Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Letter Article

Obtaining Hexoses from Chitosan through Depolymerization with Nitrous Acid

Author(s): Éber Eurípedes de Souza*, Adão Lincon Bezerra Montel, Robson dos Santos Barbosa, Ilsamar Mendes Soares, Miguel Daniel Noseda, Raimundo Wagner de Souza Aguiar, Tarso da Costa Alvim and Sérgio Donizeti Ascêncio*

Volume 19, Issue 7, 2022

Published on: 13 May, 2022

Page: [767 - 771] Pages: 5

DOI: 10.2174/1570179419666220127145745

Price: $65

Abstract

Background and Objective: Residues from shrimp farming have a great potential for sugar production and the production of derivatives for the low-carbon chemical industry. Obtainment of bioactives from chitosan has been extensively investigated using different methodologies. The purpose of this work was to study the chitosan depolymerization reaction aiming at the production of monomers without the use of additional enzymes or mineral acids.

Materials and Methods: In this work, we systematically study the effect of sodium nitrite concentration and reaction conditions (pH and temperature ranges) with acetic acid as the solvent on the chitosan depolymerization reaction aiming at the production of monomers, specifically 2,5- anhydromannose, without the use of additional enzymes or mineral acids.

Results: The results indicate that only a small range of reaction conditions and nitrite concentrations allow for obtaining the monomer, while in most combinations of these parameters, oligomers are obtained. We found that the temperature decisively affects the reaction yield, with the attainment of 2,5-anhydromannose favored at lower temperatures.

Conclusion: The method proved to be simple and easy to perform allowing to obtain 2,5- anhydromannose with the use of low-cost reagents. This monomer can be converted into several derivatives for industrial application (5-Hydroxymethylfurfural, ethanol, etc.)

Keywords: Chitosan, chitin, 2, 5-anhydromannose, depolymerization, nitrous acid, acetic acid.

Next »
Graphical Abstract

[1]
Chen, X.; Yang, H.; Yan, N. Shell biorefinery: dream or reality? Chemistry, 2016, 22(38), 13402-13421.
[http://dx.doi.org/10.1002/chem.201602389] [PMID: 27484462]
[2]
Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature, 2015, 524(7564), 155-157.
[http://dx.doi.org/10.1038/524155a] [PMID: 26268177]
[3]
Tharanathan, R.N.; Prashanth, K.V.H. Chitin/chitosan: Modifications and their unlimited application potentialdan overview. Trends Food Sci. Technol., 2007, 18(3), 117-131.
[http://dx.doi.org/10.1016/j.tifs.2006.10.022]
[4]
Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[5]
Zeng, D.; Wu, J.; Kennedy, J.F. Application of a chitosan flocculant to water treatment. Carbohydr. Polym., 2008, 71(1), 135-139.
[http://dx.doi.org/10.1016/j.carbpol.2007.07.039]
[6]
Liu, Z.; Wang, H.; Liu, C.; Jiang, Y.; Yu, G.; Mu, X.; Wang, X. Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reus-able adsorbent for removal of heavy metal ions. Chem. Commun. (Camb.), 2012, 48(59), 7350-7352.
[http://dx.doi.org/10.1039/c2cc17795a] [PMID: 22457875]
[7]
Wooten, J.; Singer, N.S. Method of extracting chitin from the shells of exoskeletal animals. US 6632941 B2, 2003.
[8]
Yoon, J.H. Enzymatic synthesis of chitooligosaccharides in organic cosolvents. Enzyme Microb. Technol., 2005, 37(6), 663-668.
[http://dx.doi.org/10.1016/j.enzmictec.2005.07.026]
[9]
Sashiwa, H.; Fujishima, S.; Yamano, N.; Kawasaki, N.; Nakayama, A.; Muraki, E.; Aiba, S-i. Production of N-acetyl-D-glucosamine from. beta.chitin by enzymatic hydrolysis. Chem. Lett., 2001, 30(4), 308-309.
[http://dx.doi.org/10.1246/cl.2001.308]
[10]
Xia, W.; Liu, P.; Liu, J. Advance in chitosan hydrolysis by non-specific cellulases. Bioresour. Technol., 2008, 99(15), 6751-6762.
[http://dx.doi.org/10.1016/j.biortech.2008.01.011] [PMID: 18328693]
[11]
Tømmeraas, K.; Vårum, K.M.; Christensen, B.E.; Smidsrød, O. Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohydr. Res., 2001, 333(2), 137-144.
[http://dx.doi.org/10.1016/S0008-6215(01)00130-6] [PMID: 11448674]
[12]
Peniston, Q.P.; Johnson, E.L. Process for depolymerization of chitosan. US 3922260A, 1975.
[13]
Salim, E.; Ailincai, D.; Trombotto, S. Chitooligosaccharide-2,5-anhydro-D-mannonic acid. Molbank, 2014, 2014, M832.
[http://dx.doi.org/10.3390/M832]
[14]
Pan, S.K.; Wu, S.J.; Kim, J.M. Preparation of glucosamine by hydrolysis of chitosan with commercial α-amylase and glucoamylase. Sci. B., 2011, 12(11), 931-934.
[http://dx.doi.org/10.1631/jzus.B1100065] [PMID: 22042658]
[15]
Armbrecht, W. Contributions to the knowledge of chitose. Biochem. Z., 1919, 95, 108-123.
[16]
Nakao, E. Chitin-chitosan oligomer having 2,5-amhydromannitol group or 2,5-anhydromannose group at terminal end and method for preparation thereof. US 5312908A, 1994.
[17]
Souza, E.E.; Montel, A.L.B.; Ascencio, S.D. Process for producing monosaccharides from chitin and/or chitosan by means of chemical and/or enzymatic hydrolysis and the uses thereof. WO 2017/219110 A1, 2017.
[18]
Ascencio, S.D. Extraction, quantification and chemical characterization of low molecular weight carbohydrates from red algae (Rhodo-phyta); Federal University do Paraná, 2002.
[19]
Bezrodnykh, E.A.; Blagodatskikh, I.V.; Kulikov, S.N.; Zelenikhin, P.V.; Yamskov, I.A.; Tikhonov, V.E. Consequences of chitosan de-composition by nitrous acid: Approach to non-branched oligochitosan oxime. Carbohydr. Polym., 2018, 195(1), 551-557.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.007] [PMID: 2980501]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy