Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

Protective Effect of Panax Notoginseng Saponins on Apolipoprotein-E-deficient Atherosclerosis-prone Mice

Author(s): He Yang, Zuodong Liu, Xiangka Hu, Xiaojuan Liu, Liuming Gui, Zengxiaorui Cai and Chunmei Dai*

Volume 28, Issue 8, 2022

Published on: 08 March, 2022

Page: [671 - 677] Pages: 7

DOI: 10.2174/1381612828666220128104636

Price: $65

Abstract

Background: It is widely recognized that atherosclerosis (AS) is related to vascular inflammation. Panax notoginseng saponins (PNS) extracted from the roots of Panax notoginseng have been shown to possess anti-inflammatory activity. It is widely used in the clinical treatment of cardiovascular and cerebrovascular diseases, but the protective effect of PNS on atherosclerosis is not fully understood. This study was designed to test the effects of PNS administration in apolipoprotein (apo)-E-deficient (ApoE-/-) mice on the activation of NF-κB p65, IL-1β, IL-6, TNF-α and Calpain1 proteins.

Methods: 24 ApoE-/- mice fed with high-fat diet for 8 weeks to create the AS model. PNS, dissolved in three distilled water, was administered orally to two treatment groups at dosages of 60 mg/kg/d/mice and 180 mg/kg/d/mice. After 8 weeks, peripheral blood was collected for assessing the levels of TG, TC, LDL-C and HDL-C in serum by Biochemical Analyzer. HE staining was used to observe pathomorphological changes in the aortic root. Oil Red O staining was used to observe the lipid deposition in the aortic root. ELISA kits were used to assess the levels of IL-1β and TNF-α in serum. The expression levels of NF-κB p65, IL-1β, IL-6, TNF-α, and Calpain1 proteins in the aortic root were identified by Western blot.

Results: After PNS administration for 8 weeks, the levels of TG, TC, LDL-C, IL-1β and TNF-α were decreased, the level of HDL-C was increased in apoE-/- mice. The arrangement of the tissue of aortic root tended to be normal, the cell morphology was restored, and the lipid depositions were reduced in apoE-/- mice treated with PNS. Moreover, PNS inhibited the expression levels of NF-κB p65, IL-6, IL-1β, TNF-α and Calpain1 proteins of aortic root tissues in apoE-/- mice.

Conclusion: PNS may inhibit the progression of atherosclerotic lesions via their anti-inflammatory biological property. PNS suppress the NF-κB signaling pathway and inhibits the expression of pro-inflammatory factors such as NF-κB p65, IL-6, IL-1β, TNF-α and Calpain1 proteins in aortic root tissues of apoE-/- mice.

Keywords: Atherosclerosis, Panax notoginseng saponins, Apolipoprotein(apo)-E-deficient mice, Inflammatory cytokines, Nuclear factor kappa B, dyslipidaemia.

« Previous
[1]
Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol 2018; 15(4): 215-29.
[http://dx.doi.org/10.1038/nrcardio.2017.189] [PMID: 29213140]
[2]
Sasaki N, Toyoda M. Vascular diseases and gangliosides. Int J Mol Sci 2019; 20(24): 6362.
[http://dx.doi.org/10.3390/ijms20246362] [PMID: 31861196]
[3]
Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and atherosclerosis. Arch Med Res 2015; 46(5): 408-26.
[http://dx.doi.org/10.1016/j.arcmed.2015.05.010] [PMID: 26031780]
[4]
Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res 2019; 124(2): 315-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313591] [PMID: 30653442]
[5]
Quevedo-Abeledo JC, Rúa-Figueroa Í, Sánchez-Pérez H, et al. Comparable effects of traditional cardiovascular risk factors on subclinical atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis. Clin Exp Rheumatol 2020; 38(5): 917-24.
[PMID: 31969232]
[6]
Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018; 8(3): 80.
[http://dx.doi.org/10.3390/biom8030080] [PMID: 30142970]
[7]
Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond) 2018; 132(12): 1243-52.
[http://dx.doi.org/10.1042/CS20180306] [PMID: 29930142]
[8]
Pedro-Botet J, Climent E, Benaiges D. Atherosclerosis and inflammation. New therapeutic approaches. Med Clin (Barc) 2020; 155(6): 256-62.
[http://dx.doi.org/10.1016/j.medcli.2020.04.024] [PMID: 32571617]
[9]
Raggi P, Genest J, Giles JT, et al. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018; 276: 98-108.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.07.014] [PMID: 30055326]
[10]
Vrablík M, Tůmová E. Atherosclerosis and beta-blockade: A forgotten option? Vnitr Lek 2020; 65(12): 795-801.
[http://dx.doi.org/10.36290/vnl.2019.138] [PMID: 32013523]
[11]
Okuyama H, Langsjoen PH, Hamazaki T, et al. Statins stimulate atherosclerosis and heart failure: pharmacological mechanisms. Expert Rev Clin Pharmacol 2015; 8(2): 189-99.
[http://dx.doi.org/10.1586/17512433.2015.1011125] [PMID: 25655639]
[12]
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and atherosclerosis: Mechanistic aspects. Biomolecules 2019; 9(8): 301.
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[13]
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161105263
[http://dx.doi.org/10.1016/j.phrs.2020.105263] [PMID: 33127555]
[14]
Zhang YG, Zhang HG, Zhang GY, et al. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profile and an anti-inflammatory action. Clin Exp Pharmacol Physiol 2008; 35(10): 1238-44.
[http://dx.doi.org/10.1111/j.1440-1681.2008.04997.x] [PMID: 18637019]
[15]
Hu S, Liu T, Wu Y, et al. Panax notoginseng saponins suppress lipopolysaccharide-induced barrier disruption and monocyte adhesion on bEnd.3 cells via the opposite modulation of Nrf2 antioxidant and NF-κB inflammatory pathways. Phytother Res 2019; 33(12): 3163-76.
[http://dx.doi.org/10.1002/ptr.6488] [PMID: 31468630]
[16]
Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2019; 51(2): 165-76.
[http://dx.doi.org/10.1016/j.pathol.2018.11.002] [PMID: 30598326]
[17]
Qiao Y, Zhang PJ, Lu XT, et al. Panax notoginseng saponins inhibits atherosclerotic plaque angiogenesis by down-regulating vascular endothelial growth factor and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 expression. Chin J Integr Med 2015; 21(4): 259-65.
[http://dx.doi.org/10.1007/s11655-014-1832-4] [PMID: 24599820]
[18]
Liu C, Feng R, Zou J, Xia F, Wan JB. 20(S)-Protopanaxadiol saponins mainly contribute to the anti-atherogenic effects of Panax notoginseng in ApoE deficient mice. Molecules 2019; 24(20): 3723.
[http://dx.doi.org/10.3390/molecules24203723] [PMID: 31623159]
[19]
Marais AD. Apolipoprotein E and atherosclerosis. Curr Atheroscler Rep 2021; 23(7): 34.
[http://dx.doi.org/10.1007/s11883-021-00933-4] [PMID: 33970359]
[20]
Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis 2014; 72(Pt A): 3-12.
[http://dx.doi.org/10.1016/j.nbd.2014.08.025] [PMID: 25173806]
[21]
Su L, Zhang Q, Bao H, et al. Effect of dalteparin on atherosclerotic lesion formation in apolipoprotein E-deficient mice. Clin Appl Thromb Hemost 2015; 21(3): 266-72.
[http://dx.doi.org/10.1177/1076029613499818] [PMID: 23965336]
[22]
Peng J, Luo F, Ruan G, Peng R, Li X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis 2017; 16(1): 233.
[http://dx.doi.org/10.1186/s12944-017-0625-0] [PMID: 29212549]
[23]
Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep 2016; 18(12): 82.
[http://dx.doi.org/10.1007/s11883-016-0632-z] [PMID: 27822682]
[24]
Boua PR, Brandenburg JT, Choudhury A, et al. Novel and known gene-smoking interactions with cIMT identified as potential drivers for atherosclerosis risk in West-African populations of the AWI-Gen study. Front Genet 2020; 10: 1354.
[http://dx.doi.org/10.3389/fgene.2019.01354] [PMID: 32117412]
[25]
Ben-Aicha S, Badimon L, Vilahur G. Advances in HDL: Much more than lipid transporters. Int J Mol Sci 2020; 21(3): 732.
[http://dx.doi.org/10.3390/ijms21030732] [PMID: 31979129]
[26]
Pirillo A, Catapano AL, Norata GD. Biological consequences of dysfunctional HDL. Curr Med Chem 2019; 26(9): 1644-64.
[http://dx.doi.org/10.2174/0929867325666180530110543] [PMID: 29848265]
[27]
Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J. Panax notoginseng saponins for treating coronary artery disease: A functional and mechanistic overview. Front Pharmacol 2017; 8: 702.
[http://dx.doi.org/10.3389/fphar.2017.00702] [PMID: 29089889]
[28]
Jiang QF, Huang MY, Wu KY, et al. Intervention effects of atorvastatin combined with Panax notoginseng saponins on rats with atherosclerosis complicated with hepatic injury. Pharmacogn Mag 2017; 13(51): 430-8.
[http://dx.doi.org/10.4103/pm.pm_424_16] [PMID: 28839368]
[29]
Clarke R, Lewington S, Youngman L, Sherliker P, Peto R, Collins R. Underestimation of the importance of blood pressure and cholesterol for coronary heart disease mortality in old age. Eur Heart J 2002; 23(4): 286-93.
[http://dx.doi.org/10.1053/euhj.2001.2781] [PMID: 11812064]
[30]
Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 2019; 16(7): 389-406.
[http://dx.doi.org/10.1038/s41569-019-0169-2] [PMID: 30846875]
[31]
Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol 2018; 335: 41-84.
[http://dx.doi.org/10.1016/bs.ircmb.2017.07.007] [PMID: 29305014]
[32]
Wang T, Zhu H, Hou Y, Duan W, Meng F, Liu Y. Ketamine attenuates high-glucose-mediated endothelial inflammation in human umbilical vein endothelial cells. Can J Physiol Pharmacol 2020; 98(3): 156-61.
[http://dx.doi.org/10.1139/cjpp-2019-0185] [PMID: 32078386]
[33]
Zhou Q, Cheng C, Wei Y, et al. USP15 potentiates NF-κB activation by differentially stabilizing TAB2 and TAB3. FEBS J 2020; 287(15): 3165-83.
[http://dx.doi.org/10.1111/febs.15202] [PMID: 31903660]
[34]
Gao W, Liu H, Yuan J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell Mol Med 2016; 20(12): 2318-27.
[http://dx.doi.org/10.1111/jcmm.12923] [PMID: 27515767]
[35]
Huang B, He D, Chen G, et al. α-Cyperone inhibits LPS-induced inflammation in BV-2 cells through activation of Akt/Nrf2/HO-1 and suppression of the NF-κB pathway. Food Funct 2018; 9(5): 2735-43.
[http://dx.doi.org/10.1039/C8FO00057C] [PMID: 29667667]
[36]
Zhang F, Liu Z, He X, Li Z, Shi B, Cai F. β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: involvement of NF-кB and HO-1/Nrf-2 pathway. Drug Deliv 2020; 27(1): 1329-41.
[http://dx.doi.org/10.1080/10717544.2020.1818883] [PMID: 32945205]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy