Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Trends in Applications of Nanofluids for Effective Utilization of Solar Energy

Author(s): Parag P. Thakur, Shriram S. Sonawane* and Hussein A. Mohammed

Volume 19, Issue 2, 2023

Published on: 08 June, 2022

Page: [170 - 185] Pages: 16

DOI: 10.2174/1573413718666220119104138

Price: $65

Abstract

Renewable-energy sources have been explored recently by scientists to fulfill the global energy demand. According to the International Energy Agency (IEA), by 2040, wind and solar power will be the star performers for energy conservation. The annual potential energy received from the sun ranges from 1,575 to 49,800 exajoules (EJ). However, this energy is not being utilized to its potential. Recently, researchers have proven that nanofluids can be used as a working fluid replacing the conventional working fluid for solar collectors and other heat exchange operations. The selection of the nanofluid is not only based on the size and shape of nanoparticles but the pH value and stability of nanofluids are also important parameters.

This review paper is mainly focused on the recent trends in nanofluids applications for the capture, conservation, and utilization of solar energy. The present paper reviews the detailed analysis of various forces affecting the nanofluid system and also highlights the important aspects to reduce the frictional energy losses, exergy destruction, entropy generation, effect of the flow properties, and thermo-physical properties of the nanofluids, and other reasons for wastage of the exergy. This study also compares the performance of the direct absorption solar panel, flat plate solar panel, parabolic solar collector, photovoltaic thermal solar collector, linear Fresnel solar collector, solar dish, and evacuated type solar collector.

Among these solar collectors, direct absorption solar collectors, flat plate solar collectors, photovoltaic solar collectors, and evacuated type solar collectors are more commonly used solar collectors; thus, the exergy and energy analyses of these collectors are important for their design and application. Stability issues and agglomeration problems are still some major concerns involved in the application of nanofluids. However, the use of nanofluid increases the performance of the solar collector compared to the base fluid as a working fluid. This paper also highlights the recent trends in the application of nanofluids in solar collectors.

Keywords: collectors, nanofluids, ASHRAE, Exergy efficiency, performance evaluation criteria (PEC), Heat exchange

[1]
Choi, S.U. Nanofluids: From vision to reality through research. J. Heat Transfer, 2009, 131, 033106.
[http://dx.doi.org/10.1115/1.3056479]
[2]
Siddiqui, A.A.; Turkyilmazoglu, M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines (Basel), 2019, 10(6), 373.
[http://dx.doi.org/10.3390/mi10060373 ] [PMID: 31167483]
[3]
Turkyilmazoglu, M. Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng., 2016, 29(6), 04016049.
[http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000643]
[4]
Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus, 2020, 135(10), 1-13.
[http://dx.doi.org/10.1140/epjp/s13360-020-00812-y]
[5]
Turkyilmazoglu, M. On the transparent effects of Buongiorno nanofluid model on heat and mass transfer. Eur. Phys. J. Plus, 2021, 136(4), 1-15.
[http://dx.doi.org/10.1140/epjp/s13360-021-01359-2]
[6]
Khan, M.S.; Dhavan, P.P.; Ratna, D.; Sonawane, S.S.; Shimpi, N.G. LDPE: PLA and LDPE: PLA: OMMT polymer composites: Preparation, characterization, and its biodegradation using Bacillus species isolated from dumping yard. Polym. Adv. Technol., 2021, 32(9), 3724-3739.
[http://dx.doi.org/10.1002/pat.5392]
[7]
Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Sonawane, S.S. Textile industry wastewater treatment by cavitation combined with fenton and ceramic nanofiltration membrane. Chem. Eng. Process., 2021, 168, 108540.
[http://dx.doi.org/10.1016/j.cep.2021.108540]
[8]
Malika, M.; Sonawane, S.S. The sono-photocatalytic performance of a novel water based Ti+ 4 coated Al (OH) 3-MWCNT’s hybrid nanofluid for dye fragmentation. Int. J. Chem. React. Eng., 2021. Epub ahead of print
[9]
Malika, M.; Sonawane, S.S. Application of RSM and ANN for the prediction and optimization of thermal conductivity ratio of water based Fe2O3 coated SiC hybrid nanofluid. Int. Commun. Heat Mass Transf., 2021, 126, 105354.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105354]
[10]
Landge, V.K.; Sonawane, S.H.; Sivakumar, M.; Sonawane, S.S.; Babu, G.U.B.; Boczkaj, G. S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance. Sustain. Energy Technol. Assess., 2021, 45, 101194.
[http://dx.doi.org/10.1016/j.seta.2021.101194]
[11]
Thakur, P.; Kumar, N.; Sonawane, S.S. Enhancement of pool boiling performance using MWCNT based nanofluids: A sustainable method for the wastewater and incinerator heat recovery. Sustain. Energy Technol. Assess., 2021, 45, 101115.
[http://dx.doi.org/10.1016/j.seta.2021.101115]
[12]
Malika, M.; Sonawane, S.S. Statistical modelling for the Ultrasonic photodegradation of Rhodamine B dye using aqueous based Bi-metal doped TiO2 supported montmorillonite hybrid nanofluid via RSM. Sustain. Energy Technol. Assess., 2021, 44, 100980.
[http://dx.doi.org/10.1016/j.seta.2020.100980]
[13]
Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess., 2021, 43, 100951.
[http://dx.doi.org/10.1016/j.seta.2020.100951]
[14]
Malika, M.; Sonawane, S.S. Low-frequency ultrasound assisted synthesis of an aqueous aluminium hydroxide decorated graphitic carbon nitride nanowires based hybrid nanofluid for the photocatalytic H2 production from Methylene blue dye. Sustain. Energy Technol. Assess., 2020, 44, 100979.
[http://dx.doi.org/10.1016/j.seta.2020.100979]
[15]
Hakke, V.; Sonawane, S.; Anandan, S.; Sonawane, S.; Ashokkumar, M. Process intensification approach using microreactors for synthesizing nanomaterials-A critical review. Nanomaterials (Basel), 2021, 11(1), 98.
[http://dx.doi.org/10.3390/nano11010098 ] [PMID: 33406661]
[16]
Thakur, P.; Sonawane, S.; Potoroko, I.; Sonawane, S.H. Recent advances in ultrasound-assisted synthesis of nano-emulsions and their industrial applications. Curr. Pharm. Biotechnol., 2021, 22(13), 1748-1758.
[PMID: 33148154]
[17]
Thakur, P.; Sonawane, S. Numeric and experimental study of the car radiator performance. J. Indian Chem. Soc., 2020. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=1700862796609287276
[18]
Malika, S.S. Effect of nanoparticle mixed ratio on stability and thermo-physical properties of cuo-zno/ water-based hybrid nanofluid. J. Indian Chem. Soc., 2020, 97, 414-419.
[19]
Khan, M.; Mishra, S.; Ratna, D.; Sonawane, S.; Shimpi, N.G. Investigation of thermal and mechanical properties of styrene–butadiene rubber nanocomposites filled with SiO2–polystyrene core–shell nanoparticles. J. Compos. Mater., 2019, 2019, 0021998319886618.
[20]
Charde, S.J.; Sonawane, S.S.; Sonawane, S.H.; Shimpi, N.G. Degradation kinetics of polycarbonate composites: kinetic parameters and artificial neural network. Chem. Biochem. Eng. Q., 2018, 32(2), 1173.
[http://dx.doi.org/10.15255/CABEQ.2017.1173]
[21]
Kumar, N.; Sonawane, S.H.; Shriram, S. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluids. Int. Commun. Heat Mass Transf., 2018, 90, 1-10.
[22]
Kumar, N.; Urkude, N.; Sonawane, S.S.; Sonawane, S.H. Experimental study on pool boiling and Critical Heat Flux enhancement of metal oxides based nanofluids. Int. Commun. Heat Mass Transf., 2018, 96, 37-42.
[23]
Charde, S.J.; Sonawane, S.S.; Sonawane, S.H.; Shimpi, N. Influence of functionalized calcium carbonate nanofillers on properties of melt excruded polycarbonate composites. Chem. Eng. Commun., 2018, 205(4), 492-505.
[24]
Shimpi, N.; Borane, M.; Miishra, S.; Kadam, M.; Sonawane, S.S. Bio-Degradation of Isolactic Polypropylene (iPP)/Poly(lactic acid) (PLA) and iPP/PLA/Nanocalcium carbonates using Phanerochaetechrysosporium. Adv. Polym. Technol., 2018, 37(2), 1-9.
[25]
Chandane, V.S.; Rathod, A.P.; Wasewar, K.L.; Sonawane, S.S. Synthesis of cenosphere supported heterogeneous catalyst and its performance in esterification reaction. Chem. Eng. Commun., 2018, 205(2), 238-248.
[http://dx.doi.org/10.1080/00986445.2017.1384922]
[26]
Sen, T.; Miishra, S.; Sonawane, S.S.; Shimpi, N. Polyaniline/zinc oxide nanocomposite as room-temperature sensing layer for methane. Polym. Eng. Sci., 2018, 58(8), 1438-1445.
[27]
Chandane, V.S.; Rathod, A.P.; Wasewar, K.L.; Sonawane, S.S. Esterification of propionic acid with isopropyl alcohol over ion exchange resins: Optimization and kinetics. Korean J. Chem. Eng., 2017, 34(1), 249-258.
[http://dx.doi.org/10.1007/s11814-016-0249-5]
[28]
Chandane, V.S.; Rathod, A.P.; Wasewar, K.L.; Sonawane, S.S. Response surface optimization and kinetics of isopropyl palmitate synthesis using homogeneous acid catalyst. Int. J. Chem. React. Eng., 2017, 15(3), 111.
[http://dx.doi.org/10.1515/ijcre-2016-0111]
[29]
Bethi, B.; Sonawane, S.H.; Potoroko, I.; Bhanvase, B.A.; Sonawane, S.S. Novel hybrid system based on hydrodynamic cavitation for treatment of dye waste water: A first report on bench scale study. J. Environ. Chem. Eng., 2017, 5, 26.
[http://dx.doi.org/10.1016/j.jece.2017.03.026]
[30]
Charde, S.J.; Sonawane, S.S.; Rathod, A.P.; Sonawane, S.H.; Shimpi, N.G. Copper‐doped zinc oxide nanoparticles: Influence on thermal, thermo mechanical, and tribological properties of polycarbonate. Polym. Compos., 2017, 39(53), E1398-E1406.
[31]
Gaikwad, S.M.; Jolhe, P.D.; Bhanvase, B.A.; Kulkarni, A.; Patil, V.S.; Sonawane, S.S.; Sonawane, S.H. Process intensification for continuous synthesis of performic acid using Corning advanced-flow reactors. Green Proc. Synthesis, 2017, 6(2), 147.
[32]
Chandane, V.S.; Rathod, A.P.; Wasewar, K.L.; Sonawane, S.S. Process optimization and kinetic modeling for esterification of propionic acid with benzyl alcohol on ion-exchange resin catalyst. Korean J. Chem. Eng., 2017, 34(4), 987-996.
[http://dx.doi.org/10.1007/s11814-017-0006-4]
[33]
Chandane, V.S.; Rathod, A.P.; Wasewar, K.L.; Sonawane, S.S. Efficient cenosphere supported catalyst for the esterification of n-octanol with acetic acid. C. R. Chim., 2017, 20(8)
[http://dx.doi.org/10.1016/j.crci.2017.03.007]
[34]
Sarve, A.; Shriram, S.; Varma, M. Ultrasound assisted two-stage biodiesel synthesis from non-edible Schleicheratriguga oil using heterogeneous catalyst: Kinetics and thermodynamic analysis. Ultrason. Sonochem., 2016, 29, 288-298.
[35]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Experimental investigations and theoretical determination of thermal conductivity and vis-cosity of TiO2–ethylene glycol nanofluids. Int. Commun. Heat Mass Transf., 2016, 73, 54-61.
[36]
Sonawane, S.S.; Thakur, P.P.; Malika, M.; Ali, H.M. Recent advances in the applications of green synthesized nanoparticle based nanofluids for the environmental remediation. Curr. Pharm. Biotechnol., 2022.
[37]
Kumar, N.; Shriram, S. Experimental study of Thermal conductivity and convective heat transfer enhancement using CuO and TiO2 nanoparticles. Int. Commun. Heat Mass Transf., 2016, 76, 98-107.
[38]
Shriram, S. Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl. Therm. Eng., 2016, 109, 66.
[39]
Kumar, N.; Shriram, S. Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger. Int. Commun. Heat Mass Transf., 2016, 78, 277-284.
[40]
Sonawane, Shriram; Thakur, Parag Paul, Ritesh Study of thermal property enhancement of MWCNT based polypropylene (PP) nanocomposites. Mater. Today Proc., 2020, 27(p1), 550-555.
[41]
Sonawane, S.; Thakur, P.; Paul, R. Study on Visco-elastic property enhancement of MWCNT based polypropylene (PP) nanocomposites. Mater. Today Proc., 2020, 5, 417.
[http://dx.doi.org/10.1016/j.matpr.2020.05.417]
[42]
Sonawane, S.S.; Patil, V.S. Effect of ultrasound on leaching of tannic acid from tea and its modelling. Chem. Eng. Technol., 2008, 31(9), 1304-1309.
[43]
Sen, N.; Ekhande, S.; Thakur, P.; Singh, K.K.; Mukhopadhyay, S.; Sirsam, R.; Shenoy, K.T. Direct Precipitation of uranium from loaded organic in a microreactor. Sep. Sci. Technol., 2019, 54(9), 1430-1442.
[http://dx.doi.org/10.1080/01496395.2018.1563158]
[44]
Malkapuram, S.T.; Sharma, V.; Gumfekar, S.P.; Sonawane, S.; Sonawane, S.; Boczkaj, G.; Seepana, M.M. A review on recent advances in the application of biosurfactants in wastewater treatment. Sustain. Energy Technol. Assess., 2021, 48, 101576.
[http://dx.doi.org/10.1016/j.seta.2021.101576]
[45]
Menni, Y.; Chamkha, A.J.; Lorenzini, G.; Kaid, N.; Ameur, H.; Bensafi, M. Advances of nanofluids in solar collectors—a review of numerical studies. Math. Model. Eng. Probl., 2019, 6(3), 415-427.
[http://dx.doi.org/10.18280/mmep.060313]
[46]
Taamneh, Y.; Manokar, A.M.; Thalib, M.M.; Kabeel, A.E.; Sathyamurthy, R.; Chamkha, A.J. Extraction of drinking water from modified inclined solar still incorporated with spiral tube solar water heater. J. Water Process Eng., 2020, 38, 101613.
[http://dx.doi.org/10.1016/j.jwpe.2020.101613]
[47]
Nasrin, r., alim, m. A., & chamkha, a. J. Effects of physical parameters on natural convection in a solar collector filled with nanofluid. Heat transfer—Asian Res., 2013, 42(1), 73-88.
[48]
Alsabery, A.I.; Parvin, S.; Ghalambaz, M.; Chamkha, A.J.; Hashim, I. Convection heat transfer in 3D wavy direct absorber solar collector based on two-phase nanofluid approach. Appl. Sci. (Basel), 2020, 10(20), 7265.
[http://dx.doi.org/10.3390/app10207265]
[49]
Menni, Y.; Azzi, A.; Chamkha, A.J. A review of solar energy collectors: Models and applications. J. Appl. Comput. Mech., 2018, 4(4), 375-401.
[50]
Sasikumar, C.; Manokar, A.M.; Vimala, M.; Winston, D.P.; Kabeel, A.E.; Sathyamurthy, R.; Chamkha, A.J. Experimental studies on passive inclined solar panel absorber solar still. J. Therm. Anal. Calorim., 2020, 139(6), 3649-3660.
[http://dx.doi.org/10.1007/s10973-019-08770-z]
[51]
Chamkha, A.J. Solar radiation assisted natural convection in uniform porous medium supported by a vertical flat plate. J. Heat Transfer, 1997, 119(1), 89-96.
[http://dx.doi.org/10.1115/1.2824104]
[52]
Basha, H.T.; Sivaraj, R.; Reddy, A.S.; Chamkha, A.J. SWCNH/ diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation–solar energy application. Eur. Phys. J. Spec. Top., 2019, 228(12), 2531-2551.
[http://dx.doi.org/10.1140/epjst/e2019-900048-x]
[53]
Manokar, A.M.; Vimala, M.; Sathyamurthy, R.; Kabeel, A.E.; Winston, D.P.; Chamkha, A.J. Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector. Environ. Dev. Sustain., 2020, 22(5), 4145-4167.
[http://dx.doi.org/10.1007/s10668-019-00376-7]
[54]
Kabeel, A.E. A review on different design modifications employed in inclined solar still for enhancing the productivity. J. Sol. Energy Eng., 2019, 141(3), 031007.
[http://dx.doi.org/10.1115/1.4041547]
[55]
Chamkha, A.J.; Rufuss, D.D.W.; Kabeel, A.E.; Sathyamurthy, R.; Abdelgaid, M.; Manokar, A.M.; Madhu, B. Augmenting the potable water produced from single slope solar still using CNT-doped paraffin wax as energy storage: An experimental approach. J. Braz. Soc. Mech. Sci. Eng., 2020, 42(12), 1-10.
[http://dx.doi.org/10.1007/s40430-020-02703-w]
[56]
Chamkha, A.J.; Selimefendigil, F. Numerical analysis for thermal performance of a photovoltaic thermal solar collector with SiO2-water nanofluid. Appl. Sci. (Basel), 2018, 8(11), 2223.
[http://dx.doi.org/10.3390/app8112223]
[57]
Winston, D.P.; Kumar, B.P.; Christabel, S.C.; Chamkha, A.J.; Sathyamurthy, R. Maximum power extraction in solar renewable power system-a bypass diode scanning approach. Comput. Electr. Eng., 2018, 70, 122-136.
[http://dx.doi.org/10.1016/j.compeleceng.2018.02.034]
[58]
Wang, Y.; Ren, B.; Ou, J.Z.; Xu, K.; Yang, C.; Li, Y.; Zhang, H. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro-and photocatalysis. Sci. Bull. (Beijing), 2021, [Epub ahead of print].
[http://dx.doi.org/10.1016/j.scib.2021.02.007]
[59]
Wang, Y.; Vu, L.M.; Lu, T.; Xu, C.; Liu, Y.; Ou, J.Z.; Li, Y. Piezoelectric Responses of Mechanically Exfoliated Two-Dimensional SnS2 Nanosheets. ACS Appl. Mater. Interfaces, 2020, 12(46), 51662-51668.
[http://dx.doi.org/10.1021/acsami.0c16039 ] [PMID: 33140968]
[60]
Manokar, A.M.; Taamneh, Y.; Kabeel, A.E.; Ravishankar, S.; Winston, D.P.; Chamkha, A.J. Review of different methods employed in pyramidal solar still desalination to augment the yield of freshwater. Desalination Water Treat., 2018, 136, 20-30.
[http://dx.doi.org/10.5004/dwt.2018.23188]
[61]
Sadripour, S.; Chamkha, A.J. The effect of nanoparticle morphology on heat transfer and entropy generation of supported nanofluids in a heat sink solar collector. Therm. Sci. Eng. Prog., 2019, 9, 266-280.
[http://dx.doi.org/10.1016/j.tsep.2018.12.002]
[62]
Al-Rashed, A.A.; Oztop, H.F.; Kolsi, L.; Boudjemline, A.; Almeshaal, M.A.; Ali, M.E.; Chamkha, A. CFD study of heat and mass transfer and entropy generation in a 3D solar distiller heated by an internal column. Int. J. Mech. Sci., 2019, 152, 280-288.
[http://dx.doi.org/10.1016/j.ijmecsci.2018.12.056]
[63]
Said, Z.; Hachicha, A.A.; Aberoumand, S.; Yousef, B.A.; Sayed, E.T.; Bellos, E. Recent advances on nanofluids for low to medium temperature solar collectors: Energy, exergy, economic analysis and environmental impact. Pror. Energy Combust. Sci., 2021, 84, 100898.
[http://dx.doi.org/10.1016/j.pecs.2020.100898]
[64]
Saffman p. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 1965, 22, 385-400.
[http://dx.doi.org/10.1017/S0022112065000824]
[65]
Saffman, P. Corrigendum to ‘the lift on a small sphere in a slow shear flow’. J. Fluid Mech., 1968, 31, 624.
[http://dx.doi.org/10.1017/S0022112068999990]
[66]
Rubinow, S. keller JB. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech., 1961, 11, 447-459.
[http://dx.doi.org/10.1017/S0022112061000640]
[67]
Marshall, J.S.; Li, S. Adhesive particle flow; Cambridge University Press: Cambridge, UK, 2014.
[http://dx.doi.org/10.1017/CBO9781139424547]]
[68]
Brown, R. A brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and in- organic bodies. Philos. Mag., 1828, 4, 161-173.
[http://dx.doi.org/10.1080/14786442808674769]
[69]
Li, A.; Ahmadi, G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol., 1992, 16, 209-226.
[http://dx.doi.org/10.1080/02786829208959550]
[70]
Abouali, O.; Nikbakht, A.; Ahmadi, G.; Saadabadi, S. Three-dimensional simulation of brownian motion of nano-particles in aerodynamic lenses. Aerosol Sci. Technol., 2009, 43, 205-215.
[http://dx.doi.org/10.1080/02786820802587888]
[71]
Michaelides, E.E. Transport properties of nanofluids. A critical review. J. Non-Equilib. Thermodyn., 2013, 38, 1-79.
[http://dx.doi.org/10.1515/jnetdy-2012-0023]
[72]
He, C.; Ahmadi, G. Particle deposition with thermophoresis in laminar and tur- bulent duct flows. Aerosol Sci. Technol., 1998, 29, 525-546.
[http://dx.doi.org/10.1080/02786829808965588]
[73]
Buongiorno, J. Convective transport in nanofluids. J. Heat Transfer., 2006, 128(3), 240-250.
[http://dx.doi.org/10.1115/1.2150834]
[74]
Savithiri, S.; Pattamatta, A.; Das, S.K. Scaling analysis for the investigation of slip mechanisms in nanofluids. Nanoscale Res. Lett., 2011, 6, 471.
[http://dx.doi.org/10.1186/1556-276X-6-471 ] [PMID: 21791036]
[75]
Schwarzkopf, J.D.; Sommerfeld, M.; Crowe, C.T.; Tsuji, Y. Multiphase flows with droplets and particles; CRC Press: USA, 2011.
[76]
Li, S.; Marshall, J.S.; Liu, G.; Yao, Q. Adhesive particulate flow: the discrete-ele- ment method and its application in energy and environmental engineering. Pror. Energy Combust. Sci., 2011, 37, 633-668.
[http://dx.doi.org/10.1016/j.pecs.2011.02.001]
[77]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Effect of Sonication time on enhancement of effective thermal conductivity of nano TiO2-Water, ethylene glycol and paraffin oil nanofluids and models comparisons. J. Exp. Nanosci., 2015, 10(4), 832421.
[http://dx.doi.org/10.1080/17458080.2013.832421]
[78]
Gadhe, A.; Shriram, S.; Varma, M. Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. Int. J. Hydrogen Energy, 2015, 40(32), 9942-9951.
[79]
Sarve, A.; Shriram, S.; Varma, M. Ultrasound assisted biodiesel production from sesame oil using barium hydroxide as a heterogeneous catalyst: Comparative assessment of prediction abilities between RSM and ANN. Ultrason. Sonochem., 2015, 26, 218-228.
[80]
Sarve, A.; Shriram, S.; Varma, M. Optimization and kinetic studies on biodiesel production from Kusum (Schleicheratriguga) oil using response surface methodology. J. Oleo Sci., 2015, 64(9), 987-997.
[81]
Sarve, A.; Shriram, S.; Varma, M. Response surface optimization and artificial neural network of biodiesel production from crude mahua oil under supercritical ethanol conditions using CO2 as a co-solvent. RSC Advances, 2015, 5, 69702-69713.
[82]
Gadhe, A.; Shriram, S.; Varma, M. Ultrasonic Pre-treatment for an enhancement of biohydrogen production from complex food waste. Int. J. Hydrogen Energy, 2014, 39, 7721-7729.
[83]
Gadhe, A.; Shriram, S.; Varma, M. Evaluation of ultrasonication as a treatment strategy for enhancement of biohydrogen production from complex distillery wastewater and process optimization. Int. J. Hydrogen Energy, 2014, 39, 10041-10050.
[84]
Gadhe, A.; Shriram, S.; Varma, M. Kinetic analysis of biohydrogen production from complex dairy wastewater under optimized condition. Int. J. Hydrogen Energy, 2014, 39, 1306-1314.
[85]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Heat Transfer study on concentric tube heat exchanger using TiO2–water–based nanofluid. Int. Commun. Heat Mass Transf., 2014, 57, 10.
[86]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Effect of sonication time on Enhancement of effective thermal conductivity nano TiO2–water, ethelene glycol and paraffin oil nanofluids. J. Exp. Nanosci., 2013, 10(4), 310-322.
[87]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Synthesis of TiO2 –Water nanofluids for its viscosity and dispersion stability study. J. Nano Res., 2013, 24, 26-33.
[88]
Gadhe, A.; Shriram, S.; Varma, M. Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach. Int. J. Hydrogen Energy, 2013, 38(16), 6607-6617.
[89]
Gadhe, A.; Shriram, S.; Varma, M. Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int. J. Hydrogen Energy, 2013, 40, 13.
[90]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Study on concentric tube heat exchanger heat transfer performance using Al2O3-water based nanofluids. Int. Commun. Heat Mass Transf., 2013, 49, 60-68.
[91]
Bashirnerzhad, K. Viscosity of nanofluids: A review of recent experimental studies. ICHMT, 2016, 73, 114-123.
[92]
Waghmare, M.D.; Wasewar, K.L.; Sonawane, S.S.; Shende, D.Z. Reactive extraction of picolinic and nicotinic acid by natural non-toxic solvent. Separ. Purif. Tech., 2013, 120, 296-303.
[http://dx.doi.org/10.1016/j.seppur.2013.10.019]
[93]
Khedkar, R.S.; Sonawane, S.S.; Wasewar, K.L. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int. Commun. Heat Mass Transf., 2012, 39(5), 665-669.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.03.012]
[94]
Waghmare, M.D.; Wasewar, K.L.; Sonawane, S.S.; Shende, D.Z. Natural nontoxic solvents for recovery of picolinic acid by reactive extraction. Ind. Eng. Chem. Res., 2011, 50(23), 13526-13537.
[http://dx.doi.org/10.1021/ie201228u]
[95]
Shimpi, N.G.; Kakade, R.U.; Sonawane, S.S.; Mali, A.D.; Mishra, S. Influence of nano-inorganic particles on properties of epoxy nanocomposites. Polym. Plast. Technol. Eng., 2011, 50(8), 758-761.
[http://dx.doi.org/10.1080/03602559.2010.551437]
[96]
Parate, V.R.; Kawadkar, D.K.; Sonawane, S.S. Study of whey protein concentrate fortification in cookies variety biscuits. Int. J. Food Eng., 2011, 7(2), 1638.
[http://dx.doi.org/10.2202/1556-3758.1638]
[97]
Wasewar, K.L.; Patidar, S.; Agarwal, V.K.; Rathod, A.; Sonawane, S.S.; Agarwal, R.V.; Inci, I. Performance study of pervaporation reactor (PVR) for esterification of acetic acid with ethanol. Int. J. Chem. React. Eng., 2010, 8(1), 2025.
[http://dx.doi.org/10.2202/1542-6580.2025]
[98]
Sonawane, S.S.; Mishra, S.; Shimpi, N.G.; Rathod, A.P.; Wasewar, K.L. Comparative study of the mechanical and thermal properties of polyamide-66 filled with commercial and nano-Mg (OH)2 particles. Polym. Plast. Technol. Eng., 2010, 49(5), 474-480.
[http://dx.doi.org/10.1080/03602550903413938]
[99]
Sonawane, S.S.; Mishra, S.; Shimpi, N.G. Effect of nano-CaCO3 on mechanical and thermal properties of polyamide nanocomposites. Polym. Plast. Technol. Eng., 2009, 49(1), 38-44.
[http://dx.doi.org/10.1080/03602550903204220]
[100]
Mishra, S.; Sonawane, S.S.; Shimpi, N.G. Influence of organo-montomorillonite on mechanical and rheological properties of polyamide nanocomposites. Appl. Clay Sci., 2009, 46(2), 222-225.
[http://dx.doi.org/10.1016/j.clay.2009.07.024]
[101]
Mishra, S.; Sonawane, S.S.; Shimpi, N.G. Effect of commercial & nano-Ca3 (PO4) 2 on mechanical and thermal properties of polyamide composites. Polym. Plast. Technol. Eng., 2009, 48(3), 265-271.
[http://dx.doi.org/10.1080/03602550802674713]
[102]
Sonawane, S.S.; Mishra, S.; Shimpi, N.G. Polyamide nanocomposites: investigation of mechanical, thermal and morphological characteristics. Polym. Plast. Technol. Eng., 2009, 48(10), 1055-1061.
[http://dx.doi.org/10.1080/03602550903092583]
[103]
Bertocchi, R.; Kribus, A.; Karni, J. Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver. J. Sol. Energy Eng., 2004, 126, 833-841.
[http://dx.doi.org/10.1115/1.1756924]
[104]
Otanicar, T.; Hoyt, J.; Fahar, M.; Jiang, X.; Taylor, R.A. Experimental and Numerical Study on the Optical Properties and Agglomeration of Nanoparticle Suspen- Sions. J. Nanopart. Res., 2013, 15, 2039.
[http://dx.doi.org/10.1007/s11051-013-2039-x]
[105]
Tyagi, H; Phelan, P; Prasher, R. Predicted efficiency of a nanofluid-based direct absorption solar receiver. ASME, 2007, ES2007-36139, 729-736.
[http://dx.doi.org/10.1115/ES2007-36139]
[106]
Otanicar, T.P.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G. Nanofluid-Based Direct Absorption Solar Collector. J. Renew. Sustain. Energy, 2010, 2, 033102.
[http://dx.doi.org/10.1063/1.3429737]
[107]
Luo, Z.; Wang, C.; Wei, W.; Xiao, G.; Ni, M. Performance improvement of a nanofluid solar collector based on direct absorption collection (Dac) Con- Cepts. Int. J. Heat Mass Transf., 2014, 75, 262-271.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.03.072]
[108]
Ladjevardi, S.M.; Asnaghi, A.; Izadkhast, P.S.; Kashani, A.H. Applicability of graphite nanofluids in direct solar energy absorption. Sol. Energy, 2013, 94, 327-334.
[http://dx.doi.org/10.1016/j.solener.2013.05.012]
[109]
Farhana, K.; Kadirgama, K.; Rahman, M.; Ramasamy, D.; Noor, M. Improvement in the performance of solar collectors with nanofluids—A State-Of-The-Art review. Nano-Struct. Nano-Objects, 2019, 18, 100276.
[http://dx.doi.org/10.1016/j.nanoso.2019.100276]
[110]
Muhammad, M.J.; Muhammad, I.A.; Sidik, N.A.C.; Yazid, M.N. Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: A review. Int. Commun. Heat Mass Transf., 2016, 76, 6-15.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.009]
[111]
Ghanshyam, B.; Sonawane, S.S.; Wasewar, K.L. Synthesis of CaSO4 nanoparticles and its effect on PA6/CaSO4 nanocomposite for investigation of thermal and viscoelastic properties. Res. J. Chem. Environ., 2017, 21(11), 39-44.
[112]
Optimization involving chemistry, mechanism of esterification process of acetic acid using response surface methodology for the microcontroller based automated reactor with sulfonated carbon as catalyst. Res. J. Chem. Environ., 2020, 24, 2.
[113]
Sonawane, S.; Thakur, P.; Paul, R. Study on thermal property enhancement of MWCNT based polypropylene (PP) nanocomposites. Mater. Today Proc., 2020, 27(1), 550-555.
[http://dx.doi.org/10.1016/j.matpr.2019.12.018]
[114]
Malika, M.; Sonawane, S.S. Review on application of nanofluid/nano particle as water disinfectant. J. Indian Assoc. Environ. Manage., 2019, 39(1-4), 21-24.
[115]
Thakur, P.; Sonawane, S.S. Application of nanofluids in CO2 capture and extraction from waste water. J. Indian Assoc. Environ. Manage., 2019, 39(1-4), 4-8.
[116]
Navinchandra, G.; Khan, M.; Shirole, S. Process optimization for the synthesis of Silver (AgNPs), Iron Oxide (α-Fe2O3NPs) and Core-Shell (Ag-Fe2O3CNPs) nanoparticles using the aqueous extract of Alstonia. Open Mater. Sci. J., 2018, 12, 29-39.
[117]
Vishal, R.; Shriram, S.; Shyam, S. Food fortification of soy protein isolate for human health. Res. J. Chem. Environ., 2018, 22, 108-115.
[118]
Yousefi, T.; Shojaeizadeh, E.; Veysi, F.; Zinadini, S. An experimental investigation on the effect of pH Variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol. Energy, 2012, 86, 771-779.
[http://dx.doi.org/10.1016/j.solener.2011.12.003]
[119]
Yousefi, T.; Veisy, F.; Shojaeizadeh, E.; Zinadini, S. An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors. Exp. Therm. Fluid Sci., 2012, 39, 207-212.
[http://dx.doi.org/10.1016/j.expthermflusci.2012.01.025]
[120]
Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy, 2012, 39, 293-298.
[http://dx.doi.org/10.1016/j.renene.2011.08.056]
[121]
Moghadam, A.J. Effects of Cuo/Water nanofluid onthe efficiency of a flat-plate solar collector. Exp. Therm. Fluid Sci., 2014, 58, 9-14.
[http://dx.doi.org/10.1016/j.expthermflusci.2014.06.014]
[122]
Said, Z. Thermophysical properties of single wall carbon nanotubes and its effect on exergy efficiency of a flat plate solar collector. Sol. Energy, 2015, 115, 757-769.
[http://dx.doi.org/10.1016/j.solener.2015.02.037]
[123]
Azha, N.I.S.; Hussin, H.; Nasif, M.S.; Hussain, T. Thermal performance enhancement in flat plate solar collector solar water heater: A review. Processes (Basel), 2020, 8(7), 756.
[http://dx.doi.org/10.3390/pr8070756]
[124]
Hemmat, M.; Mohammad, E.; Kamyab, M.H.; Valadkhani, M. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Sol. Energy, 2020, 199, 796-818.
[http://dx.doi.org/10.1016/j.solener.2020.01.015]
[125]
Al-Waeli, A.H.; Sopian, K.; Chaichan, M.T.; Kazem, H.A.; Hasan, H.A.; Al-Shamani, A.N. An experimental investigation of sic nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Convers. Manage., 2017, 142, 547-558.
[http://dx.doi.org/10.1016/j.enconman.2017.03.076]
[126]
Al-Waeli, A.H.; Chaichan, M.T.; Kazem, H.A.; Sopian, K. Comparative study to use Nano-(Al2O3, CuO, And SiC) with water to enhance photovoltaic thermal Pv/T collectors. Energy Convers. Manage., 2017, 148, 963-973.
[http://dx.doi.org/10.1016/j.enconman.2017.06.072]
[127]
Ghanshyam, B. Improvement in thermal stability, thermomechanical and oxygen permeability of PA6 by ODA modified Ca3(PO4)2 nano-filler. Res. J. Chem. Environ., 2016, 21(6), 38-44.
[128]
Gadhe, A.; Shriram, S.; Varma, M. Ultrasonication as a pre-treatment strategy for enhancement of biohydrogen production from dairy wastewater. Res. J. Chem. Environ., 2016, 20(4), 10-17.
[129]
Farzanehnia, A.; Sardarabadi, M. Exergy in Photovoltaic/Thermal Nanofluid-Based Collector Systems.In: Exergy and Its Application-Toward Green Energy Production and Sustainable Environment; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.85431]]
[130]
Sonawane, S.S.; Wasewar, K.L. Barman Ghanshyam, Study on thermal and mechanical properties and crystallization behaviour of PA6, PVC and OMMT nanocomposites. Res. J. Chem. Environ., 2016, 20(10), 6-10.
[131]
Wasewar, K.L.; Sonawane, S.S.; Ghanshyam, B. Effect of octadecyl amine modified mmt on thermal stability, visco-elastic properties and crystallization behaviour of polyamide 6 nanocomposites. Res. J. Chem. Environ., 2016, 20(11), 1-14.
[132]
Kumar, N.; Shriram, S. Influence of CuO and TiO2 nanoparticles in enhancing the overall heat transfer coefficient and thermal conductivity of water and ethylene glycol based nanofluids. Res. J. Chem. Environ., 2016, 20(8), 24-30.
[133]
Sabiha, M.A.; Saidur, R.; Hassani, S.; Said, Z.; Mekhilef, S. Energy performance of an evacuated tube solar collector using single walled Carbon Nanotubes nanofluids. Energy Convers. Manage., 2015, 105, 1377-1388.
[http://dx.doi.org/10.1016/j.enconman.2015.09.009]
[134]
Park, S.S. A study on the characteristics of Carbon nanofluid for heat transfer enhancement of heat pipe. Renew. Energy, 2014, 65, 123-129.
[http://dx.doi.org/10.1016/j.renene.2013.07.040]
[135]
Beer, M.; Rybár, R.; Cehlár, M.; Zhironkin, S.; Sivák, P. Design and numerical study of the novel manifold header for the evacuated tube solar collector. Energies, 2020, 13(10), 2450.
[136]
Akilu, S.; Sharma, K.V.; Baheta, A.T.; Mamat, R. A review of thermo-physical properties of water based composite nanofluids. Renew. Sustain. Energy Rev., 2016, 66, 654-678.
[http://dx.doi.org/10.1016/j.rser.2016.08.036]
[137]
Jang, S.P.; Choi, S.U. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett., 2004, 84, 4316-4318.
[http://dx.doi.org/10.1063/1.1756684]
[138]
Thakur, P.P.; Khapane, T.S.; Sonawane, S.S. Comparative performance evaluation of fly ash-based hybrid nanofluids in microchannel-based direct absorption solar collector. J. Therm. Anal. Calorim., 2021, 143(2), 1713-1726.
[http://dx.doi.org/10.1007/s10973-020-09884-5]
[139]
Pal, R. On the Lewis–Nielsen model for thermal/electrical conductivity of com- posites. Compos., Part A Appl. Sci. Manuf., 2008, 39, 718-726.
[http://dx.doi.org/10.1016/j.compositesa.2008.02.008]
[140]
Akram, N.; Sadri, R.; Kazi, S. A comprehensive review on nanofluid operated solar flat plate collectors. J. Therm. Anal. Calorim., 2020, 139, 1309-1343.
[http://dx.doi.org/10.1007/s10973-019-08514-z]
[141]
Goel, N. A review of nanofluidbased direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors. Renew. Energy, 2020, 145, 903-913.
[http://dx.doi.org/10.1016/j.renene.2019.06.097]
[142]
Javadi, F.; Saidur, R.; Kamalisarvestani, M. Investigating performance improve- ment of solar collectors by using nanofluids. Renew. Sustain. Energy Rev., 2013, 28, 232-245.
[http://dx.doi.org/10.1016/j.rser.2013.06.053]
[143]
Weiss, W.; Rommel, M. Process Heat Collectors: State Of The Art within Task 33/Iv; Aee Intec, 2008.
[144]
Fayaz, H.; Nasrin, R.; Rahim, N.; Hasanuzzaman, M. Energy and exergy analysis of the Pvt system: Effect of nanofluid flow rate. Sol. Energy, 2018, 169, 217-230.
[http://dx.doi.org/10.1016/j.solener.2018.05.004]
[145]
Aberoumand, S.; Ghamari, S.; Shabani, B. Energy and exergy analysis of a photo- voltaic thermal (Pv/T) system using nanofluids: An experimental study. Sol. Energy, 2018, 165, 167-177.
[http://dx.doi.org/10.1016/j.solener.2018.03.028]
[146]
Hosseinzadeh, M.; Salari, A.; Sardarabadi, M.; Passandideh-Fard, M. Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Convers. Manage., 2018, 160, 93-108.
[http://dx.doi.org/10.1016/j.enconman.2018.01.006]
[147]
Mahendran, M.; Lee, G.; Sharma, K.; Shahrani, A.; Bakar, R. Performance of evacuated tube solar collector using water-based Titanium Oxide nanofluid. J. Mech. Eng. Sci., 2012, 3, 301-310.
[http://dx.doi.org/10.15282/jmes.3.2012.6.0028]
[148]
Calise, F.; Vanoli, L. Parabolic trough photovoltaic/thermal collectors: Design and simulation model. Energies, 2012, 5(10), 4186-4208.
[http://dx.doi.org/10.3390/en5104186]
[149]
Kalogirou, S.A. Solar Energy Engineering: Processes and Systems; Academic Press: USA, 2013.
[150]
He, Y-L.A. MCRT and FVM coupled simulation method for energyconversion process in parabolic trough solar collector. Renew. Energy, 2011, 36(3), 976-985.
[http://dx.doi.org/10.1016/j.renene.2010.07.017]
[151]
Kalogirou, S.A. A detailed thermal model of a parabolic trough collector receiver. Energy, 2012, 48(1), 298-306.
[http://dx.doi.org/10.1016/j.energy.2012.06.023]
[152]
Bellos, E.; Tzivanidis, C. Parametric investigation of nanofluids utilizationin parabolic trough collectors. Therm. Sci. Eng. Prog., 2017, 2, 71-79.
[153]
Mwesigye, A.; Huan, Z.; Meyer, J.P. Thermodynamic optimisation of theperformance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid. Appl. Energy, 2015, 156, 398-412.
[http://dx.doi.org/10.1016/j.apenergy.2015.07.035]
[154]
Khullar, V. Solar energy harvesting using nanofluids-based concentratingsolar collector. J. Nanotechnol. Eng. Med., 2012, 3(3), 031003.
[http://dx.doi.org/10.1115/1.4007387]
[155]
De, A. Laforgia, Modelling and optimization oftransparent parabolic trough collector based on gas-phase nanofluids. Renew. Energy, 2013, 58, 134-139.
[http://dx.doi.org/10.1016/j.renene.2013.03.014]
[156]
Kasaeian, A. Performance evaluation and nanofluid using capabilitystudy of a solar parabolic trough collector. Energy Convers. Manage., 2015, 89, 368-375.
[http://dx.doi.org/10.1016/j.enconman.2014.09.056]
[157]
Andraka, C.E. Cost/performance tradeoffs for reflectors used in solarconcentrating dish systems. ASME 2008 2nd International Conferenceon Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences 2008.
[158]
Islam, M.T. A comprehensive review of state-of-the-art concentratingsolar power (CSP) technologies: Current status and research trends. Renew. Sustain. Energy Rev., 2018, 91, 987-1018.
[http://dx.doi.org/10.1016/j.rser.2018.04.097]
[159]
Pavlovic, S. Comparative study of spiral and conical cavity receiversfor a solar dish collector. Energy Convers. Manage., 2018, 178, 111-122.
[http://dx.doi.org/10.1016/j.enconman.2018.10.030]
[160]
AbKadir, M.Z.A.; Rafeeu, Y.; Adam, N.M. Prospective scenarios for the fullsolar energy development in Malaysia. Renew. Sustain. Energy Rev., 2010, 14(9), 3023-3031.
[http://dx.doi.org/10.1016/j.rser.2010.07.062]
[161]
Poullikkas, A. Economic analysis of power generation from parabolictrough solar thermal plants for the mediterranean region—A case studyfor the island of Cyprus. Renew. Sustain. Energy Rev., 2009, 13(9), 2474-2484.
[http://dx.doi.org/10.1016/j.rser.2009.03.014]
[162]
Poullikkas, A.; Kourtis, G.; Hadjipaschalis, I. Parametric analysis for theinstallation of solar dish technologies in Mediterranean regions. Renew. Sustain. Energy Rev., 2010, 14(9), 2772-2783.
[http://dx.doi.org/10.1016/j.rser.2010.07.021]
[163]
Moradi, M.; Mehrpooya, M. Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower. Energy, 2017, 130, 530-543.
[http://dx.doi.org/10.1016/j.energy.2017.05.001]
[164]
Prado, G.O.; Vieira, L.G.M.; Damasceno, J.J.R. Solar dish concentrator for desalting water. Sol. Energy, 2016, 136, 659-667.
[http://dx.doi.org/10.1016/j.solener.2016.07.039]
[165]
Prasad, G.C.; Reddy, K.; Sundararajan, T. Optimization of solar linear fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube. Sol. Energy, 2017, 150, 1-12.
[http://dx.doi.org/10.1016/j.solener.2017.04.026]
[166]
Reddy, K.; Veershetty, G.; Vikram, T.S. Effect of wind speed and direction on convective heat losses from solar parabolic dish modified cavity receiver. Sol. Energy, 2016, 131, 183-198.
[http://dx.doi.org/10.1016/j.solener.2016.02.039]
[167]
Mahian, O. Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models. Int. J. Heat Mass Transf., 2014, 78, 64-75.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.06.051]
[168]
Zhu, G. History, current state, and future of linear Fresnel concentrating solar collectors. Sol. Energy, 2014, 103, 639-652.
[http://dx.doi.org/10.1016/j.solener.2013.05.021]
[169]
Montes, M.J. Advances in the linear fresnel single-tube receivers: hybrid loops with non-evacuated and evacuated receivers. Energy Convers. Manage., 2017, 149, 318-333.
[http://dx.doi.org/10.1016/j.enconman.2017.07.031]
[170]
Bellos, E.; Tzivanidis, C.; Papadopoulos, A. Optical and thermal analysis of a linear fresnel reflector operating with thermal oil, molten salt and liquid sodium. Appl. Therm. Eng., 2018, 133, 70-80.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.01.038]
[171]
Bellos, E.; Tzivanidis, C.; Papadopoulos, A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. J. Therm. Anal. Calorim., 2018, 2018, 1-19.
[172]
Bellos, E.; Tzivanidis, C. Multi-criteria evaluation of a nanofluid-based linear Fresnel solar collector. Sol. Energy, 2018, 163, 200-214.
[http://dx.doi.org/10.1016/j.solener.2018.02.007]
[173]
Klein, S. Calculation of flat-plate collector loss coefficients. Sol. Energy, 1975, 17, 79.
[http://dx.doi.org/10.1016/0038-092X(75)90020-1]
[174]
Said, Z.; Arora, S.; Bellos, E. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renew. Sustain. Energy Rev., 2018, 94, 302-316.
[http://dx.doi.org/10.1016/j.rser.2018.06.010]
[175]
Jafarkazemi, F. Energetic and energetic evaluation of fat plate solar collectors. Renew. Energy, 2013, 56, 55-63.
[http://dx.doi.org/10.1016/j.renene.2012.10.031]
[176]
Said, Z.; Alim, M.A.; Janajreh, I. Exergy efficiency analysis of a fat plate solar collector using graphene based nanofuid. IOP Conf. Ser., 2015, 92(1), 012015.
[177]
Vijay, J.; Sonawane, S.S. Investigations on rheological behaviour of paraffin based Fe3O4 nanofluids and its modelling. Res. J. Chem. Environ., 2015, 19(12), 22-29.
[178]
Rathod, A.P.; Wasewar, K.L.; Sonawane, S.S. Enhancement of esterification of propionic acid with ethanol by pervaporation reactor. Res. J. Chem. Environ., 2014, 18(5), 539341.
[179]
Khedkar, R.; Sonawane, S.S.; Wasewar, K.L. Preliminary study of thermal conductivity and viscosity of ethylene glycol with CuO nanorod inclusions. Res. J. Chem. Environ., 2014, 18(3), 31-36.
[180]
Waghmare, M.D.; Wasewar, K.L.; Sonawane, S.S. Equilibrium, kinetics and thermodynamics of picolinic acid adsorption on low cost adsorbent peanut hull. Res. J. Chem. Environ., 2014, 18(11), 31-36.
[181]
Sharma, R.; Ishak, A. Second order slip flow of cu-water nanofluid over a stretching sheet with heat transfer. WSEAS Trans. Fluid Mech., 2014, 9, 26-33.
[182]
Shimpi, G.; Kimothi, S.; Sonawane, S.S. A review: Nanoscience and technology emerging trend. Int. J. Nano System Technol., 2008, 1(1), 1-16.
[183]
Sonawane, S.; Usmani, G.A.; Parate, V.R.; Wani, K.S.; Patil, V.S.; Wagh, S.J. .Mass transfer and Kinetics studies of Anta acids in Acetic acid and its Modeling and Simulation. J. Mater. Sci. Res. India, 2008, 05(1) Available from: http://www.materialsciencejournal.org/?p=1907
[184]
Sonawane, S.; Usmani, G.A.; Parate, V.R.; Wani, K.S.; Patil, V.S. To studies the kinetics of catalytic Esterification reaction between n-Butanol and Acetic acid. J. Mater. Sci. Res. India, 2008, 5(1) Available from: http://www.materialsciencejournal.org/?p=1932
[185]
Sonawane, S.; Patil, V.S.; Patil, G.S.; Toshib, S.; Kulkarni, R.D. Characteristics of mass transfer packing for extraction of Acetic acid from aqueous solution. Inst. Eng. India, 2001, 82, 4.
[186]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Proc. Eng., 2013, 51, 318-323.
[187]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L.; Rathod, A.P. Dispersions of CuO nanoparticles in paraffin prepared by ultrasonication: A potential coolant. Int. Conf. Biol. Environ. Chem., 2012, 46, 48-52.
[188]
Kodape, S.M.; Rathod, A.P.; Sonawane, S.S. Study on synthesis and characterization of CoFe2O4 nanoparticles. Int. Conf. Biol. Environ. Chem., 2012, 46, 3835-3842.
[189]
Sonawane, S.S.; Rathod, A.P.; Wasewar, K.L.; Varma, M.N. Nanocomposites for food packaging applications. Res. J. Chem. Environ., 2011, 15(2), 2531-2538.
[190]
Sonawane, S.S.; Rathod, A.P.; Wasewar, K.L. Effect of polystyrene nanoparticles and their effects on mechanical and thermal properties of polyamide nanocomposites. Res. J. Chem. Environ., 2011, 15(2), 589-593.
[191]
Rathod, A.; Wasewar, K.L.; Sonawane, S.S. Pervaporation reactor: Principles and applications. IUP Chem. Eng. J., 2011, II(4), 54-66.
[192]
Kailas, L. Reactive extraction of citric acid from aqueous solutions using Tri-N-Octylamine in MIBK. IUP J. Chem., 2010, III(3), 7-19.
[193]
Gadhe, A.; Shriram, S.; Varma, M. An evaluative report of fermentative Hydrogen Production: Current prospective and way forward. Invertis J. Renew. Energy, 2013, 3(2), 106-117.
[194]
Ajit, P.; Sonawane, S. Enhancement of esterification reaction by pervaporation reactor: An intensifying approach. Proc. Eng., 2013, 51, 330-334.
[195]
Ajit, P. Intensification of esterification reaction of lactic acid with iso-propanol using pervaporation reactor. Proc. Eng., 2013, 51, 456-460.
[196]
Investigations on extraction equilibrium of picolinic acid into various solvents: Mechanism and influencing factors. Res. J. Chem. Environ., 2013, 17(2), 53-59.
[197]
Gadhe, A.; Shriram, S.; Varma, M. Kinetic modeling of biohydrogen production from complex wastewater by anaerobic cultures. Res. J. Chem. Environ., 2013, 17(12), 129-135.
[198]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Thermo – physical characterization of Paraffin based Fe3O4 nanofluids. Proc. Eng., 2013, 51, 342-346.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy