Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Mini-Review Article

Role of Long Non-coding RNAs in the Pathogenesis of Alzheimer’s and Parkinson’s Diseases

Author(s): Narmadhaa Sivagurunathan, Aghil T.S. Ambatt and Latchoumycandane Calivarathan*

Volume 15, Issue 2, 2022

Published on: 14 March, 2022

Page: [84 - 96] Pages: 13

DOI: 10.2174/1874609815666220126095847

Price: $65

Abstract

Neurodegenerative diseases are a diverse group of diseases that are now one of the leading causes of morbidity in the elderly population. These diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic Lateral Sclerosis (ALS), etc. Although these diseases have a common characteristic feature of progressive neuronal loss from various parts of the brain, they differ in the clinical symptoms and risk factors, leading to the development and progression of the diseases. AD is a neurological condition that leads to dementia and cognitive decline due to neuronal cell death in the brain, whereas PD is a movement disorder affecting neuro-motor function and develops due to the death of the dopaminergic neurons in the brain, resulting in decreased dopamine levels. Currently, the only treatment available for these neurodegenerative diseases involves reducing the rate of progression of neuronal loss. This necessitates the development of efficient early biomarkers and effective therapies for these diseases. Long non-coding RNAs (LncRNAs) belong to a large family of non-coding transcripts with a minimum length of 200 nucleotides. They are implied to be involved in the development of the brain, a variety of diseases, and epigenetic, transcriptional, and posttranscriptional levels of gene regulation. Aberrant expression of lncRNAs in the CNS is considered to play a major role in the development and progression of AD and PD, two of the most leading causes of morbidity among elderly populations. In this mini-review, we discuss the role of various long non-coding RNAs in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, which can further be studied for the development of potential biomarkers and therapeutic targets for various neurodegenerative diseases.

Keywords: Alzheimer’s disease, apoptosis, lncRNA, neurodegeneration, Parkinson’s disease.

« Previous
Graphical Abstract

[1]
Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: An overview of environmental risk factors. Environ Health Perspect 2005; 113(9): 1250-6.
[http://dx.doi.org/10.1289/ehp.7567] [PMID: 16140637]
[2]
Wu L, Rosa-Neto P, Hsiung GY, et al. Early-onset familial Alzheimer’s disease (EOFAD). Can J Neurol Sci 2012; 39(4): 436-45.
[http://dx.doi.org/10.1017/S0317167100013949] [PMID: 22728850]
[3]
Karri V, Ramos D, Martinez JB, et al. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molec-ular mechanism of neurodegenerative diseases. J Proteomics 2018; 187: 106-25.
[http://dx.doi.org/10.1016/j.jprot.2018.06.020] [PMID: 30017948]
[4]
Baldi I, Lebailly P, Mohammed-Brahim B, Letenneur L, Dartigues JF, Brochard P. Neurodegenerative diseases and ex-posure to pesticides in the elderly. Am J Epidemiol 2003; 157(5): 409-14.
[http://dx.doi.org/10.1093/aje/kwf216] [PMID: 12615605]
[5]
Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005; 366(9503): 2112-7.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[6]
Wang DQ, Fu P, Yao C, et al. Long non-coding RNAs, novel culprits, or bodyguards in neurodegenerative diseases. Mol Ther Nucleic Acids 2018; 10: 269-76.
[http://dx.doi.org/10.1016/j.omtn.2017.12.011] [PMID: 29499939]
[7]
Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visa-korpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol 2014; 65(6): 1140-51.
[http://dx.doi.org/10.1016/j.eururo.2013.12.003] [PMID: 24373479]
[8]
Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 2011; 12(2): 136-49.
[http://dx.doi.org/10.1038/nrg2904] [PMID: 21245830]
[9]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer me-tastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[10]
Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci CB. The roles of non-coding RNAs in Parkin-son’s disease. Mol Biol Rep 2016; 43(11): 1193-204.
[http://dx.doi.org/10.1007/s11033-016-4054-3] [PMID: 27492082]
[11]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[12]
Amin N, McGrath A, Chen Y-PP. Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell 2019; 1(5): 246-56.
[http://dx.doi.org/10.1038/s42256-019-0051-2]
[13]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 925-33.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[14]
Hung T, Chang HY. Long noncoding RNA in genome regula-tion: Prospects and mechanisms. RNA Biol 2010; 7(5): 582-5.
[http://dx.doi.org/10.4161/rna.7.5.13216] [PMID: 20930520]
[15]
Barra J, Leucci E. Probing long non-coding RNA-protein in-teractions. Front Mol Biosci 2017; 4: 45.
[http://dx.doi.org/10.3389/fmolb.2017.00045] [PMID: 28744458]
[16]
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[17]
Niu DK, Jiang L. Can ENCODE tell us how much junk DNA we carry in our genome? Biochem Biophys Res Commun 2013; 430(4): 1340-3.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.074] [PMID: 23268340]
[18]
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: A review. J Anim Sci Technol 2018; 60: 25.
[http://dx.doi.org/10.1186/s40781-018-0183-7] [PMID: 30386629]
[19]
Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A. Roles of long noncoding RNAs in brain development, functional diversifi-cation and neurodegenerative diseases. Brain Res Bull 2013; 97: 69-80.
[http://dx.doi.org/10.1016/j.brainresbull.2013.06.001] [PMID: 23756188]
[20]
Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mech-anisms of long non-coding RNAs in mammalian nervous sys-tem development, plasticity, disease, and evolution. Neuron 2015; 88(5): 861-77.
[http://dx.doi.org/10.1016/j.neuron.2015.09.045] [PMID: 26637795]
[21]
Ding Y, Zhou Q, Wang W. Origins of new genes and evolu-tion of their novel functions. Annu Rev Ecol Evol Syst 2012; 43(1): 345-63.
[http://dx.doi.org/10.1146/annurev-ecolsys-110411-160513]
[22]
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[23]
Pohanka M. Alzheimer’s disease and oxidative stress: A re-view. Curr Med Chem 2014; 21(3): 356-64.
[http://dx.doi.org/10.2174/09298673113206660258] [PMID: 24059239]
[24]
Minter MR, Taylor JM, Crack PJ. The contribution of neu-roinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem 2016; 136(3): 457-74.
[http://dx.doi.org/10.1111/jnc.13411] [PMID: 26509334]
[25]
Bu FT, Wang A, Zhu Y, et al. LncRNA NEAT1: Shedding light on mechanisms and opportunities in liver diseases. Liver Int 2020; 40(11): 2612-26.
[http://dx.doi.org/10.1111/liv.14629] [PMID: 32745314]
[26]
Ke S, Yang Z, Yang F, Wang X, Tan J, Liao B. Long noncod-ing RNA NEAT1 aggravates aβ-induced neuronal damage by targeting mir-107 in alzheimer’s disease. Yonsei Med J 2019; 60(7): 640-50.
[http://dx.doi.org/10.3349/ymj.2019.60.7.640] [PMID: 31250578]
[27]
Zhao MY, Wang GQ, Wang NN, Yu QY, Liu RL, Shi WQ. The long-non-coding RNA NEAT1 is a novel target for Alz-heimer’s disease progression via miR-124/BACE1 axis. Neurol Res 2019; 41(6): 489-97.
[http://dx.doi.org/10.1080/01616412.2018.1548747] [PMID: 31014193]
[28]
Zhao Y, Wang Z, Mao Y, et al. NEAT1 regulates microtubule stabilization via FZD3/GSK3β/P-tau pathway in SH-SY5Y cells and APP/PS1 mice. Aging (Albany NY) 2020; 12(22): 23233-50.
[PMID: 33221742]
[29]
Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 rescues mitochondrial dysfunction through NEDD4L-dependent PINK1 degradation in animal models of alzheimer’s disease. Front Cell Neurosci 2020; 14: 28.
[http://dx.doi.org/10.3389/fncel.2020.00028] [PMID: 32140098]
[30]
Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol 2017; 14(12): 1705-14.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]
[31]
Zhuang J, Cai P, Chen Z, et al. Long noncoding RNA MA-LAT1 and its target microRNA-125b are potential biomarkers for Alzheimer’s disease management via interactions with FOXQ1, PTGS2 and CDK5. Am J Transl Res 2020; 12(9): 5940-54.
[PMID: 33042470]
[32]
Ma P, Li Y, Zhang W, et al. Long non-coding RNA MALAT1 inhibits neuron apoptosis and neuroinflammation while stim-ulates neurite outgrowth and its correlation with MiR-125b Mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s disease. Curr Alzheimer Res 2019; 16(7): 596-612.
[http://dx.doi.org/10.2174/1567205016666190725130134] [PMID: 31345147]
[33]
Yang W, Zhang S, Li B, Zhang Y. MALAT1 inhibits prolifera-tion and promotes apoptosis of SH-SY5Y cells induced by Abeta25-35 via blocking PI3K/mTOR/GSK3beta pathway. Chinese J Cell Mol Immunol 2018; 34(5): 434-41.
[34]
Li L, Xu Y, Zhao M, Gao Z. Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation. Exp Mol Pathol 2020; 117: 104545.
[http://dx.doi.org/10.1016/j.yexmp.2020.104545] [PMID: 32976819]
[35]
Gu R, Wang L, Tang M, Li SR, Liu R, Hu X. LncRNA Rpph1 protects amyloid-β induced neuronal injury in SK-N-SH cells via miR-122/Wnt1 axis. Int J Neurosci 2020; 130(5): 443-53.
[http://dx.doi.org/10.1080/00207454.2019.1692834] [PMID: 31718352]
[36]
Feng L, Liao YT, He JC, et al. Plasma long non-coding RNA BACE1 as a novel biomarker for diagnosis of Alzheimer dis-ease. BMC Neurol 2018; 18(1): 4.
[http://dx.doi.org/10.1186/s12883-017-1008-x] [PMID: 29316899]
[37]
Fotuhi SN, Khalaj-Kondori M, Hoseinpour Feizi MA, Talebi M. Long non-coding RNA BACE1-AS may serve as an alz-heimer's disease blood-based biomarker Journal of molecular neuroscience : MN 2019; 69(3): 351-9.
[http://dx.doi.org/10.1007/s12031-019-01364-2]
[38]
He W, Chi S, Jin X, et al. Long non-coding RNA BACE1-AS modulates isoflurane-induced neurotoxicity to alzheimer’s disease through sponging miR-214-3p. Neurochem Res 2020; 45(10): 2324-35.
[http://dx.doi.org/10.1007/s11064-020-03091-2] [PMID: 32681443]
[39]
Wang D, Wang P, Bian X, et al. Elevated plasma levels of exosomal BACE1 AS combined with the volume and thick-ness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer’s disease 2020. 22(1): 227-38.
[http://dx.doi.org/10.3892/mmr.2020.11118] [PMID: 32377715]
[40]
Zhou Y, Ge Y, Liu Q, et al. LncRNA BACE1-AS Promotes Autophagy-Mediated Neuronal Damage Through The miR-214-3p/ATG5 Signalling Axis In Alzheimer’s Disease. Neuroscience 2021; 455: 52-64.
[http://dx.doi.org/10.1016/j.neuroscience.2020.10.028] [PMID: 33197504]
[41]
Xu W, Li K, Fan Q, Zong B, Han L. Knockdown of long non-coding RNA SOX21-AS1 attenuates amyloid-β-induced neuronal damage by sponging miR-107. Biosci Rep 2020; 40(3): BSR20194295.
[http://dx.doi.org/10.1042/BSR20194295] [PMID: 32124921]
[42]
Yi J, Chen B, Yao X, Lei Y, Ou F, Huang F. Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hip-pocampus tissues in Alzheimer’s disease through inactivating the PI3K/Akt signaling pathway. J Cell Biochem 2019; 120(10): 18053-65.
[http://dx.doi.org/10.1002/jcb.29108] [PMID: 31190362]
[43]
Gu C, Chen C, Wu R, et al. Long noncoding RNA EBF3-AS promotes neuron apoptosis in alzheimer’s disease. DNA Cell Biol 2018; 37(3): 220-6.
[http://dx.doi.org/10.1089/dna.2017.4012] [PMID: 29298096]
[44]
Jiang Q, Shan K, Qun-Wang X, et al. Long non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain. Oncotarget 2016; 7(31): 49688-98.
[http://dx.doi.org/10.18632/oncotarget.10434] [PMID: 27391072]
[45]
Li X, Wang SW, Li XL, Yu FY. Knockdown of long non-coding RNA TUG1 depresses apoptosis of hippocampal neu-rons in Alzheimer’s disease by elevating microRNA-15a and repressing ROCK1 expression. Inflamm Res 2020; 69(9): 897-910.
[46]
Wang X, Wang C, Geng C, Zhao K. LncRNA XIST knock-down attenuates Aβ25-35-induced toxicity, oxidative stress, and apoptosis in primary cultured rat hippocampal neurons by targeting miR-132. Int J Clin Exp Pathol 2018; 11(8): 3915-24.
[PMID: 31949779]
[47]
Yue D, Guanqun G, Jingxin L, et al. Silencing of long noncoding RNA XIST attenuated Alzheimer’s disease-related BACE1 alteration through miR-124. Cell Biol Int 2020; 44(2): 630-6.
[http://dx.doi.org/10.1002/cbin.11263] [PMID: 31743528]
[48]
Wang J, Zhou T, Wang T, Wang B. Suppression of lncRNA-ATB prevents amyloid-beta-induced neurotoxicity in PC12 cells via regulating miR-200/ZNF217 axis. Biomed Pharmacother 2018; 108: 707-15.
[49]
Gao Y, Zhang N, Lv C, Li N, Li X, Li W. lncRNA SNHG1 knockdown alleviates amyloid-β-induced neuronal injury by regulating znf217 via sponging mir-361-3p in alzheimer’s disease. J Alzheimers Dis 2020; 77(1): 85-98.
[http://dx.doi.org/10.3233/JAD-191303] [PMID: 32741808]
[50]
Gu R, Liu R, Wang L, Tang M, Li SR, Hu X. LncRNA RPPH1 attenuates Aβ25-35-induced endoplasmic reticulum stress and apoptosis in SH-SY5Y cells via miR-326/PKM2. Int J Neurosci 2021; 131(5): 425-32.
[http://dx.doi.org/10.1080/00207454.2020.1746307] [PMID: 32336203]
[51]
Zeng T, Ni H, Yu Y, et al. BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-targeting miRNAs. J Chem Neuroanat 2019; 98: 87-96.
[http://dx.doi.org/10.1016/j.jchemneu.2019.04.001] [PMID: 30959172]
[52]
Decourt B, Sabbagh MN. BACE1 as a potential biomarker for Alzheimer’s disease. J Alzheimers Dis 2011; 24(Suppl. 2): 53-9.
[http://dx.doi.org/10.3233/JAD-2011-110017] [PMID: 21403391]
[53]
Zhang W, Zhao H, Wu Q, Xu W, Xia M. Knockdown of BACE1-AS by siRNA improves memory and learning behav-iors in Alzheimer’s disease animal model. Exp Ther Med 2018; 16(3): 2080-6.
[http://dx.doi.org/10.3892/etm.2018.6359] [PMID: 30186443]
[54]
Zhang L, Fang Y, Cheng X, Lian YJ, Xu HL. Silencing of long noncoding RNA SOX21-AS1 relieves neuronal oxidative stress injury in mice with alzheimer’s disease by upregulating FZD3/5 via the Wnt signaling pathway. Mol Neurobiol 2019; 56(5): 3522-37.
[http://dx.doi.org/10.1007/s12035-018-1299-y] [PMID: 30143969]
[55]
Moradi MT, Fallahi H, Rahimi Z. Interaction of long noncod-ing RNA MEG3 with miRNAs: A reciprocal regulation. J Cell Biochem 2019; 120(3): 3339-52.
[http://dx.doi.org/10.1002/jcb.27604] [PMID: 30230601]
[56]
Ghafouri-Fard S, Taheri M. Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed Pharmacother 2019; 118: 109129.
[http://dx.doi.org/10.1016/j.biopha.2019.109129] [PMID: 31326791]
[57]
Liao J, He Q, Li M, Chen Y, Liu Y, Wang J. LncRNA MIAT: Myocardial infarction associated and more. Gene 2016; 578(2): 158-61.
[http://dx.doi.org/10.1016/j.gene.2015.12.032] [PMID: 26707210]
[58]
Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 2020; 26(6): 688-700.
[http://dx.doi.org/10.2174/1381612826666191227154009] [PMID: 31880241]
[59]
Loda A, Heard E. Xist RNA in action: Past, present, and fu-ture. PLoS Genet 2019; 15(9): e1008333.
[http://dx.doi.org/10.1371/journal.pgen.1008333] [PMID: 31537017]
[60]
Li J, Li Z, Zheng W, et al. LncRNA-ATB: An indispensable cancer-related long noncoding RNA. Cell Prolif 2017; 50(6)
[http://dx.doi.org/10.1111/cpr.12381] [PMID: 28884871]
[61]
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front Oncol 2020; 10: 389.
[http://dx.doi.org/10.3389/fonc.2020.00389] [PMID: 32318335]
[62]
Müller M, Jäkel L, Bruinsma IB, Claassen JA, Kuiperij HB, Verbeek MM. MicroRNA-29a is a candidate biomarker for alzheimer’s disease in cell-free cerebrospinal fluid. Mol Neurobiol 2016; 53(5): 2894-9.
[http://dx.doi.org/10.1007/s12035-015-9156-8] [PMID: 25895659]
[63]
Liu CG, Wang JL, Li L, Wang PC. MicroRNA-384 regulates both amyloid precursor protein and β-secretase expression and is a potential biomarker for Alzheimer’s disease. Int J Mol Med 2014; 34(1): 160-6.
[http://dx.doi.org/10.3892/ijmm.2014.1780] [PMID: 24827165]
[64]
Sabry R, El Sharkawy RE, Gad NM. MiRNA -483-5p as a potential noninvasive biomarker for early detection of alz-heimer’s disease. Egypt J Immunol 2020; 27(2): 59-72.
[PMID: 33548978]
[65]
Zhu Y, Li C, Sun A, Wang Y, Zhou S. Quantification of mi-croRNA-210 in the cerebrospinal fluid and serum: Implica-tions for Alzheimer’s disease. Exp Ther Med 2015; 9(3): 1013-7.
[http://dx.doi.org/10.3892/etm.2015.2179] [PMID: 25667669]
[66]
Wang X, Liu D, Huang HZ, et al. A Novel MicroRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in alzheimer’s disease. Biol Psychiatry 2018; 83(5): 395-405.
[http://dx.doi.org/10.1016/j.biopsych.2017.07.023] [PMID: 28965984]
[67]
Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 2013; 33(37): 14645-59.
[http://dx.doi.org/10.1523/JNEUROSCI.1327-13.2013] [PMID: 24027266]
[68]
Wu BW, Guo JD, Wu MS, et al. Osteoblast-derived lipocalin-2 regulated by miRNA-96-5p/Foxo1 advances the progression of Alzheimer’s disease. Epigenomics 2020; 12(17): 1501-13.
[http://dx.doi.org/10.2217/epi-2019-0215] [PMID: 32901506]
[69]
Zhao Y, Bhattacharjee S, Jones BM, Hill J, Dua P, Lukiw WJ. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol Neurobiol 2014; 50(1): 97-106.
[http://dx.doi.org/10.1007/s12035-013-8595-3] [PMID: 24293102]
[70]
Akhter R, Shao Y, Shaw M, et al. Regulation of ADAM10 by miR-140-5p and potential relevance for Alzheimer’s disease. Neurobiol Aging 2018; 63: 110-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.11.007] [PMID: 29253717]
[71]
Song J, Kim YK. Identification of the role of miR-142-5p in Alzheimer’s disease by comparative bioinformatics and cellu-lar analysis. Front Mol Neurosci 2017; 10: 227.
[http://dx.doi.org/10.3389/fnmol.2017.00227] [PMID: 28769761]
[72]
Miao J, Jing J, Shao Y, Sun H. MicroRNA-138 promotes neu-roblastoma SH-SY5Y cell apoptosis by directly targeting DEK in Alzheimer’s disease cell model. BMC Neurosci 2020; 21(1): 33.
[http://dx.doi.org/10.1186/s12868-020-00579-z] [PMID: 32736520]
[73]
Li YY, Cui JG, Dua P, Pogue AI, Bhattacharjee S, Lukiw WJ. Differential expression of miRNA-146a-regulated inflamma-tory genes in human primary neural, astroglial and microglial cells. Neurosci Lett 2011; 499(2): 109-13.
[http://dx.doi.org/10.1016/j.neulet.2011.05.044] [PMID: 21640790]
[74]
Wang Y, Chang Q. MicroRNA miR-212 regulates PDCD4 to attenuate Aβ25-35-induced neurotoxicity via PI3K/AKT sig-naling pathway in Alzheimer’s disease. Biotechnol Lett 2020; 42(9): 1789-97.
[http://dx.doi.org/10.1007/s10529-020-02915-z] [PMID: 32474742]
[75]
Liu DY, Zhang L. MicroRNA-132 promotes neurons cell apoptosis and activates Tau phosphorylation by targeting GTDC-1 in Alzheimer’s disease. Eur Rev Med Pharmacol Sci 2019; 23(19): 8523-32.
[PMID: 31646584]
[76]
Arena A, Iyer AM, Milenkovic I, et al. Developmental ex-pression and dysregulation of miR-146a and miR-155 in down’s syndrome and mouse models of down’s syndrome and alzheimer’s disease. Curr Alzheimer Res 2017; 14(12): 1305-17.
[http://dx.doi.org/10.2174/1567205014666170706112701] [PMID: 28720071]
[77]
Alexandrov P, Zhai Y, Li W, Lukiw W. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a- and miRNA-155-mediated molecular-genetic communication between the human gastro-intestinal tract microbiome and the brain. Folia Neuropathol 2019; 57(3): 211-9.
[http://dx.doi.org/10.5114/fn.2019.88449] [PMID: 31588707]
[78]
Lin Y, Liang X, Yao Y, Xiao H, Shi Y, Yang J. Osthole atten-uates APP-induced Alzheimer’s disease through up-regulating miRNA-101a-3p. Life Sci 2019; 225: 117-31.
[http://dx.doi.org/10.1016/j.lfs.2019.04.004] [PMID: 30951743]
[79]
Barros-Viegas AT, Carmona V, Ferreiro E, et al. miRNA-31 Improves cognition and abolishes Amyloid-β pathology by targeting APP and BACE1 in an animal model of alzheimer’s disease. Mol Ther Nucleic Acids 2020; 19: 1219-36.
[http://dx.doi.org/10.1016/j.omtn.2020.01.010] [PMID: 32069773]
[80]
Li Q, Wang Y, Peng W, et al. MicroRNA-101a regulates au-tophagy phenomenon via the MAPK pathway to modulate alzheimer’s-associated pathogenesis. Cell Transplant 2019; 28(8): 1076-84.
[http://dx.doi.org/10.1177/0963689719857085] [PMID: 31204500]
[81]
Lee BK, Kim MH, Lee SY, Son SJ, Hong CH, Jung YS. Down-regulated platelet mir-1233-5p in patients with alzheimer’s pathologic change with mild cognitive impairment is associat-ed with aβ-induced platelet activation via p-selectin. J Clin Med 2020; 9(6): E1642.
[http://dx.doi.org/10.3390/jcm9061642] [PMID: 32485903]
[82]
Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis 2010; 21(1): 75-9.
[http://dx.doi.org/10.3233/JAD-2010-091603] [PMID: 20413881]
[83]
Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alz-heimer disease patients. J Biol Chem 2012; 287(37): 31298-310.
[http://dx.doi.org/10.1074/jbc.M112.366336] [PMID: 22733824]
[84]
Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregula-tion of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5;-untranslated region: Implica-tions in Alzheimer’s disease. Mol Psychiatry 2019; 24(3): 345-63.
[http://dx.doi.org/10.1038/s41380-018-0266-3] [PMID: 30470799]
[85]
Long JM, Ray B, Lahiri DK. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor pro-tein-cleaving enzyme 1 (BACE1) in human primary brain cul-tures and is reduced in brain tissue specimens of Alzheimer disease subjects. J Biol Chem 2014; 289(8): 5184-98.
[http://dx.doi.org/10.1074/jbc.M113.518241] [PMID: 24352696]
[86]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[87]
Beitz JM. Parkinson’s disease: A review. Front Biosci (Schol Ed) 2014; 6: 65-74.
[http://dx.doi.org/10.2741/S415] [PMID: 24389262]
[88]
Quan Y, Wang J, Wang S, Zhao J. Association of the plasma long non-coding RNA MEG3 with parkinson’s disease. Front Neurol 2020; 11: 532891.
[http://dx.doi.org/10.3389/fneur.2020.532891] [PMID: 33329296]
[89]
Bu LL, Xie YY, Lin DY, et al. LncRNA-T199678 mitigates α-synuclein-induced dopaminergic neuron injury via miR-101-3p. Front Aging Neurosci 2020; 12: 599246.
[http://dx.doi.org/10.3389/fnagi.2020.599246] [PMID: 33328976]
[90]
Sun Q, Zhang Y, Wang S, et al. NEAT1 decreasing suppress-es Parkinson’s Disease progression via acting as miR-1301-3p Sponge. J Mol Neurosci 2021; 71(2): 369-78.
[http://dx.doi.org/10.1007/s12031-020-01660-2] [PMID: 32712773]
[91]
Liu Y, Lu Z. Long non-coding RNA NEAT1 mediates the toxic of Parkinson’s disease induced by MPTP/MPP+ via reg-ulation of gene expression. Clin Exp Pharmacol Physiol 2018; 45(8): 841-8.
[http://dx.doi.org/10.1111/1440-1681.12932] [PMID: 29575151]
[92]
Liu T, Zhang Y, Liu W, Zhao J. LncRNA NEAT1 regulates the development of Parkinson’s disease by targeting AXIN1 via sponging mir-212-3p. Neurochem Res 2021; 46(2): 230-40.
[http://dx.doi.org/10.1007/s11064-020-03157-1] [PMID: 33241432]
[93]
Yan W, Chen ZY, Chen JQ, Chen HM. LncRNA NEAT1 pro-motes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 2018; 496(4): 1019-24.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.149] [PMID: 29287722]
[94]
Liu R, Li F, Zhao W. Long noncoding RNA NEAT1 knock-down inhibits MPP+-induced apoptosis, inflammation and cy-totoxicity in SK-N-SH cells by regulating miR-212-5p/RAB3IP axis. Neurosci Lett 2020; 731: 135060.
[http://dx.doi.org/10.1016/j.neulet.2020.135060] [PMID: 32442477]
[95]
Liu J, Liu D, Zhao B, et al. Long non-coding RNA NEAT1 mediates MPTP/MPP+-induced apoptosis via regulating the miR-124/KLF4 axis in Parkinson’s disease. Open Life Sci 2020; 15(1): 665-76.
[http://dx.doi.org/10.1515/biol-2020-0069] [PMID: 33817255]
[96]
Zhou S, Zhang D, Guo J, Chen Z, Chen Y, Zhang J. Deficien-cy of NEAT1 prevented MPP+-induced inflammatory re-sponse, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis. Brain Res 2021; 1750: 147156.
[http://dx.doi.org/10.1016/j.brainres.2020.147156] [PMID: 33069733]
[97]
Boros FA, Maszlag-Török R, Vécsei L, Klivényi P. Increased level of NEAT1 long non-coding RNA is detectable in periph-eral blood cells of patients with Parkinson’s disease. Brain Res 2020; 1730: 146672.
[http://dx.doi.org/10.1016/j.brainres.2020.146672] [PMID: 31953211]
[98]
Chen MY, Fan K, Zhao LJ, Wei JM, Gao JX, Li ZF. Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) sponges microRNA-124-3p to up-regulate phos-phodiesterase 4B (PDE4B) to accelerate the progression of Parkinson’s disease. Bioengineered 2021; 12(1): 708-19.
[http://dx.doi.org/10.1080/21655979.2021.1883279] [PMID: 33522352]
[99]
Soghli N, Yousefi T, Abolghasemi M, Qujeq D. NORAD, a critical long non-coding RNA in human cancers. Life Sci 2021; 264: 118665.
[http://dx.doi.org/10.1016/j.lfs.2020.118665] [PMID: 33127516]
[100]
Song Q, Geng Y, Li Y, Wang L, Qin J. Long noncoding RNA NORAD regulates MPP+-induced Parkinson’s disease model cells. J Chem Neuroanat 2019; 101: 101668.
[http://dx.doi.org/10.1016/j.jchemneu.2019.101668] [PMID: 31421205]
[101]
Zhou S, Zhang D, Guo J, Chen Z, Chen Y, Zhang J. Long non-coding RNA NORAD functions as a microRNA-204-5p sponge to repress the progression of Parkinson’s disease in vitro by increasing the solute carrier family 5 member 3 ex-pression. IUBMB Life 2020; 72(9): 2045-55.
[http://dx.doi.org/10.1002/iub.2344] [PMID: 32687247]
[102]
Zhang L, Wang J, Liu Q, Xiao Z, Dai Q. Knockdown of long non-coding RNA AL049437 mitigates MPP+;-induced neu-ronal injury in SH-SY5Y cells via the microRNA-205-5p/MAPK1 axis. Neurotoxicology 2020; 78: 29-35.
[http://dx.doi.org/10.1016/j.neuro.2020.02.004] [PMID: 32057949]
[103]
Cai LJ, Tu L, Huang XM, et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 2020; 13(1): 130.
[http://dx.doi.org/10.1186/s13041-020-00656-8] [PMID: 32972446]
[104]
Lu Y, Gong Z, Jin X, Zhao P, Zhang Y, Wang Z. LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson’s Disease. J Cell Biochem 2020.
[PMID: 32277510]
[105]
Liu W, Zhang Q, Zhang J, Pan W, Zhao J, Xu Y. Long non-coding RNA MALAT1 contributes to cell apoptosis by spong-ing miR-124 in Parkinson disease. Cell Biosci 2017; 7: 19.
[http://dx.doi.org/10.1186/s13578-017-0147-5] [PMID: 28439401]
[106]
Zhang LM, Wang MH, Yang HC, et al. Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/ α -synuclein pathway. Aging (Albany NY) 2019; 11(21): 9264-79.
[http://dx.doi.org/10.18632/aging.102330] [PMID: 31683259]
[107]
Zhao J, Geng L, Chen Y, Wu C. SNHG1 promotes MPP+-induced cytotoxicity by regulating PTEN/AKT/mTOR signal-ing pathway in SH-SY5Y cells via sponging miR-153-3p. Biol Res 2020; 53(1): 1.
[http://dx.doi.org/10.1186/s40659-019-0267-y] [PMID: 31907031]
[108]
Zhou S, Zhang D, Guo J, Zhang J, Chen Y. Knockdown of SNHG14 alleviates MPP+-induced injury in the cell model of Parkinson’s Disease by targeting the miR-214-3p/KLF4 axis. Front Neurosci 2020; 14: 930.
[http://dx.doi.org/10.3389/fnins.2020.00930] [PMID: 33071725]
[109]
Liu S, Cui B, Dai ZX, Shi PK, Wang ZH, Guo YY. Long non-coding RNA HOTAIR promotes Parkinson’s Disease induced by MPTP through up-regulating the expression of LRRK2. Curr Neurovasc Res 2016; 13(2): 115-20.
[http://dx.doi.org/10.2174/1567202613666160316155228] [PMID: 26979073]
[110]
Wang S, Zhang X, Guo Y, Rong H, Liu T. The long noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression. Oncotarget 2017; 8(15): 24449-56.
[http://dx.doi.org/10.18632/oncotarget.15511] [PMID: 28445933]
[111]
Lin Q, Hou S, Dai Y, Jiang N, Lin Y. LncRNA HOTAIR tar-gets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP. Biol Chem 2019; 400(9): 1217-28.
[http://dx.doi.org/10.1515/hsz-2018-0431] [PMID: 30738012]
[112]
Lu M, Sun WL, Shen J, et al. LncRNA-UCA1 promotes PD development by upregulating SNCA. Eur Rev Med Pharmacol Sci 2018; 22(22): 7908-15.
[PMID: 30536337]
[113]
Zheng Y, Liu J, Zhuang J, Dong X, Yu M, Li Z. Silencing of UCA1 protects against MPP+-induced cytotoxicity in SK-N-SH Cells via modulating KCTD20 expression by sponging miR-423-5p. Neurochem Res 2021; 46(4): 878-87.
[http://dx.doi.org/10.1007/s11064-020-03214-9] [PMID: 33464446]
[114]
Fan Y, Zhao X, Lu K, Cheng G. LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s dis-ease via ablating microRNA-125b-5p. Brain Res Bull 2020; 157: 119-27.
[http://dx.doi.org/10.1016/j.brainresbull.2020.02.003] [PMID: 32057951]
[115]
Li C, Liu Y, Dong Z, et al. TCDD promotes liver fibrosis through disordering systemic and hepatic iron homeostasis. J Hazard Mater 2020; 395: 122588.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122588] [PMID: 32325343]
[116]
Simchovitz A, Hanan M, Yayon N, et al. A lncRNA survey finds increases in neuroprotective LINC-PINT in Parkinson’s disease substantia nigra. Aging Cell 2020; 19(3): e13115.
[http://dx.doi.org/10.1111/acel.13115] [PMID: 32080970]
[117]
Xu X, Zhuang C, Wu Z, Qiu H, Feng H, Wu J. LincRNA-p21 inhibits cell viability and promotes cell apoptosis in Parkin-son’s Disease through activating α-synuclein expression. BioMed Res Int 2018; 2018: 8181374.
[http://dx.doi.org/10.1155/2018/8181374] [PMID: 30671473]
[118]
Ding XM, Zhao LJ, Qiao HY, Wu SL, Wang XH. Long non-coding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem Biol Interact 2019; 307: 73-81.
[http://dx.doi.org/10.1016/j.cbi.2019.04.017] [PMID: 31004593]
[119]
Li Y, Fang J, Zhou Z, et al. Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle 2020; 19(10): 1158-71.
[http://dx.doi.org/10.1080/15384101.2020.1749447] [PMID: 32308102]
[120]
Xu Y, Wang H, Li F, et al. Long non-coding RNA LINC-PINT suppresses cell proliferation and migration of melanoma via recruiting EZH2. Front Cell Dev Biol 2019; 7: 350.
[http://dx.doi.org/10.3389/fcell.2019.00350] [PMID: 31921860]
[121]
Caggiu E, Paulus K, Mameli G, Arru G, Sechi GP, Sechi LA. Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci 2018; 13: 1-4.
[http://dx.doi.org/10.1016/j.ensci.2018.09.002] [PMID: 30255159]
[122]
Tao H, Liu Y, Hou Y. miRNA 384 5p regulates the progres-sion of Parkinson’s disease by targeting SIRT1 in mice and SH SY5Y cell. Int J Mol Med 2020; 45(2): 441-50.
[PMID: 31894288]
[123]
Zhou J, Zhao Y, Li Z, et al. miR-103a-3p regulates mitophagy in Parkinson’s disease through Parkin/Ambra1 signaling. Pharmacol Res 2020; 160: 105197.
[http://dx.doi.org/10.1016/j.phrs.2020.105197] [PMID: 32942015]
[124]
Hu YB, Zhang YF, Wang H, et al. miR-425 deficiency pro-motes necroptosis and dopaminergic neurodegeneration in Parkinson’s disease. Cell Death Dis 2019; 10(8): 589.
[http://dx.doi.org/10.1038/s41419-019-1809-5] [PMID: 31383850]
[125]
Su Y, Deng MF, Xiong W, et al. MicroRNA-26a/death-associated protein kinase 1 signaling induces synucleinopathy and dopaminergic neuron degeneration in Parkinson’s Dis-ease. Biol Psychiatry 2019; 85(9): 769-81.
[http://dx.doi.org/10.1016/j.biopsych.2018.12.008] [PMID: 30718039]
[126]
Xing RX, Li LG, Liu XW, Tian BX, Cheng Y. Down regula-tion of miR-218, miR-124, and miR-144 relates to Parkin-son’s disease via activating NF-κB signaling. Kaohsiung J Med Sci 2020; 36(10): 786-92.
[http://dx.doi.org/10.1002/kjm2.12241] [PMID: 32492291]
[127]
Li L, Xu J, Wu M, Hu JM. Protective role of microRNA-221 in Parkinson’s disease. Bratisl Lek Listy 2018; 119(1): 22-7.
[http://dx.doi.org/10.4149/BLL_2018_005] [PMID: 29405726]
[128]
Wen Z, Zhang J, Tang P, Tu N, Wang K, Wu G. Overexpres-sion of miR 185 inhibits autophagy and apoptosis of dopa-minergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep 2018; 17(1): 131-7.
[PMID: 29115479]
[129]
Vallelunga A, Iannitti T, Capece S, et al. Serum miR-96-5P and miR-339-5P are potential biomarkers for multiple system atrophy and Parkinson’s Disease. Front Aging Neurosci 2021; 13: 632891.
[http://dx.doi.org/10.3389/fnagi.2021.632891] [PMID: 34381349]
[130]
Zhang X, Yang R, Hu BL, et al. Reduced circulating levels of miR-433 and miR-133b are potential biomarkers for Parkin-son’s Disease. Front Cell Neurosci 2017; 11: 170.
[http://dx.doi.org/10.3389/fncel.2017.00170] [PMID: 28690499]
[131]
Chen Q, Deng N, Lu K, et al. Elevated plasma miR-133b and miR-221-3p as biomarkers for early Parkinson’s disease. Sci Rep 2021; 11(1): 15268.
[http://dx.doi.org/10.1038/s41598-021-94734-z] [PMID: 34315950]
[132]
Ma W, Li Y, Wang C, Xu F, Wang M, Liu Y. Serum miR-221 serves as a biomarker for Parkinson’s disease. Cell Biochem Funct 2016; 34(7): 511-5.
[http://dx.doi.org/10.1002/cbf.3224] [PMID: 27748571]
[133]
Grossi I, Radeghieri A, Paolini L, et al. MicroRNA 34a 5p expression in the plasma and in its extracellular vesicle frac-tions in subjects with Parkinson’s disease: An exploratory study. Int J Mol Med 2021; 47(2): 533-46.
[http://dx.doi.org/10.3892/ijmm.2020.4806] [PMID: 33416118]
[134]
Chen Y, Gao C, Sun Q, et al. MicroRNA-4639 is a regulator of DJ- 1 expression and a potential early diagnostic marker for Parkinson’s Disease. Front Aging Neurosci 2017; 9 232
[http://dx.doi.org/10.3389/fnagi.2017.00232] [PMID: 28785216]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy