Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Mini-Review Article

Review of Pharmaceutical and Therapeutic Approaches for Type 2 Diabetes and Related Disorders

Author(s): Mohammad Saeedi*, Fatemeh Mehranfar, Fateme Ghorbani, Mohammadali Eskandari, Majid Ghorbani and Ali Babaeizad

Volume 16, Issue 3, 2022

Published on: 24 March, 2022

Page: [188 - 213] Pages: 26

DOI: 10.2174/1872208316666220128102934

Price: $65

Abstract

Type 2 diabetes (T2D), which affects many people around the world, is one of the diseases that is on the rise. Various studies have revealed that insulin resistance and lessened insulin production have been associated with T2D, and they also show that this disease can have a genetic origin and is associated with different genes, such as KCNQ1, PPAR-γ, calpain-10, ADIPOR2, TCF7L2, which can be utilized as therapeutic targets. Different therapeutic approaches and strategies such as exercise and diet, pharmacological approaches, and utilization of nanoparticles in drug delivery and gene therapy can be effective in the treatment and control of T2D. Glucagon-like peptide 1 (GLP-1) and sodiumglucose cotransporter-2 (SGLT2) have both been considered as drug classes in the treatment of T2D and T2D-related diseases such as cardiovascular disease and renal disease, and have considerable influences such as diminished cardiovascular mortality in individuals with T2D, ameliorated postprandial glycaemia, ameliorated fasting glycaemia, and diminished bodyweight on disease treatment and improvement process. In the present review article, we have attempted to explore the risk factors, genes, and diseases associated with T2D, therapeutic approaches in T2D, the influences of drugs such as dapagliflozin, metformin, acarbose, Januvia (sitagliptin), and ertugliflozin on T2D in clinical trials and animal model studies. Research in clinical trials has promising results that support the role of these drug approaches in T2D prophylaxis and ameliorate safety even though additional clinical research is still obligatory.

Keywords: Diabetes mellitus, type 2 diabetes, GLP-1, SGLT2, therapeutic approaches, hyperglycemia.

Graphical Abstract

[1]
Care D. Diagnosis and classification of diabetes mellitus. American Diabetes Association 2010; 33((Suppl.1)): S62-9.
[2]
Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K. Current therapies and targets for type 2 diabetes mellitus. Panminerva Med 2018; 60(3): 117-31.
[http://dx.doi.org/10.23736/S0031-0808.18.03455-9] [PMID: 29696964]
[3]
Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019; 13(1): 364-72.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008] [PMID: 30641727]
[4]
Schaper NC, Van Netten JJ, Apelqvist J, Lipsky BA, Bakker K, Foot IWGD. Prevention and management of foot prob-lems in diabetes: A Summary Guidance for Daily Practice 2015, based on the IWGDF Guidance Documents. Diabetes Metab Res Rev 2016; 32(S1)(Suppl. 1): 7-15.
[http://dx.doi.org/10.1002/dmrr.2695] [PMID: 26335366]
[5]
Kerr M, Rayman G, Jeffcoate WJ. Cost of diabetic foot disease to the National Health Service in England. Diabet Med 2014; 31(12): 1498-504.
[http://dx.doi.org/10.1111/dme.12545] [PMID: 24984759]
[6]
Prompers L, Huijberts M, Apelqvist J, et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia 2007; 50(1): 18-25.
[http://dx.doi.org/10.1007/s00125-006-0491-1] [PMID: 17093942]
[7]
van Netten JJ, Price PE, Lavery LA, et al. Prevention of foot ulcers in the at-risk patient with diabetes: A systematic re-view. Diabetes Metab Res Rev 2016; 32(Suppl. 1): 84-98.
[http://dx.doi.org/10.1002/dmrr.2701] [PMID: 26340966]
[8]
Umegaki H. Sarcopenia and frailty in older patients with diabetes mellitus. Geriatr Gerontol Int 2016; 16(3): 293-9.
[http://dx.doi.org/10.1111/ggi.12688] [PMID: 26799937]
[9]
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabe-tes for 2015 and 2040. Diabetes Res Clin Pract 2017; 128: 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[10]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: A review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[11]
Zhou T, Xu X, Du M, Zhao T, Wang J. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed Pharmacother 2018; 106: 1227-35.
[http://dx.doi.org/10.1016/j.biopha.2018.07.085] [PMID: 30119191]
[12]
Kahn CR. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994; 43(8): 1066-84.
[http://dx.doi.org/10.2337/diab.43.8.1066] [PMID: 8039601]
[13]
Robertson RP, Bogardus C. Antagonist: diabetes and insulin resistance-philosophy, science, and the multiplier hypothe-sis. J Lab Clin Med 1995; 125(5): 560-4.
[PMID: 7738421]
[14]
Fujioka K. Pathophysiology of type 2 diabetes and the role of incretin hormones and beta-cell dysfunction. JAAPA 2007; 20(12)(Suppl.): 3-8.
[http://dx.doi.org/10.1097/01720610-200712000-00001] [PMID: 18217245]
[15]
Ali O. Genetics of type 2 diabetes. World J Diabetes 2013; 4(4): 114-23.
[http://dx.doi.org/10.4239/wjd.v4.i4.114] [PMID: 23961321]
[16]
Stumvoll M, Goldstein BJ, van Haeften TW. Pathogenesis of type 2 diabetes. Endocr Res 2007; 32(1-2): 19-37.
[http://dx.doi.org/10.1080/07435800701743810] [PMID: 18271503]
[17]
Pascoe L, Tura A, Patel SK, et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic β-cell function. Diabetes 2007; 56(12): 3101-4.
[http://dx.doi.org/10.2337/db07-0634] [PMID: 17804762]
[18]
Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale as-sociation analysis. Nat Genet 2010; 42(7): 579-89.
[http://dx.doi.org/10.1038/ng.609] [PMID: 20581827]
[19]
Takeuchi F, Serizawa M, Yamamoto K, et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 2009; 58(7): 1690-9.
[http://dx.doi.org/10.2337/db08-1494] [PMID: 19401414]
[20]
Peng F, Hu D, Gu C, et al. The relationship between five widely-evaluated variants in CDKN2A/B and CDKAL1 genes and the risk of type 2 diabetes: A meta-analysis. Gene 2013; 531(2): 435-43.
[http://dx.doi.org/10.1016/j.gene.2013.08.075] [PMID: 24012816]
[21]
Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38(3): 320-3.
[http://dx.doi.org/10.1038/ng1732] [PMID: 16415884]
[22]
Lefebvre B, Vandewalle B, Balavoine A-S, et al. Regulation and functional effects of ZNT8 in human pancreatic islets. J Endocrinol 2012; 214(2): 225-32.
[http://dx.doi.org/10.1530/JOE-12-0071] [PMID: 22582094]
[23]
Gu HF. Genetic, epigenetic and biological effects of zinc transporter (SLC30A8) in type 1 and type 2 diabetes. Curr Diabetes Rev 2016; 12: 1-9.
[PMID: 26593983]
[24]
Lugari R, Dei Cas A, Ugolotti D, et al. Glucagon-like peptide 1 (GLP-1) secretion and plasma dipeptidyl peptidase IV (DPP-IV) activity in morbidly obese patients undergoing biliopancreatic diversion. Horm Metab Res 2004; 36(2): 111-5.
[http://dx.doi.org/10.1055/s-2004-814222] [PMID: 15002062]
[25]
Lamers D, Famulla S, Wronkowitz N, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 2011; 60(7): 1917-25.
[http://dx.doi.org/10.2337/db10-1707] [PMID: 21593202]
[26]
Kirino Y, Sei M, Kawazoe K, Minakuchi K, Sato Y. Plasma dipeptidyl peptidase 4 activity correlates with body mass index and the plasma adiponectin concentration in healthy young people. Endocr J 2012; 59(10): 949-53.
[http://dx.doi.org/10.1507/endocrj.EJ12-0158] [PMID: 22785237]
[27]
Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol 2016; 4(6): 537-47.
[http://dx.doi.org/10.1016/S2213-8587(16)30010-9] [PMID: 27156051]
[28]
Susan van,D., J.W. Beulens, S. Yvonne T. van der, D.E. Grobbee, and B. Nealb.. The global burden of diabetes and its complications: An emerging pandemic. Eur J Cardiovasc Prev Rehabil 2010; 17(1)(Suppl.): s3-8.
[29]
Dong J-Y, Xun P, He K, Qin L-Q. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 2011; 34(9): 2116-22.
[http://dx.doi.org/10.2337/dc11-0518] [PMID: 21868780]
[30]
Bertinato J, Wang KC, Hayward S. Serum magnesium concentrations in the Canadian population and associations with diabetes, glycemic regulation, and insulin resistance. Nutrients 2017; 9(3): 296.
[http://dx.doi.org/10.3390/nu9030296] [PMID: 28304338]
[31]
Zhao B, Zeng L, Zhao J, et al. Association of magnesium intake with type 2 diabetes and total stroke: An updated sys-tematic review and meta-analysis. BMJ Open 2020; 10(3): e032240.
[http://dx.doi.org/10.1136/bmjopen-2019-032240] [PMID: 32198298]
[32]
Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin re-sistance. Arch Biochem Biophys 2007; 458(1): 40-7.
[http://dx.doi.org/10.1016/j.abb.2006.05.007] [PMID: 16808892]
[33]
Hu Z, Deng H, Qu H. Plasma SFRP5 levels are decreased in Chinese subjects with obesity and type 2 diabetes and nega-tively correlated with parameters of insulin resistance. Diabetes Res Clin Pract 2013; 99(3): 391-5.
[http://dx.doi.org/10.1016/j.diabres.2012.11.026] [PMID: 23290274]
[34]
Nagaya T, Yoshida H, Takahashi H, Kawai M. Increases in body mass index, even within non-obese levels, raise the risk for Type 2 diabetes mellitus: A follow-up study in a Japanese population. Diabet Med 2005; 22(8): 1107-11.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01602.x] [PMID: 16026381]
[35]
Dello Russo M, Ahrens W, De Vriendt T, et al. Gestational weight gain and adiposity, fat distribution, metabolic profile, and blood pressure in offspring: the IDEFICS project. Int J Obes 2013; 37(7): 914-9.
[http://dx.doi.org/10.1038/ijo.2013.35] [PMID: 23567926]
[36]
Fraser A, Tilling K, Macdonald-Wallis C, et al. Associations of gestational weight gain with maternal body mass index, waist circumference, and blood pressure measured 16 y after pregnancy: the Avon Longitudinal Study of Parents and Children (ALSPAC). Am J Clin Nutr 2011; 93(6): 1285-92.
[http://dx.doi.org/10.3945/ajcn.110.008326] [PMID: 21471282]
[37]
Arora A, Behl T, Sehgal A, et al. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci 2021; 273: 119311.
[http://dx.doi.org/10.1016/j.lfs.2021.119311] [PMID: 33662428]
[38]
Mooradian AD, Reed RL, Meredith KE, Scuderi P. Serum levels of tumor necrosis factor and IL-1 α and IL-1 β in dia-betic patients. Diabetes Care 1991; 14(1): 63-5.
[http://dx.doi.org/10.2337/diacare.14.1.63] [PMID: 1991438]
[39]
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542(7640): 177-85.
[http://dx.doi.org/10.1038/nature21363] [PMID: 28179656]
[40]
Hotamisligil GS. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int J Obes 2008; 32(7)(Suppl. 7): S52-4.
[http://dx.doi.org/10.1038/ijo.2008.238] [PMID: 19136991]
[41]
Caprio M, Infante M, Moriconi E, et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic dis-eases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Invest 2019; 42(11): 1365-86.
[http://dx.doi.org/10.1007/s40618-019-01061-2] [PMID: 31111407]
[42]
Meyer KA, Kushi LH, Jacobs DR Jr, Folsom AR. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 2001; 24(9): 1528-35.
[http://dx.doi.org/10.2337/diacare.24.9.1528] [PMID: 11522694]
[43]
Tajima R, Kodama S, Hirata M, et al. High cholesterol intake is associated with elevated risk of type 2 diabetes mellitus - a meta-analysis. Clin Nutr 2014; 33(6): 946-50.
[http://dx.doi.org/10.1016/j.clnu.2014.03.001] [PMID: 24674850]
[44]
Conen D, Ridker PM, Mora S, Buring JE, Glynn RJ. Blood pressure and risk of developing type 2 diabetes mellitus: the Women’s Health Study. Eur Heart J 2007; 28(23): 2937-43.
[http://dx.doi.org/10.1093/eurheartj/ehm400] [PMID: 17925342]
[45]
Kim M-J, Lim N-K, Choi S-J, Park H-Y. Hypertension is an independent risk factor for type 2 diabetes: the Korean ge-nome and epidemiology study. Hypertens Res 2015; 38(11): 783-9.
[http://dx.doi.org/10.1038/hr.2015.72] [PMID: 26178151]
[46]
Kirkman MS, Briscoe VJ, Clark N, et al. Diabetes in older adults. Diabetes Care 2012; 35(12): 2650-64.
[http://dx.doi.org/10.2337/dc12-1801] [PMID: 23100048]
[47]
Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2020; 16(10): 545-55.
[http://dx.doi.org/10.1038/s41574-020-0381-5] [PMID: 32690918]
[48]
Grøntved A, Rimm EB, Willett WC, Andersen LB, Hu FB. A prospective study of weight training and risk of type 2 dia-betes mellitus in men. Arch Intern Med 2012; 172(17): 1306-12.
[http://dx.doi.org/10.1001/archinternmed.2012.3138] [PMID: 22868691]
[49]
Chiniwala N, Jabbour S. Management of diabetes mellitus in the elderly. Curr Opin Endocrinol Diabetes Obes 2011; 18(2): 148-52.
[http://dx.doi.org/10.1097/MED.0b013e3283444ba0] [PMID: 21522002]
[50]
Storck LJ, Meffert PJ, Rausch J, et al. Efficiency of a 15-week weight-loss program, including a low-calorie formula diet, on glycemic control in patients with type 2 diabetes mellitus and overweight or obesity. Obes Facts 2021; 14(1): 1-11.
[http://dx.doi.org/10.1159/000511453] [PMID: 33601371]
[51]
Simos YV, Spyrou K, Patila M, et al. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian journal of pharmaceutical sciences 2021; 16(1): 62-76.
[http://dx.doi.org/10.1016/j.ajps.2020.05.001]
[52]
Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed Pharmacother 2020; 131: 110708.
[http://dx.doi.org/10.1016/j.biopha.2020.110708] [PMID: 32927252]
[53]
Holst JJ. From the incretin concept and the discovery of GLP-1 to today’s diabetes therapy Front Endocrinol (Lausanne) 2019; 10: 260.
[http://dx.doi.org/10.3389/fendo.2019.00260 ] [PMID: 31080438]
[54]
Ferrannini E. Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metab 2017; 26(1): 27-38.
[http://dx.doi.org/10.1016/j.cmet.2017.04.011] [PMID: 28506519]
[55]
Brown E, Rajeev SP, Cuthbertson DJ, Wilding JPH. A review of the mechanism of action, metabolic profile and haemo-dynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes Metab 2019; 21(Suppl. 2): 9-18.
[http://dx.doi.org/10.1111/dom.13650] [PMID: 31081592]
[56]
DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 2017; 13(1): 11-26.
[http://dx.doi.org/10.1038/nrneph.2016.170] [PMID: 27941935]
[57]
Trujillo JM, Nuffer WA. Impact of sodium‐glucose cotransporter 2 inhibitors on nonglycemic outcomes in patients with type 2 diabetes. Pharmacotherapy 2017; 37(4): 481-91.
[http://dx.doi.org/10.1002/phar.1903] [PMID: 28102030]
[58]
Chilton RJ. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diabetes Obes Metab 2020; 22(1): 16-29.
[http://dx.doi.org/10.1111/dom.13854] [PMID: 31407866]
[59]
Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015; 75(1): 33-59.
[http://dx.doi.org/10.1007/s40265-014-0337-y] [PMID: 25488697]
[60]
Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin Pharmacokinet 2015; 54(7): 691-708.
[http://dx.doi.org/10.1007/s40262-015-0264-4] [PMID: 25805666]
[61]
van Baar MJB, van Ruiten CC, Muskiet MHA, van Bloemendaal L, IJzerman RG, van Raalte DH. SGLT2 inhibitors in combination therapy: from mechanisms to clinical considerations in type 2 diabetes management. Diabetes Care 2018; 41(8): 1543-56.
[http://dx.doi.org/10.2337/dc18-0588] [PMID: 30030256]
[62]
Kalra S, Kesavadev J, Chadha M, Kumar GV. Sodium-glucose cotransporter-2 inhibitors in combination with other glu-cose-lowering agents for the treatment of type 2 diabetes mellitus. Indian J Endocrinol Metab 2018; 22(6): 827-36.
[http://dx.doi.org/10.4103/ijem.IJEM_162_17] [PMID: 30766826]
[63]
DeFronzo RA, Davidson JA, Del Prato S. The role of the kidneys in glucose homeostasis: A new path towards normaliz-ing glycaemia. Diabetes Obes Metab 2012; 14(1): 5-14.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01511.x] [PMID: 21955459]
[64]
Shehadeh N, Raz I, Nakhleh A. Cardiovascular benefit in the limelight: shifting type 2 diabetes treatment paradigm to-wards early combination therapy in patients with overt cardiovascular disease. Cardiovasc Diabetol 2018; 17(1): 117.
[http://dx.doi.org/10.1186/s12933-018-0760-6] [PMID: 30134893]
[65]
Santamarina M, Carlson CJ. Review of the cardiovascular safety of dipeptidyl peptidase-4 inhibitors and the clinical relevance of the CAROLINA trial. BMC Cardiovasc Disord 2019; 19(1): 60.
[http://dx.doi.org/10.1186/s12872-019-1036-0] [PMID: 30876392]
[66]
Marsico F, Paolillo S, Gargiulo P, et al. Effects of glucagon-like peptide-1 receptor agonists on major cardiovascular events in patients with Type 2 diabetes mellitus with or without established cardiovascular disease: A meta-analysis of randomized controlled trials. Eur Heart J 2020; 41(35): 3346-58.
[http://dx.doi.org/10.1093/eurheartj/ehaa082] [PMID: 32077924]
[67]
Malik AH, Yandrapalli S, Goldberg M, Jain D, Frishman WH, Aronow WS. Cardiovascular outcomes with the use of sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes and chronic kidney disease: An updated meta-analysis of randomized controlled trials. Cardiology 2020; 28(3): 116-24.
[PMID: 31868769]
[68]
Santos-Ferreira D, Gonçalves-Teixeira P, Fontes-Carvalho R. SGLT-2 inhibitors in heart failure and type-2 diabetes: hitting two birds with one stone? Cardiology 2020; 145(5): 311-20.
[http://dx.doi.org/10.1159/000504694] [PMID: 31865310]
[69]
Mirabelli M, Chiefari E, Caroleo P, et al. Long-term effectiveness and safety of SGLT-2 inhibitors in an Italian cohort of patients with type 2 diabetes mellitus. Journal of Diabetes Research 2019; 2019
[70]
Apovian CM, Okemah J, O’Neil PM. Body weight considerations in the management of type 2 diabetes. Adv Ther 2019; 36(1): 44-58.
[http://dx.doi.org/10.1007/s12325-018-0824-8] [PMID: 30465123]
[71]
Davidson JA. SGLT2 inhibitors in patients with type 2 diabetes and renal disease: Overview of current evidence. Postgrad Med 2019; 131(4): 251-60.
[http://dx.doi.org/10.1080/00325481.2019.1601404] [PMID: 30929540]
[72]
Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019; 7(11): 845-54.
[http://dx.doi.org/10.1016/S2213-8587(19)30256-6] [PMID: 31495651]
[73]
Deng X, Tavallaie MS, Sun R, et al. Drug discovery approaches targeting the incretin pathway. Bioorg Chem 2020; 99: 103810.
[http://dx.doi.org/10.1016/j.bioorg.2020.103810] [PMID: 32325333]
[74]
Demuth H-U, McIntosh CH, Pederson RA. Type 2 diabetes-therapy with dipeptidyl peptidase IV inhibitors. Biochimica et Biophysica Acta (BBA)-. Proteins and Proteomics 2005; 1751(1): 33-44.
[http://dx.doi.org/10.1016/j.bbapap.2005.05.010]
[75]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[76]
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
[77]
Rizzo M, Nikolic D, Patti AM, et al. GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms. Biochim Biophys Acta Mol Basis Dis 2018; 1864(9 Pt B): 2814-21.
[http://dx.doi.org/10.1016/j.bbadis.2018.05.012] [PMID: 29778663]
[78]
Hampp C, Borders-Hemphill V, Moeny DG, Wysowski DK. Use of antidiabetic drugs in the U.S., 2003-2012. Diabetes Care 2014; 37(5): 1367-74.
[http://dx.doi.org/10.2337/dc13-2289] [PMID: 24623020]
[79]
Xie Y, Bowe B, Gibson AK, McGill JB, Maddukuri G, Al-Aly Z. Comparative effectiveness of sodium-glucose cotrans-porter 2 inhibitors vs sulfonylureas in patients with type 2 diabetes. JAMA Intern Med 2021; 181(8): 1043-53.
[http://dx.doi.org/10.1001/jamainternmed.2021.2488] [PMID: 34180939]
[80]
Research ZM. Oral antidiabetic drugs market by drugs class category for type 2 diabetes mellitus: Global Industry per-spective, comprehensive analysis and forecast, 2016-2022. Zion Market Research 2017.
[81]
Del Prato S, Pulizzi N. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 2006; 55(5)(Suppl. 1): S20-7.
[http://dx.doi.org/10.1016/j.metabol.2006.02.003] [PMID: 16631807]
[82]
Skillman TG, Feldman JM. The pharmacology of sulfonylureas. Am J Med 1981; 70(2): 361-72.
[http://dx.doi.org/10.1016/0002-9343(81)90773-7] [PMID: 6781341]
[83]
Sulfonylureas, Second generation. LiverTox: Clinical and research information on drug-induced liver injury. Bethesda, MD: National institute of diabetes and digestive and kidney diseases 2012.
[84]
Oei L, Zillikens MC, Dehghan A, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal compli-cations of inadequate glucose control: the Rotterdam Study. Diabetes Care 2013; 36(6): 1619-28.
[http://dx.doi.org/10.2337/dc12-1188] [PMID: 23315602]
[85]
Zhang Z, Cao Y, Tao Y, et al. Sulfonylurea and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Res Clin Pract 2020; 159: 107990.
[http://dx.doi.org/10.1016/j.diabres.2019.107990] [PMID: 31866530]
[86]
McIntosh B, Cameron C, Singh SR, Yu C, Dolovich L, Houlden R. Choice of therapy in patients with type 2 diabetes inadequately controlled with metformin and a sulphonylurea: A systematic review and mixed-treatment comparison meta-analysis. Open Med 2012; 6(2): e62-74.
[PMID: 23696771]
[87]
Kidney disease: Improving global outcomes (KDIGO) diabetes work group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 2020; 98(4S): S1-S115.
[PMID: 32998798]
[88]
Farag YM, Kari JA, Singh AK. Chronic kidney disease in the Arab world: A call for action. Nephron Clin Pract 2012; 121(3-4): c120-3.
[PMID: 23208083]
[89]
Hassanien AA, Al-Shaikh F, Vamos EP, Yadegarfar G, Majeed A. Epidemiology of end-stage renal disease in the coun-tries of the Gulf Cooperation Council: A systematic review. JRSM Short Rep 2012; 3(6): 38.
[http://dx.doi.org/10.1258/shorts.2012.011150] [PMID: 22768372]
[90]
Al-Rubeaan K, Youssef AM, Subhani SN, et al. Diabetic nephropathy and its risk factors in a society with a type 2 dia-betes epidemic: A Saudi National Diabetes Registry-based study. PLoS One 2014; 9(2): e88956.
[http://dx.doi.org/10.1371/journal.pone.0088956] [PMID: 24586457]
[91]
Confederat L, Constantin S. Lupaşcu F, Pânzariu A, Hăncianu M, Profire L. Hypoglycemia induced by antidiabetic sulfonylureas. Rev Med Chir Soc Med Nat Iasi 2015; 119(2): 579-84.
[PMID: 26204670]
[92]
Dluhy RG, McMahon GT. Intensive glycemic control in the ACCORD and ADVANCE trials. N Engl J Med 2008; 358(24): 2630-3.
[http://dx.doi.org/10.1056/NEJMe0804182] [PMID: 18539918]
[93]
Drugs CAf. Secondand third-line pharmacotherapy for type 2 diabetes: update. Último acceso 11 octubre de 2015 2013.
[94]
Harmsze AM, Van Werkum JW, Moral F, et al. Sulfonylureas and on-clopidogrel platelet reactivity in type 2 diabetes mellitus patients. Platelets 2011; 22(2): 98-102.
[http://dx.doi.org/10.3109/09537104.2010.530359] [PMID: 21142408]
[95]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin com-pared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[96]
Saeedi M, Mehranfar F, Omidi SO, Ehsani FZ, Pajand OP. Biological aspects and clinical applications of nanoparticles on treatment and prophylaxis of HIV. Iran J Med Microbiol 2020; 14(6): 512-42.
[http://dx.doi.org/10.30699/ijmm.14.6.512]
[97]
Araújo F, Shrestha N, Shahbazi M-A, et al. The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials 2014; 35(33): 9199-207.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.026] [PMID: 25109441]
[98]
Hegazy SS, Helmy H, Salama MS, Lotfy NM, Mahmoud DM. The anti-diabetic effect of nano-encapsulated propolis from apis mellifera on type 2 diabetes. Curr Appl Sci Technol 2021; 21(1): pp. 88-103.
[99]
Asadi S, Gholami MS, Siassi F, Qorbani M, Khamoshian K, Sotoudeh G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement Ther Med 2019; 43: 253-60.
[http://dx.doi.org/10.1016/j.ctim.2019.02.014] [PMID: 30935539]
[100]
Yue Z, Zhang L, Li C, et al. Advances and potential of gene therapy for type 2 diabetes mellitus. Biotechnol Biotechnol Equip 2019; 33(1): 1150-7.
[http://dx.doi.org/10.1080/13102818.2019.1643783]
[101]
Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 2016; 48(9): 1055-9.
[http://dx.doi.org/10.1038/ng.3632] [PMID: 27500523]
[102]
Zaharenko L, Kalnina I, Geldnere K, et al. Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-term response to metformin monotherapy in type 2 diabetes mellitus patients. Eur J Endocrinol 2016; 175(6): 531-40.
[http://dx.doi.org/10.1530/EJE-16-0347] [PMID: 27609360]
[103]
Mofo Mato EP, Guewo-Fokeng M, Essop MF, Owira PMO. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes: A systematic review Medicine (Baltimore) 2018; 97(27): e11349.
[http://dx.doi.org/10.1097/MD.0000000000011349] [PMID: 29979413]
[104]
Hu J, Fu Z, Chen Y, et al. Effects of autologous adipose-derived stem cell infusion on type 2 diabetic rats. Endocr J 2015; 62(4): 339-52.
[http://dx.doi.org/10.1507/endocrj.EJ14-0584] [PMID: 25739585]
[105]
Plosker GL. Dapagliflozin: A review of its use in patients with type 2 diabetes. Drugs 2014; 74(18): 2191-209.
[http://dx.doi.org/10.1007/s40265-014-0324-3] [PMID: 25389049]
[106]
Forxiga (dapagliflozin) tablets for oral use: US prescribing information 2014. Available from: http://www1.astrazeneca-us.com/pi/pi farxiga.pdf#page=1 Accessed 22 Oct 2014
[107]
European Medicines Agency. Forxiga 5 and 10 mg film-coated tablets: summary of product characteristics 2012.Available from: http://www. ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_ Infor-mation/human/002322/WC500136026.pdf
[108]
Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet 2014; 53(1): 17-27.
[http://dx.doi.org/10.1007/s40262-013-0104-3] [PMID: 24105299]
[109]
Meng W, Ellsworth BA, Nirschl AA, et al. Discovery of dapagliflozin: A potent, selective renal sodium-dependent glu-cose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 2008; 51(5): 1145-9.
[http://dx.doi.org/10.1021/jm701272q] [PMID: 18260618]
[110]
AstraZeneca. Forxiga (dapagliflozin) Summary of product characteristics Available from: a.eu/en Accessed 4 Jun 2019
[111]
Zelniker TA, Bonaca MP, Furtado RHM, et al. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabe-tes mellitus: insights from the DECLARE-TIMI 58 trial. Circulation 2020; 141(15): 1227-34.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044183] [PMID: 31983236]
[112]
Tanaka H, Soga F, Tatsumi K, et al. Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure. Cardiovasc Diabetol 2020; 19(1): 6.
[http://dx.doi.org/10.1186/s12933-019-0985-z] [PMID: 31910853]
[113]
Dhillon S. Dapagliflozin: A review in type 2 diabetes. Drugs 2019; 79(10): 1135-46.
[http://dx.doi.org/10.1007/s40265-019-01148-3] [PMID: 31236801]
[114]
Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inad-equate glycaemic control with metformin: A randomised, double-blind, placebo-controlled trial. Lancet 2010; 375(9733): 2223-33.
[http://dx.doi.org/10.1016/S0140-6736(10)60407-2] [PMID: 20609968]
[115]
Heerspink HJ, Kurlyandskaya R, Xu J, Sjostrom CD. Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function. In: Diabetes. Clin J Am Soc Nephrol 2017; 12(5): 751-9.
[116]
Weber MA, Mansfield TA, Alessi F, Iqbal N, Parikh S, Ptaszynska A. Effects of dapagliflozin on blood pressure in hyper-tensive diabetic patients on renin-angiotensin system blockade. Blood Press 2016; 25(2): 93-103.
[http://dx.doi.org/10.3109/08037051.2015.1116258] [PMID: 26623980]
[117]
Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagli-flozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol 2016; 4(3): 211-20.
[http://dx.doi.org/10.1016/S2213-8587(15)00417-9] [PMID: 26620248]
[118]
Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic proper-ties in subjects with type 2 diabetes. Diabetes Obes Metab 2013; 15(9): 853-62.
[http://dx.doi.org/10.1111/dom.12127] [PMID: 23668478]
[119]
Wilding JP, Woo V, Soler NG, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiv-ing high doses of insulin: A randomized trial. Ann Intern Med 2012; 156(6): 405-15.
[http://dx.doi.org/10.7326/0003-4819-156-6-201203200-00003] [PMID: 22431673]
[120]
Bolinder J, Ljunggren Ö, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 2012; 97(3): 1020-31.
[http://dx.doi.org/10.1210/jc.2011-2260] [PMID: 22238392]
[121]
Kohan DE, Fioretto P, Johnsson K, Parikh S, Ptaszynska A, Ying L. The effect of dapagliflozin on renal function in pa-tients with type 2 diabetes. J Nephrol 2016; 29(3): 391-400.
[http://dx.doi.org/10.1007/s40620-016-0261-1] [PMID: 26894924]
[122]
Rosenstock J, Vico M, Wei L, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care 2012; 35(7): 1473-8.
[http://dx.doi.org/10.2337/dc11-1693] [PMID: 22446170]
[123]
Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Dapagliflozin treatment for type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 2014; 30(3): 204-21.
[http://dx.doi.org/10.1002/dmrr.2479] [PMID: 24115369]
[124]
Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials Diabetes and vascular disease Research . 2015; 12(2): 90-100.
[125]
Daniele G, Xiong J, Solis-Herrera C, et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care 2016; 39(11): 2036-41.
[http://dx.doi.org/10.2337/dc15-2688] [PMID: 27561923]
[126]
Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 2021; 9(1): 22-31.
[http://dx.doi.org/10.1016/S2213-8587(20)30369-7] [PMID: 33338413]
[127]
Lahnwong S, Palee S, Apaijai N, et al. Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovasc Diabetol 2020; 19(1): 91.
[http://dx.doi.org/10.1186/s12933-020-01066-9] [PMID: 32539724]
[128]
Henry RR, Strange P, Zhou R, et al. Effects of dapagliflozin on 24-hour glycemic control in patients with type 2 diabe-tes: A randomized controlled trial. Diabetes Technol Ther 2018; 20(11): 715-24.
[http://dx.doi.org/10.1089/dia.2018.0052] [PMID: 30222367]
[129]
LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev 2021; 42(1): 77-96.
[http://dx.doi.org/10.1210/endrev/bnaa023] [PMID: 32897388]
[130]
Bailey CJ. Metformin: historical overview. Diabetologia 2017; 60(9): 1566-76.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[131]
Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011; 50(2): 81-98.
[http://dx.doi.org/10.2165/11534750-000000000-00000] [PMID: 21241070]
[132]
Timmins P, Donahue S, Meeker J, Marathe P. Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin Pharmacokinet 2005; 44(7): 721-9.
[http://dx.doi.org/10.2165/00003088-200544070-00004] [PMID: 15966755]
[133]
Madiraju AK, Qiu Y, Perry RJ, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 2018; 24(9): 1384-94.
[http://dx.doi.org/10.1038/s41591-018-0125-4] [PMID: 30038219]
[134]
Kajbaf F, De Broe ME, Lalau J-D. Therapeutic concentrations of metformin: A systematic review. Clin Pharmacokinet 2016; 55(4): 439-59.
[http://dx.doi.org/10.1007/s40262-015-0323-x] [PMID: 26330026]
[135]
Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 2019; 15(10): 569-89.
[http://dx.doi.org/10.1038/s41574-019-0242-2] [PMID: 31439934]
[136]
Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 1981; 12(2): 235-46.
[http://dx.doi.org/10.1111/j.1365-2125.1981.tb01206.x] [PMID: 7306436]
[137]
Liang X, Giacomini KM. Transporters involved in metformin pharmacokinetics and treatment response. J Pharm Sci 2017; 106(9): 2245-50.
[http://dx.doi.org/10.1016/j.xphs.2017.04.078] [PMID: 28495567]
[138]
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: An overview. Clin Sci (Lond) 2012; 122(6): 253-70.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[139]
Hashemitabar M, Bahramzadeh S, Saremy S, Nejaddehbashi F. Glucose plus metformin compared with glucose alone on β-cell function in mouse pancreatic islets. Biomed Rep 2015; 3(5): 721-5.
[http://dx.doi.org/10.3892/br.2015.476] [PMID: 26405552]
[140]
Zhang K, Yang W, Dai H, Deng Z. Cardiovascular risk following metformin treatment in patients with type 2 diabetes mellitus: Results from meta-analysis. Diabetes Res Clin Pract 2020; 160: 108001.
[http://dx.doi.org/10.1016/j.diabres.2020.108001] [PMID: 31904444]
[141]
Evia-Viscarra ML, Rodea-Montero ER, Apolinar-Jiménez E, et al. The effects of metformin on inflammatory mediators in obese adolescents with insulin resistance: controlled randomized clinical trial. J Pediatr Endocrinol Metab 2012; 25(1-2): 41-9.
[http://dx.doi.org/10.1515/jpem-2011-0469] [PMID: 22570949]
[142]
Fidan E, Onder Ersoz H, Yilmaz M, et al. The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol 2011; 48(4): 297-302.
[http://dx.doi.org/10.1007/s00592-011-0276-y] [PMID: 21424914]
[143]
Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res 2016; 119(5): 652-65.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445] [PMID: 27418629]
[144]
Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycer-ophosphate dehydrogenase. Nature 2014; 510(7506): 542-6.
[http://dx.doi.org/10.1038/nature13270] [PMID: 24847880]
[145]
Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreas-ing production of cyclic AMP. Nature 2013; 494(7436): 256-60.
[http://dx.doi.org/10.1038/nature11808] [PMID: 23292513]
[146]
Liu C-H, Hua N, Fu X, Pan Y-L, Li B, Li X-D. Metformin regulates atrial SK2 and SK3 expression through inhibiting the PKC/ERK signaling pathway in type 2 diabetic rats. BMC Cardiovasc Disord 2018; 18(1): 236.
[http://dx.doi.org/10.1186/s12872-018-0950-x] [PMID: 30545309]
[147]
Fritsche A, Schmülling R-M, Häring H-U, Stumvoll M. Intensive insulin therapy combined with metformin in obese type 2 diabetic patients. Acta Diabetol 2000; 37(1): 13-8.
[http://dx.doi.org/10.1007/s005920070030] [PMID: 10928231]
[148]
Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 dia-betes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23(7): 850-8.
[http://dx.doi.org/10.1038/nm.4345] [PMID: 28530702]
[149]
Liu S-N, Liu Q, Sun S-J, Hou S-C, Wang Y, Shen Z-F. Metformin ameliorates β-cell dysfunction by regulating inflamma-tion production, ion and hormone homeostasis of pancreas in diabetic KKAy mice. Yao Xue Xue Bao 2014; 49(11): 1554-62.
[PMID: 25757281]
[150]
Foretz M, Hébrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010; 120(7): 2355-69.
[http://dx.doi.org/10.1172/JCI40671] [PMID: 20577053]
[151]
Kooy A, de Jager J, Lehert P, et al. Long-term effects of metformin on metabolism and microvascular and macrovascu-lar disease in patients with type 2 diabetes mellitus. Arch Intern Med 2009; 169(6): 616-25.
[http://dx.doi.org/10.1001/archinternmed.2009.20] [PMID: 19307526]
[152]
Cheng X, Liu Y-M, Li H, et al. Metformin is associated with higher incidence of acidosis, but not mortality, in individuals with COVID-19 and pre-existing type 2 diabetes. Cell Metab 2020; 32(4): 537-47.
[153]
Hariyanto TI, Kurniawan A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection. Obes Med 2020; 19: 100290.
[http://dx.doi.org/10.1016/j.obmed.2020.100290] [PMID: 32844132]
[154]
Kow CS, Hasan SS. Mortality risk with preadmission metformin use in patients with COVID-19 and diabetes: A meta-analysis. J Med Virol 2020; 93(2): 695-7.
[PMID: 32902868]
[155]
Luo P, Qiu L, Liu Y, et al. Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis. Am J Trop Med Hyg 2020; 103(1): 69-72.
[http://dx.doi.org/10.4269/ajtmh.20-0375] [PMID: 32446312]
[156]
Gao F, Ma X, Peng J, et al. The effect of Acarbose on glycemic variability in patients with type 2 diabetes mellitus using premixed Insulin compared to Metformin (AIM): An open-label randomized trial. Diabetes Technol Ther 2020; 22(4): 256-64.
[http://dx.doi.org/10.1089/dia.2019.0290] [PMID: 31638433]
[157]
Zhao Q, Luo Y, Zhang X, et al. A severe leakage of intermediates to shunt products in acarbose biosynthesis. Nat Commun 2020; 11(1): 1468.
[http://dx.doi.org/10.1038/s41467-020-15234-8] [PMID: 32193369]
[158]
Kato T, Inoue T, Node K. Postprandial endothelial dysfunction in subjects with new-onset type 2 diabetes: An acarbose and nateglinide comparative study. Cardiovasc Diabetol 2010; 9(1): 12.
[http://dx.doi.org/10.1186/1475-2840-9-12] [PMID: 20334663]
[159]
Harrison DE, Strong R, Allison DB, et al. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 2014; 13(2): 273-82.
[http://dx.doi.org/10.1111/acel.12170] [PMID: 24245565]
[160]
Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460(7253): 392-5.
[http://dx.doi.org/10.1038/nature08221]
[161]
Miller RA, Harrison DE, Astle C, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol: Series A 2011; 66(2): 191-201.
[http://dx.doi.org/10.1093/gerona/glq178]
[162]
Miller RA, Harrison DE, Astle CM, et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 2014; 13(3): 468-77.
[http://dx.doi.org/10.1111/acel.12194] [PMID: 24341993]
[163]
Balfour JA, McTavish D. Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 1993; 46(6): 1025-54.
[http://dx.doi.org/10.2165/00003495-199346060-00007] [PMID: 7510610]
[164]
Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial in-farction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 2004; 25(1): 10-6.
[http://dx.doi.org/10.1016/S0195-668X(03)00468-8] [PMID: 14683737]
[165]
Gibbs VK, Brewer RA, Miyasaki ND, Patki A, Smith DL Jr. Sex-dependent differences in liver and gut metabolomic pro-files with acarbose and calorie restriction in C57BL/6 mice. J Gerontol: Series A 2018; 73(2): 157-65.
[166]
Zhou D, Chen L, Mou X. Acarbose ameliorates spontaneous type-2 diabetes in db/db mice by inhibiting PDX-1 methyl-ation. Mol Med Rep 2021; 23(1): 1-1.
[PMID: 33169172]
[167]
Soonthornpun S, Rattarasarn C, Thamprasit A, Leetanaporn K. Effect of acarbose in treatment of type II diabetes mellitus: A double-blind, crossover, placebo-controlled trial. J Med Assoc Thai 1998; 81(3): 195-200.
[PMID: 9623011]
[168]
Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes melli-tus: the STOP-NIDDM randomised trial. Lancet 2002; 359(9323): 2072-7.
[http://dx.doi.org/10.1016/S0140-6736(02)08905-5] [PMID: 12086760]
[169]
Schnell O, Mertes G, Standl E, Group AICS. Acarbose and metabolic control in patients with type 2 diabetes with newly initiated insulin therapy. Diabetes Obes Metab 2007; 9(6): 853-8.
[http://dx.doi.org/10.1111/j.1463-1326.2006.00666.x] [PMID: 17924867]
[170]
Han X, Deng Y, Yu J, et al. Acarbose accelerates wound healing via Akt/eNOS signaling in db/db mice Oxidative medicine and cellular longevity 2017; 2017
[171]
Wu QL, Liu YP, Lu JM, et al. Efficacy and safety of acarbose chewable tablet in patients with type 2 diabetes: A multi-centre, randomized, double-blinded, double-dummy positive controlled trial. J Evid Based Med 2012; 5(3): 134-8.
[http://dx.doi.org/10.1111/j.1756-5391.2012.01188.x] [PMID: 23672220]
[172]
Shimabukuro M, Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on post-prandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: A randomized crossover study. J Clin Endocrinol Metab 2006; 91(3): 837-42.
[http://dx.doi.org/10.1210/jc.2005-1566] [PMID: 16368744]
[173]
Zheng MY, Yang JH, Shan CY, et al. Effects of 24-week treatment with acarbose on glucagon-like peptide 1 in newly diagnosed type 2 diabetic patients: A preliminary report. Cardiovasc Diabetol 2013; 12(1): 73.
[http://dx.doi.org/10.1186/1475-2840-12-73] [PMID: 23642288]
[174]
Standl E, Theodorakis MJ, Erbach M, Schnell O, Tuomilehto J. On the potential of acarbose to reduce cardiovascular disease. Cardiovasc Diabetol 2014; 13(1): 81.
[http://dx.doi.org/10.1186/1475-2840-13-81] [PMID: 24742256]
[175]
Sitagliptin Phosphate Monograph for Professionals
[176]
Elhassan MM, Mahmoud AM, Hegazy MA, Mowaka S. In-line monitoring of sitagliptin dissolution profile from tablets utilizing an eco-friendly potentiometric sensor. Chem Pap 2021; 75(8): 4165-76.
[http://dx.doi.org/10.1007/s11696-021-01646-3]
[177]
Gallwitz B. Review of sitagliptin phosphate: A novel treatment for type 2 diabetes. Vasc Health Risk Manag 2007; 3(2): 203-10.
[http://dx.doi.org/10.2147/vhrm.2007.3.2.203] [PMID: 17580730]
[178]
Plosker GL. Sitagliptin: A review of its use in patients with type 2 diabetes mellitus. Drugs 2014; 74(2): 223-42.
[http://dx.doi.org/10.1007/s40265-013-0169-1] [PMID: 24407560]
[179]
Sitagliptin and metformin extended-release (Janumet XR) US prescribing information 2013.Available from: http://www.merck.com/product/usa/pi_circulars/j/janumet_xr/janumet_xr_pi.pdf Accessed 25 Jul 2013
[180]
Inzucchi SE, McGuire DK. New drugs for the treatment of diabetes: part II: Incretin-based therapy and beyond. Circulation 2008; 117(4): 574-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.735795] [PMID: 18227398]
[181]
Rosenstock J, Zinman B. Dipeptidyl peptidase-4 inhibitors and the management of type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2007; 14(2): 98-107.
[http://dx.doi.org/10.1097/MED.0b013e3280a02f65] [PMID: 17940427]
[182]
Sitagliptin (Januvia) US prescribing information 2013. Available from: http://www.merck.com/product/usa/pi_circulars/j/januvia/januvia_pi. pdf Accessed 9 Jul 2013.
[184]
Ahrén B. Dipeptidyl peptidase-4 inhibitors: clinical data and clinical implications. Diabetes Care 2007; 30(6): 1344-50.
[http://dx.doi.org/10.2337/dc07-0233] [PMID: 17337494]
[185]
Campbell RK. Rationale for dipeptidyl peptidase 4 inhibitors: A new class of oral agents for the treatment of type 2 dia-betes mellitus. Ann Pharmacother 2007; 41(1): 51-60.
[http://dx.doi.org/10.1345/aph.1H459] [PMID: 17190843]
[186]
Satoh-Asahara N, Sasaki Y, Wada H, et al. A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory ef-fects in type 2 diabetic patients. Metabolism 2013; 62(3): 347-51.
[http://dx.doi.org/10.1016/j.metabol.2012.09.004] [PMID: 23062489]
[187]
Tremblay AJ, Lamarche B, Deacon CF, Weisnagel SJ, Couture P. Effects of sitagliptin therapy on markers of low-grade inflammation and cell adhesion molecules in patients with type 2 diabetes. Metabolism 2014; 63(9): 1141-8.
[http://dx.doi.org/10.1016/j.metabol.2014.06.004] [PMID: 25034387]
[188]
Terasaki M, Nagashima M, Nohtomi K, et al. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to incretin’s actions in nondiabetic and diabetic apolipoprotein E-null mice. PLoS One 2013; 8(8): e70933.
[http://dx.doi.org/10.1371/journal.pone.0070933] [PMID: 23967137]
[189]
Terawaki Y, Nomiyama T, Kawanami T, et al. Dipeptidyl peptidase-4 inhibitor linagliptin attenuates neointima for-mation after vascular injury. Cardiovasc Diabetol 2014; 13(1): 154.
[http://dx.doi.org/10.1186/s12933-014-0154-3] [PMID: 25407968]
[190]
Nader MA. Sitagliptin ameliorates lipid profile changes and endothelium dysfunction induced by atherogenic diet in rabbits. Naunyn Schmiedebergs Arch Pharmacol 2014; 387(5): 433-44.
[http://dx.doi.org/10.1007/s00210-014-0958-4] [PMID: 24496478]
[191]
Hirano T, Mori Y. Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals. J Diabetes Investig 2016; 7(Suppl. 1): 80-6.
[http://dx.doi.org/10.1111/jdi.12446] [PMID: 27186361]
[192]
Matsubara J, Sugiyama S, Sugamura K, et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endo-thelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol 2012; 59(3): 265-76.
[http://dx.doi.org/10.1016/j.jacc.2011.07.053] [PMID: 22240132]
[193]
Vittone F, Liberman A, Vasic D, et al. Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic le-sions in Apoe (-/-) mice. Diabetologia 2012; 55(8): 2267-75.
[http://dx.doi.org/10.1007/s00125-012-2582-5] [PMID: 22648661]
[194]
Xiang G, Huang X, Wang T, et al. The impact of sitagliptin on macrophage polarity and angiogenesis in the osteointe-gration of titanium implants in type 2 diabetes. Biomed Pharmacother 2020; 126: 110078.
[http://dx.doi.org/10.1016/j.biopha.2020.110078] [PMID: 32172067]
[195]
Stevens JE, Buttfield M, Wu T, et al. Effects of sitagliptin on gastric emptying of, and the glycaemic and blood pressure responses to, a carbohydrate meal in type 2 diabetes. Diabetes Obes Metab 2020; 22(1): 51-8.
[http://dx.doi.org/10.1111/dom.13864] [PMID: 31468664]
[196]
Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 2006; 29(12): 2632-7.
[http://dx.doi.org/10.2337/dc06-0703] [PMID: 17130196]
[197]
Mori H, Okada Y, Arao T, Tanaka Y. Sitagliptin improves albuminuria in patients with type 2 diabetes mellitus. J Diabetes Investig 2014; 5(3): 313-9.
[http://dx.doi.org/10.1111/jdi.12142] [PMID: 24843780]
[198]
Fukuhara T, Hyogo H, Ochi H, et al. Efficacy and safety of sitagliptin for the treatment of nonalcoholic fatty liver dis-ease with type 2 diabetes mellitus. Hepatogastroenterology 2014; 61(130): 323-8.
[PMID: 24901133]
[199]
Xu M, Zhao X, Zheng M, et al. Acute effects of sitagliptin on progenitor cells and soluble mediators in newly diagnosed type 2 diabetes. Int J Clin Pharmacol Ther 2020; 58(9): 491-503.
[http://dx.doi.org/10.5414/CP203665] [PMID: 32567544]
[200]
Seino Y, Kaku K, Kadowaki T, et al. A randomized, placebo-controlled trial to assess the efficacy and safety of sitagliptin in Japanese patients with type 2 diabetes and inadequate glycaemic control on ipragliflozin. Diabetes Obes Metab 2021; 23(6): 1342-50.
[http://dx.doi.org/10.1111/dom.14346] [PMID: 33565686]
[201]
Food and Drug Administration. STEGLATRO™ (ertugliflozin). Prescribing information 2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209803s000lbl.pdf Accessed 10 Oct 2019.
[202]
Cherney DZI, Heerspink HJL, Frederich R, et al. Effects of ertugliflozin on renal function over 104 weeks of treatment: A post hoc analysis of two randomised controlled trials. Diabetologia 2020; 63(6): 1128-40.
[http://dx.doi.org/10.1007/s00125-020-05133-4] [PMID: 32236732]
[203]
Merck & Co Inc. STEGLATROTM (ertugliflozin) tablets, for oral use prescribing information 2017.Available from: http://www.merck.com/ Accessed 20 May 2018
[204]
Food U, Administration D. Steglatro™(ertugliflozin). tablets, for oral use: prescribing information 2019.
[205]
Hu J, Deng A, Zhao Y. Ertugliflozin as a monotherapy for the treatment of type 2 diabetes. Expert Opin Pharmacother 2018; 19(16): 1841-7.
[http://dx.doi.org/10.1080/14656566.2018.1525360] [PMID: 30223693]
[206]
Wang H, Yang J, Chen X, Qiu F, Li J. Effects of sodium-glucose cotransporter 2 inhibitor monotherapy on weight changes in patients with type 2 diabetes mellitus: A Bayesian Network Meta-analysis. Clinical therapeutics 2019; 41(2): 322-34.
[http://dx.doi.org/10.1016/j.clinthera.2019.01.001]
[207]
Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium‐glucose cotransport‐2 inhibitors on blood pressure in peo-ple with type 2 diabetes mellitus: A systematic review and meta‐analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc 2017; 6(6): e004007.
[http://dx.doi.org/10.1161/JAHA.116.004007] [PMID: 28546454]
[208]
Gallo S, Calle RA, Terra SG, Pong A, Tarasenko L, Raji A. Effects of ertugliflozin on liver enzymes in patients with type 2 diabetes: A post-hoc pooled analysis of phase 3 trials. Diabetes Ther 2020; 11(8): 1849-60.
[http://dx.doi.org/10.1007/s13300-020-00867-1] [PMID: 32648108]
[209]
Leiter LA, Forst T, Polidori D, Balis DA, Xie J, Sha S. Effect of canagliflozin on liver function tests in patients with type 2 diabetes. Diabetes Metab 2016; 42(1): 25-32.
[http://dx.doi.org/10.1016/j.diabet.2015.10.003] [PMID: 26575250]
[210]
Gastaldelli A, Repetto E, Guja C, et al. Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes. Diabetes Obes Metab 2020; 22(3): 393-403.
[http://dx.doi.org/10.1111/dom.13907] [PMID: 31692226]
[211]
Pratley R, Dagogo-Jack S, Charbonnel B, et al. Efficacy and safety of ertugliflozin in older patients with type 2 diabe-tes: A pooled analysis of phase III studies. Diabetes Obes Metab 2020; 22(12): 2276-86.
[http://dx.doi.org/10.1111/dom.14150] [PMID: 32700421]
[212]
Heymsfield SB, Raji A, Gallo S, et al. Efficacy and safety of ertugliflozin in patients with overweight and obesity with type 2 diabetes mellitus. Obesity (Silver Spring) 2020; 28(4): 724-32.
[http://dx.doi.org/10.1002/oby.22748] [PMID: 32202075]
[213]
Terra SG, Focht K, Davies M, et al. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes Obes Metab 2017; 19(5): 721-8.
[http://dx.doi.org/10.1111/dom.12888] [PMID: 28116776]
[214]
Dagogo-Jack S, Liu J, Eldor R, et al. Efficacy and safety of the addition of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: The VERTIS SITA2 placebo-controlled randomized study. Diabetes Obes Metab 2018; 20(3): 530-40.
[http://dx.doi.org/10.1111/dom.13116] [PMID: 28921862]
[215]
Rosenstock J, Frias J, Páll D, et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone densi-ty in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab 2018; 20(3): 520-9.
[http://dx.doi.org/10.1111/dom.13103] [PMID: 28857451]
[216]
Ji L, Liu Y, Miao H, et al. Safety and efficacy of ertugliflozin in Asian patients with type 2 diabetes mellitus inadequate-ly controlled with metformin monotherapy: VERTIS Asia. Diabetes Obes Metab 2019; 21(6): 1474-82.
[http://dx.doi.org/10.1111/dom.13681] [PMID: 30830724]
[217]
Gallo S, Charbonnel B, Goldman A, et al. Long-term efficacy and safety of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin monotherapy: 104-week VERTIS MET trial. Diabetes Obes Metab 2019; 21(4): 1027-36.
[http://dx.doi.org/10.1111/dom.13631] [PMID: 30614616]
[218]
Lingvay I, Greenberg M, Gallo S, Shi H, Liu J, Gantz I. Efficacy and safety of ertugliflozin in patients with type 2 diabe-tes mellitus and established cardiovascular disease using insulin: A VERTIS CV substudy. Diabetes Obes Metab 2021; 23(7): 1640-51.
[http://dx.doi.org/10.1111/dom.14385] [PMID: 33769675]
[219]
Budoff MJ, Davis TME, Palmer AG, et al. Efficacy and Safety of Ertugliflozin in Patients with Type 2 Diabetes Inade-quately Controlled by Metformin and Sulfonylurea: A Sub-Study of VERTIS CV. Diabetes Ther 2021; 12(5): 1279-97.
[http://dx.doi.org/10.1007/s13300-021-01033-x] [PMID: 33721213]
[220]
Cherney DZI, Charbonnel B, Cosentino F, et al. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: An analysis from the randomised VERTIS CV trial. Diabetologia 2021; 64(6): 1256-67.
[http://dx.doi.org/10.1007/s00125-021-05407-5] [PMID: 33665685]
[221]
Cosentino F, Cannon CP, Cherney DZI, et al. Efficacy of ertugliflozin on heart failure–related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease: results of the VERTIS CV Trial. Circulation 2020; 142(23): 2205-15.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050255] [PMID: 33026243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy