al-Lazikani, B.; Workman, P.; De-Bono, J.; Kaye, S.B.; Larkin, J.; Gore, M.E.; Sawyers, C.L.; Nelson, P.; Beer, T.M.; Geng, H.; Gao, L.; Qian, D.Z.; Alumkal, J.J.; Thomas, G.; Thomas, G.V. A HIF-regulated VHL-PTP1B-Src signaling axis identifies a therapeutic target in renal cell carcinoma. Sci. Transl. Med., 2011, 3(85), 85ra47.
[http://dx.doi.org/10.1126/scitranslmed.3002004] [PMID: 21632985]
[17]
Tonks, N.K. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol., 2006, 7(11), 833-846.
[http://dx.doi.org/10.1038/nrm2039] [PMID: 17057753]
[18]
Brown-Shimer, S.; Johnson, K.A.; Lawrence, J.B.; Johnson, C.; Bruskin, A.; Green, N.R.; Hill, D.E. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B. Proc. Natl. Acad. Sci. USA, 1990, 87(13), 5148-5152.
[http://dx.doi.org/10.1073/pnas.87.13.5148] [PMID: 2164224]
[19]
Anderie, I.; Schulz, I.; Schmid, A. Characterization of the C-terminal ER membrane anchor of PTP1B. Exp. Cell Res., 2007, 313(15), 3189-3197.
[http://dx.doi.org/10.1016/j.yexcr.2007.05.025] [PMID: 17643420]
[20]
Frangioni, J.V.; Beahm, P.H.; Shifrin, V.; Jost, C.A.; Neel, B.G. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell, 1992, 68(3), 545-560.
[http://dx.doi.org/10.1016/0092-8674(92)90190-N] [PMID: 1739967]
[21]
Liu, F.; Hill, D.E.; Chernoff, J. Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). J. Biol. Chem., 1996, 271(49), 31290-31295.
[http://dx.doi.org/10.1074/jbc.271.49.31290] [PMID: 8940134]
[22]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[23]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[24]
Liu, S.; Liu, G.; Yi, Y. Novel vanadyl complexes of alginate saccharides: Synthesis, characterization, and biological activities. Carbohydr. Polym., 2015, 121, 86-91.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.069] [PMID: 25659675]
[25]
Zhou, L.; Yi, Y.; Yuan, Q.; Zhang, J.; Li, Y.; Wang, P.; Xu, M.; Xie, S. VAOS, a novel vanadyl complexes of alginate saccharides, inducing apoptosis via activation of AKT-dependent ROS production in NSCLC. Free Radic. Biol. Med., 2018, 129, 177-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.016] [PMID: 30223019]
[26]
Han, Q.; Cheng, P.; Yang, H.; Liang, H.; Lin, F. miR-146b reverses epithelial-mesenchymal transition via targeting PTP1B in cisplatin-resistance human lung adenocarcinoma cells. J. Cell. Biochem., 2019. [Online ahead of print
[PMID: 31709623]
[27]
Rustgi, A.K.; El-Serag, H.B. Esophageal carcinoma. N. Engl. J. Med., 2014, 371(26), 2499-2509.
[http://dx.doi.org/10.1056/NEJMra1314530] [PMID: 25539106]
[28]
Abnet, C.C.; Arnold, M.; Wei, W.Q. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology, 2018, 154(2), 360-373.
[http://dx.doi.org/10.1053/j.gastro.2017.08.023] [PMID: 28823862]
[29]
Warabi, M.; Nemoto, T.; Ohashi, K.; Kitagawa, M.; Hirokawa, K. Expression of protein tyrosine phosphatases and its significance in esophageal cancer. Exp. Mol. Pathol., 2000, 68(3), 187-195.
[http://dx.doi.org/10.1006/exmp.2000.2303] [PMID: 10816386]
[30]
Wang, X.M.; Shang, L.; Zhang, Y.; Hao, J.J.; Shi, F.; Luo, W.; Zhang, T.T.; Wang, B.S.; Yang, Y.; Liu, Z.H.; Zhan, Q.M.; Wang, M.R. PTP1B contributes to calreticulin-induced metastatic phenotypes in esophageal squamous cell carcinoma. Mol. Cancer Res., 2013, 11(9), 986-994.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0704] [PMID: 23814025]
[31]
Pan, B.Q.; Xie, Z.H.; Hao, J.J.; Zhang, Y.; Xu, X.; Cai, Y.; Wang, M.R. PTP1B up-regulates EGFR expression by dephosphorylating MYH9 at Y1408 to promote cell migration and invasion in esophageal squamous cell carcinoma. Biochem. Biophys. Res. Commun., 2020, 522(1), 53-60.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.168] [PMID: 31735331]
[32]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[33]
Wang, J.; Liu, B.; Chen, X.; Su, L.; Wu, P.; Wu, J.; Zhu, Z. PTP1B expression contributes to gastric cancer progression. Med. Oncol., 2012, 29(2), 948-956.
[http://dx.doi.org/10.1007/s12032-011-9911-2] [PMID: 21442314]
[34]
Wang, N.; She, J.; Liu, W.; Shi, J.; Yang, Q.; Shi, B.; Hou, P. Frequent amplification of PTP1B is associated with poor survival of gastric cancer patients. Cell Cycle, 2015, 14(5), 732-743.
[http://dx.doi.org/10.1080/15384101.2014.998047] [PMID: 25590580]
[35]
Sun, F.; Yu, M.; Yu, J.; Liu, Z.; Zhou, X.; Liu, Y.; Ge, X.; Gao, H.; Li, M.; Jiang, X.; Liu, S.; Chen, X.; Guan, W. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis., 2018, 9(5), 522.
[http://dx.doi.org/10.1038/s41419-018-0611-0] [PMID: 29743567]
[36]
Xu, J.; Zhang, Z.; Chen, Q.; Yang, L.; Yin, J. miR-146b regulates cell proliferation and apoptosis in gastric cancer by targeting PTP1B. Dig. Dis. Sci., 2020, 65(2), 457-463.
[PMID: 31441000]
[37]
Yang, S.H.; Seo, M.Y.; Jeong, H.J.; Jeung, H.C.; Shin, J.; Kim, S.C.; Noh, S.H.; Chung, H.C.; Rha, S.Y. Gene copy number change events at chromosome 20 and their association with recurrence in gastric cancer patients. Clin. Cancer Res., 2005, 11(2 Pt 1), 612-620.
[PMID: 15701848]
[38]
Chen, Q.; Li, Y.; Li, Z.; Zhao, Q.; Fan, L. Overexpression of PTP1B in human colorectal cancer and its association with tumor progression and prognosis. J. Mol. Histol., 2014, 45(2), 153-159.
[http://dx.doi.org/10.1007/s10735-013-9536-1] [PMID: 23990346]
[39]
Zhu, S.; Bjorge, J.D.; Fujita, D.J. PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res., 2007, 67(21), 10129-10137.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4338] [PMID: 17974954]
[40]
Hoekstra, E.; Das, A.M.; Swets, M.; Cao, W.; van der Woude, C.J.; Bruno, M.J.; Peppelenbosch, M.P.; Kuppen, P.J.; Ten Hagen, T.L.; Fuhler, G.M. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome. Oncotarget, 2016, 7(16), 21922-21938.
[http://dx.doi.org/10.18632/oncotarget.7829] [PMID: 26942883]
[41]
Owens, D.K.; Davidson, K.W.; Krist, A.H.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Curry, S.J.; Doubeni, C.A.; Epling, J.W., Jr; Kubik, M.; Landefeld, C.S.; Mangione, C.M.; Pbert, L.; Silverstein, M.; Simon, M.A.; Tseng, C.W.; Wong, J.B.; Wong, J.B. US Preventive Services Task Force. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement. JAMA, 2019, 322(5), 438-444.
[http://dx.doi.org/10.1001/jama.2019.10232] [PMID: 31386141]
[42]
Mahlamäki, E.H.; Bärlund, M.; Tanner, M.; Gorunova, L.; Höglund, M.; Karhu, R.; Kallioniemi, A. Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes Cancer, 2002, 35(4), 353-358.
[http://dx.doi.org/10.1002/gcc.10122] [PMID: 12378529]
[43]
Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol., 2019, 10(1), 10-27.
[http://dx.doi.org/10.14740/wjon1166] [PMID: 30834048]
[44]
Xu, Q.; Wu, N.; Li, X.; Guo, C.; Li, C.; Jiang, B.; Wang, H.; Shi, D. Inhibition of PTP1B blocks pancreatic cancer progression by targeting the PKM2/AMPK/mTOC1 pathway. Cell Death Dis., 2019, 10(12), 874.
[http://dx.doi.org/10.1038/s41419-019-2073-4] [PMID: 31745071]
[45]
Carmona, S.; Brunel, J.M.; Bonier, R.; Sbarra, V.; Robert, S.; Borentain, P.; Lombardo, D.; Mas, E.; Gerolami, R. A squalamine derivative, NV669, as a novel PTP1B inhibitor: in vitro and in vivo effects on pancreatic and hepatic tumor growth. Oncotarget, 2019, 10(62), 6651-6667.
[http://dx.doi.org/10.18632/oncotarget.27286] [PMID: 31803360]
[46]
Singal, A.G.; Lampertico, P.; Nahon, P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J. Hepatol., 2020, 72(2), 250-261.
[http://dx.doi.org/10.1016/j.jhep.2019.08.025] [PMID: 31954490]
[47]
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[48]
Zheng, L.Y.; Zhou, D.X.; Lu, J.; Zhang, W.J.; Zou, D.J. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2012, 420(3), 680-684.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.066] [PMID: 22450318]
[49]
Tai, W.T.; Chen, Y.L.; Chu, P.Y.; Chen, L.J.; Hung, M.H.; Shiau, C.W.; Huang, J.W.; Tsai, M.H.; Chen, K.F. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology, 2016, 63(5), 1528-1543.
[http://dx.doi.org/10.1002/hep.28478] [PMID: 26840794]
[50]
Yang, Q.; Zhang, L.; Zhong, Y.; Lai, L.; Li, X. miR-206 inhibits cell proliferation, invasion, and migration by down-regulating PTP1B in hepatocellular carcinoma. Biosci. Rep., 2019, 39(5), BSR20181823.
[http://dx.doi.org/10.1042/BSR20181823] [PMID: 31048362]
[51]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[52]
Dalgliesh, G.L.; Furge, K.; Greenman, C.; Chen, L.; Bignell, G.; Butler, A.; Davies, H.; Edkins, S.; Hardy, C.; Latimer, C.; Teague, J.; Andrews, J.; Barthorpe, S.; Beare, D.; Buck, G.; Campbell, P.J.; Forbes, S.; Jia, M.; Jones, D.; Knott, H.; Kok, C.Y.; Lau, K.W.; Leroy, C.; Lin, M.L.; McBride, D.J.; Maddison, M.; Maguire, S.; McLay, K.; Menzies, A.; Mironenko, T.; Mulderrig, L.; Mudie, L.; O’Meara, S.; Pleasance, E.; Rajasingham, A.; Shepherd, R.; Smith, R.; Stebbings, L.; Stephens, P.; Tang, G.; Tarpey, P.S.; Turrell, K.; Dykema, K.J.; Khoo, S.K.; Petillo, D.; Wondergem, B.; Anema, J.; Kahnoski, R.J.; Teh, B.T.; Stratton, M.R.; Futreal, P.A. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 2010, 463(7279), 360-363.
[http://dx.doi.org/10.1038/nature08672] [PMID: 20054297]
[53]
Liu, X.; Chen, Q.; Hu, X.G.; Zhang, X.C.; Fu, T.W.; Liu, Q.; Liang, Y.; Zhao, X.L.; Zhang, X.; Ping, Y.F.; Bian, X.W. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT. Tumour Biol., 2016, 37(10), 13479-13487.
[http://dx.doi.org/10.1007/s13277-016-5245-1] [PMID: 27465552]
[54]
Liao, S.C.; Li, J.X.; Yu, L.; Sun, S.R. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. J. Zhejiang Univ. Sci. B, 2017, 18(4), 334-342.
[http://dx.doi.org/10.1631/jzus.B1600184] [PMID: 28378571]
[55]
Wiener, J.R.; Kerns, B.J.; Harvey, E.L.; Conaway, M.R.; Iglehart, J.D.; Berchuck, A.; Bast, R.C., Jr Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. J. Natl. Cancer Inst., 1994, 86(5), 372-378.
[http://dx.doi.org/10.1093/jnci/86.5.372] [PMID: 7905928]
[56]
Yu, M.; Liu, Z.; Liu, Y.; Zhou, X.; Sun, F.; Liu, Y.; Li, L.; Hua, S.; Zhao, Y.; Gao, H.; Zhu, Z.; Na, M.; Zhang, Q.; Yang, R.; Zhang, J.; Yao, Y.; Chen, X. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J., 2019, 286(6), 1136-1153.
[http://dx.doi.org/10.1111/febs.14724] [PMID: 30548198]
[57]
Li, Y.; Zeng, Q.; Qiu, J.; Pang, T.; Xian, J.; Zhang, X. Long non-coding RNA UCA1 promotes breast cancer by upregulating PTP1B expression via inhibiting miR-206. Cancer Cell Int., 2019, 19, 275.
[http://dx.doi.org/10.1186/s12935-019-0958-z] [PMID: 31695578]
[58]
Julien, S.G.; Dubé, N.; Read, M.; Penney, J.; Paquet, M.; Han, Y.; Kennedy, B.P.; Muller, W.J.; Tremblay, M.L. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat. Genet., 2007, 39(3), 338-346.
[http://dx.doi.org/10.1038/ng1963] [PMID: 17259984]
[59]
Balavenkatraman, K.K.; Aceto, N.; Britschgi, A.; Mueller, U.; Bence, K.K.; Neel, B.G.; Bentires-Alj, M. Epithelial protein-tyrosine phosphatase 1B contributes to the induction of mammary tumors by HER2/Neu but is not essential for tumor maintenance. Mol. Cancer Res., 2011, 9(10), 1377-1384.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0198] [PMID: 21849469]
[60]
Bentires-Alj, M.; Neel, B.G. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res., 2007, 67(6), 2420-2424.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4610] [PMID: 17347513]
[61]
Banh, R.S.; Iorio, C.; Marcotte, R.; Xu, Y.; Cojocari, D.; Rahman, A.A.; Pawling, J.; Zhang, W.; Sinha, A.; Rose, C.M.; Isasa, M.; Zhang, S.; Wu, R.; Virtanen, C.; Hitomi, T.; Habu, T.; Sidhu, S.S.; Koizumi, A.; Wilkins, S.E.; Kislinger, T.; Gygi, S.P.; Schofield, C.J.; Dennis, J.W.; Wouters, B.G.; Neel, B.G. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat. Cell Biol., 2016, 18(7), 803-813.
[http://dx.doi.org/10.1038/ncb3376] [PMID: 27323329]
[62]
Blanquart, C.; Karouri, S.E.; Issad, T. Protein tyrosine phosphatase-1B and T-cell protein tyrosine phosphatase regulate IGF-2-induced MCF-7 cell migration. Biochem. Biophys. Res. Commun., 2010, 392(1), 83-88.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.176] [PMID: 20059965]
[63]
Blanquart, C.; Karouri, S.E.; Issad, T. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen. Biochem. Biophys. Res. Commun., 2009, 387(4), 748-753.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.105] [PMID: 19635455]
[64]
Arias-Romero, L.E.; Saha, S.; Villamar-Cruz, O.; Yip, S.C.; Ethier, S.P.; Zhang, Z.Y.; Chernoff, J. Activation of Src by protein tyrosine phosphatase 1B Is required for ErbB2 transformation of human breast epithelial cells. Cancer Res., 2009, 69(11), 4582-4588.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4001] [PMID: 19435911]
[65]
Bjorge, J.D.; Pang, A.; Fujita, D.J. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem., 2000, 275(52), 41439-41446.
[http://dx.doi.org/10.1074/jbc.M004852200] [PMID: 11007774]
[66]
Cortesio, C.L.; Chan, K.T.; Perrin, B.J.; Burton, N.O.; Zhang, S.; Zhang, Z-Y.; Huttenlocher, A. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol., 2008, 180(5), 957-971.
[http://dx.doi.org/10.1083/jcb.200708048] [PMID: 18332219]
[67]
Johnson, K.J.; Peck, A.R.; Liu, C.; Tran, T.H.; Utama, F.E.; Sjolund, A.B.; Schaber, J.D.; Witkiewicz, A.K.; Rui, H. PTP1B suppresses prolactin activation of Stat5 in breast cancer cells. Am. J. Pathol., 2010, 177(6), 2971-2983.
[http://dx.doi.org/10.2353/ajpath.2010.090399] [PMID: 20952588]
[68]
Yuan, C.; Wang, W.; Wang, J.; Li, X.; Wu, Y.B.; Li, S.; Lu, L.; Zhu, M.; Xing, S.; Fu, X. Potent and selective PTP1B inhibition by a platinum(ii) complex: Possible implications for a new antitumor strategy. Chem. Commun. (Camb.), 2019, 56(1), 102-105.
[http://dx.doi.org/10.1039/C9CC06972K] [PMID: 31793564]
[69]
Kuban-Jankowska, A.; Gorska-Ponikowska, M.; Sahu, K.K.; Kostrzewa, T.; Wozniak, M.; Tuszynski, J. Docosahexaenoic acid inhibits PTP1B phosphatase and the viability of MCF-7 breast cancer cells. Nutrients, 2019, 11(11), E2554.
[http://dx.doi.org/10.3390/nu11112554] [PMID: 31652764]
[70]
Soysal, S.; Obermann, E.C.; Gao, F.; Oertli, D.; Gillanders, W.E.; Viehl, C.T.; Muenst, S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res. Treat., 2013, 137(2), 637-644.
[http://dx.doi.org/10.1007/s10549-012-2373-1] [PMID: 23242616]
[71]
Hughes, S.K.; Oudin, M.J.; Tadros, J.; Neil, J.; Del Rosario, A.; Joughin, B.A.; Ritsma, L.; Wyckoff, J.; Vasile, E.; Eddy, R.; Philippar, U.; Lussiez, A.; Condeelis, J.S.; van Rheenen, J.; White, F.; Lauffenburger, D.A.; Gertler, F.B. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena. Mol. Biol. Cell, 2015, 26(21), 3867-3878.
[http://dx.doi.org/10.1091/mbc.E15-06-0442] [PMID: 26337385]
[72]
Taliaferro-Smith, L.; Nagalingam, A.; Knight, B.B.; Oberlick, E.; Saxena, N.K.; Sharma, D. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia, 2013, 15(1), 23-38.
[http://dx.doi.org/10.1593/neo.121502] [PMID: 23358729]
[73]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[74]
Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med., 2017, 14(1), 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[75]
Carlson, K.J.; Skates, S.J.; Singer, D.E. Screening for ovarian cancer. Ann. Intern. Med., 1994, 121(2), 124-132.
[http://dx.doi.org/10.7326/0003-4819-121-2-199407150-00009] [PMID: 8017726]
[76]
Fan, G.; Lin, G.; Lucito, R.; Tonks, N.K. Protein-tyrosine phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J. Biol. Chem., 2013, 288(34), 24923-24934.
[http://dx.doi.org/10.1074/jbc.M113.482737] [PMID: 23814047]
[77]
Fang, X.; Schummer, M.; Mao, M.; Yu, S.; Tabassam, F.H.; Swaby, R.; Hasegawa, Y.; Tanyi, J.L.; LaPushin, R.; Eder, A.; Jaffe, R.; Erickson, J.; Mills, G.B. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim. Biophys. Acta, 2002, 1582(1-3), 257-264.
[http://dx.doi.org/10.1016/S1388-1981(02)00179-8] [PMID: 12069836]
[78]
Huang, R.Y.; Wen, C.C.; Liao, C.K.; Wang, S.H.; Chou, L.Y.; Wu, J.C. Lysophosphatidic acid modulates the association of PTP1B with N-cadherin/catenin complex in SKOV3 ovarian cancer cells. Cell Biol. Int., 2012, 36(9), 833-841.
[http://dx.doi.org/10.1042/CBI20110687] [PMID: 22582758]
[79]
Wang, W.; Cao, Y.; Zhou, X.; Wei, B.; Zhang, Y.; Liu, X. PTP1B promotes the malignancy of ovarian cancer cells in a JNK-dependent mechanism. Biochem. Biophys. Res. Commun., 2018, 503(2), 903-909.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.094] [PMID: 29928877]
[80]
Wiener, J.R.; Hurteau, J.A.; Kerns, B.J.; Whitaker, R.S.; Conaway, M.R.; Berchuck, A.; Bast, R.C., Jr Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. Am. J. Obstet. Gynecol., 1994, 170(4), 1177-1183.
[http://dx.doi.org/10.1016/S0002-9378(94)70118-0] [PMID: 8166206]
[81]
Pariza, M.W.; Ha, Y.L. Conjugated dienoic derivatives of linoleic acid: A new class of anticarcinogens. Med. Oncol. Tumor Pharmacother., 1990, 7(2-3), 169-171.
[http://dx.doi.org/10.1007/BF02988544] [PMID: 2232933]
[82]
Shahzad, M.M.K.; Felder, M.; Ludwig, K.; Van Galder, H.R.; Anderson, M.L.; Kim, J.; Cook, M.E.; Kapur, A.K.; Patankar, M.S. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src. PLoS One, 2018, 13(1), e0189524.
[http://dx.doi.org/10.1371/journal.pone.0189524] [PMID: 29324748]
[83]
Lessard, L.; Labbé, D.P.; Deblois, G.; Bégin, L.R.; Hardy, S.; Mes-Masson, A.M.; Saad, F.; Trotman, L.C.; Giguère, V.; Tremblay, M.L. PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer. Cancer Res., 2012, 72(6), 1529-1537.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2602] [PMID: 22282656]
[84]
Bar-Shira, A.; Pinthus, J.H.; Rozovsky, U.; Goldstein, M.; Sellers, W.R.; Yaron, Y.; Eshhar, Z.; Orr-Urtreger, A. Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res., 2002, 62(23), 6803-6807.
[PMID: 12460888]
[85]
Wu, C.; Zhang, L.; Bourne, P.A.; Reeder, J.E.; di Sant’Agnese, P.A.; Yao, J.L.; Na, Y.; Huang, J. Protein tyrosine phosphatase PTP1B is involved in neuroendocrine differentiation of prostate cancer. Prostate, 2006, 66(11), 1125-1135.
[http://dx.doi.org/10.1002/pros.20412] [PMID: 16652382]
[86]
Labbé, D.P.; Uetani, N.; Vinette, V.; Lessard, L.; Aubry, I.; Migon, E.; Sirois, J.; Haigh, J.J.; Bégin, L.R.; Trotman, L.C.; Paquet, M.; Tremblay, M.L. PTP1B deficiency enables the ability of a high-fat diet to drive the invasive character of PTEN-deficient prostate cancers. Cancer Res., 2016, 76(11), 3130-3135.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1501] [PMID: 27020859]
[87]
Lee, Y-J.; Song, H.; Yoon, Y.J.; Park, S-J.; Kim, S-Y.; Cho Han, D.; Kwon, B-M. Ethacrynic acid inhibits STAT3 activity through the modulation of SHP2 and PTP1B tyrosine phosphatases in DU145 prostate carcinoma cells. Biochem. Pharmacol., 2020, 175, 113920.
[http://dx.doi.org/10.1016/j.bcp.2020.113920] [PMID: 32201212]
[88]
Mugnaini, E.N.; Ghosh, N. Lymphoma. Prim. Care, 2016, 43(4), 661-675.
[http://dx.doi.org/10.1016/j.pop.2016.07.012] [PMID: 27866584]
[89]
Chung, C. Current targeted therapies in lymphomas. American journal of health-system pharmacy: AJHP, 2019, 76(22), 1825-1834.
[90]
Lu, X.; Malumbres, R.; Shields, B.; Jiang, X.; Sarosiek, K.A.; Natkunam, Y.; Tiganis, T.; Lossos, I.S. PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood, 2008, 112(10), 4098-4108.
[http://dx.doi.org/10.1182/blood-2008-03-148726] [PMID: 18716132]
[91]
Zahn, M.; Marienfeld, R.; Melzner, I.; Heinrich, J.; Renner, B.; Wegener, S.; Mießner, A.; Barth, T.F.; Dorsch, K.; Brüderlein, S.; Möller, P. A novel PTPN1 splice variant upregulates JAK/STAT activity in classical Hodgkin lymphoma cells. Blood, 2017, 129(11), 1480-1490.
[http://dx.doi.org/10.1182/blood-2016-06-720516] [PMID: 28082443]
[92]
Gunawardana, J.; Chan, F.C.; Telenius, A.; Woolcock, B.; Kridel, R.; Tan, K.L.; Ben-Neriah, S.; Mottok, A.; Lim, R.S.; Boyle, M.; Rogic, S.; Rimsza, L.M.; Guiter, C.; Leroy, K.; Gaulard, P.; Haioun, C.; Marra, M.A.; Savage, K.J.; Connors, J.M.; Shah, S.P.; Gascoyne, R.D.; Steidl, C. Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat. Genet., 2014, 46(4), 329-335.
[http://dx.doi.org/10.1038/ng.2900] [PMID: 24531327]
[93]
Dubé, N.; Bourdeau, A.; Heinonen, K.M.; Cheng, A.; Loy, A.L.; Tremblay, M.L. Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development. Cancer Res., 2005, 65(21), 10088-10095.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1353] [PMID: 16267035]
[94]
Jacks, T.; Remington, L.; Williams, B.O.; Schmitt, E.M.; Halachmi, S.; Bronson, R.T.; Weinberg, R.A. Tumor spectrum analysis in p53-mutant mice. Curr. Biol., 1994, 4(1), 1-7.
[http://dx.doi.org/10.1016/S0960-9822(00)00002-6] [PMID: 7922305]
[95]
Zhu, F.; Wang, K.B.; Rui, L. STAT3 activation and oncogenesis in lymphoma. Cancers (Basel), 2019, 12(1), E19.
[http://dx.doi.org/10.3390/cancers12010019] [PMID: 31861597]
[96]
Vainchenker, W.; Constantinescu, S.N. JAK/STAT signaling in hematological malignancies. Oncogene, 2013, 32(21), 2601-2613.
[http://dx.doi.org/10.1038/onc.2012.347] [PMID: 22869151]
[97]
Waldmann, T.A.; Chen, J. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu. Rev. Immunol., 2017, 35, 533-550.
[http://dx.doi.org/10.1146/annurev-immunol-110416-120628] [PMID: 28182501]
[98]
Zhao, B.; Zhang, Z.; Chen, X.; Shen, Y.; Qin, Y.; Yang, X.; Xing, Z.; Zhang, S.; Long, X.; Zhang, Y.; An, S.; Wu, H.; Qi, Y. The important roles of protein SUMOylation in the occurrence and development of leukemia and clinical implications. J. Cell. Physiol., 2020, 236(5), 3466-3480.
[PMID: 33151565]
[99]
Blackburn, L.M.; Bender, S.; Brown, S. Acute leukemia: Diagnosis and treatment. Semin. Oncol. Nurs., 2019, 35(6), 150950.
[http://dx.doi.org/10.1016/j.soncn.2019.150950] [PMID: 31757585]
[100]
Le Sommer, S.; Morrice, N.; Pesaresi, M.; Thompson, D.; Vickers, M.A.; Murray, G.I.; Mody, N.; Neel, B.G.; Bence, K.K.; Wilson, H.M.; Delibegović, M. Deficiency in protein tyrosine phosphatase PTP1B shortens lifespan and leads to development of acute leukemia. Cancer Res., 2018, 78(1), 75-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0946] [PMID: 29122767]
[101]
LaMontagne, K.R., Jr; Flint, A.J.; Franza, B.R., Jr; Pandergast, A.M.; Tonks, N.K. Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 BCR-ABL in vivo. Mol. Cell. Biol., 1998, 18(5), 2965-2975.
[http://dx.doi.org/10.1128/MCB.18.5.2965] [PMID: 9566916]
[102]
LaMontagne, K.R., Jr; Hannon, G.; Tonks, N.K. Protein tyrosine phosphatase PTP1B suppresses p210 BCR-ABL-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells. Proc. Natl. Acad. Sci. USA, 1998, 95(24), 14094-14099.
[http://dx.doi.org/10.1073/pnas.95.24.14094] [PMID: 9826659]
[103]
Goldman, J.M.; Melo, J.V. BCR-ABL in chronic myelogenous leukemia-how does it work? Acta Haematol., 2008, 119(4), 212-217.
[http://dx.doi.org/10.1159/000140633] [PMID: 18566539]
[104]
Koyama, N.; Koschmieder, S.; Tyagi, S.; Portero-Robles, I.; Chromic, J.; Myloch, S.; Nürnberger, H.; Rossmanith, T.; Hofmann, W.K.; Hoelzer, D.; Ottmann, O.G. Inhibition of phosphotyrosine phosphatase 1B causes resistance in BCR-ABL-positive leukemia cells to the ABL kinase inhibitor STI571. Clin. Cancer Res., 2006, 12(7 Pt 1), 2025-2031.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2392] [PMID: 16609011]
[105]
Alvira, D.; Naughton, R.; Bhatt, L.; Tedesco, S.; Landry, W.D.; Cotter, T.G. Inhibition of protein-tyrosine phosphatase 1B (PTP1B) mediates ubiquitination and degradation of BCR-ABL protein. J. Biol. Chem., 2011, 286(37), 32313-32323.
[http://dx.doi.org/10.1074/jbc.M111.249060] [PMID: 21795709]
[106]
Elgehama, A.; Chen, W.; Pang, J.; Mi, S.; Li, J.; Guo, W.; Wang, X.; Gao, J.; Yu, B.; Shen, Y.; Xu, Q. Blockade of the interaction between BCR-ABL and PTB1B by small molecule SBF-1 to overcome imatinib-resistance of chronic myeloid leukemia cells. Cancer Lett., 2016, 372(1), 82-88.
[http://dx.doi.org/10.1016/j.canlet.2015.12.014] [PMID: 26721204]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy