Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Ligand-based Modeling of CXC Chemokine Receptor 4 and Identification of Inhibitors of Novel Chemotypes as Potential Leads towards New Anti- COVID-19 Treatments

Author(s): Safa Daoud and Mutasem Taha*

Volume 18, Issue 8, 2022

Published on: 05 April, 2022

Page: [871 - 883] Pages: 13

DOI: 10.2174/1573406418666220118153541

Price: $65

Abstract

Background: Chemokines are involved in several human diseases and different stages of COVID-19 infection. They play a critical role in the pathophysiology of the associated acute respiratory disease syndrome, a major complication leading to death among COVID-19 patients. In particular, CXC chemokine receptor 4 (CXCR4) was found to be highly expressed in COVID-19 patients.

Methods: We herein describe a computational workflow based on combining pharmacophore modeling and QSAR analysis towards the discovery of novel CXCR4 inhibitors. Subsequent virtual screening identified two promising CXCR4 inhibitors from the National Cancer Institute (NCI) list of compounds. The most active hit showed in vitro IC50 value of 24.4 μM.

Conclusion: These results proved the validity of the QSAR model and associated pharmacophore models as means to screen virtual databases for new CXCR4 inhibitors as leads for the development of new COVID-19 therapies.

Keywords: Coronavirus disease, CXCR4, pharmacophore modeling, QSAR, virtual screening, in vitro assay.

Graphical Abstract

[1]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[2]
Khalil, B.A.; Elemam, N.M.; Maghazachi, A.A. Chemokines and chemokine receptors during COVID-19 infection. Comput. Struct. Biotechnol. J., 2021, 19(19), 976-988.
[http://dx.doi.org/10.1016/j.csbj.2021.01.034] [PMID: 33558827]
[3]
Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and treatment options. J. Clin. Immunol., 2020, 215, 108448.
[http://dx.doi.org/10.1016/j.clim.2020.108448] [PMID: 32353634]
[4]
Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science, 2020, 368(6490), 473-474.
[http://dx.doi.org/10.1126/science.abb8925] [PMID: 32303591]
[5]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[6]
Hue, S.; Beldi-Ferchiou, A.; Bendib, I.; Surenaud, M.; Fourati, S.; Frapard, T.; Rivoal, S.; Razazi, K.; Carteaux, G.; Delfau-Larue, M-H.; Mekontso-Dessap, A.; Audureau, E.; de Prost, N. Uncontrolled innate and impaired adaptive immune responses in patients with COVID-19 acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 2020, 202(11), 1509-1519.
[http://dx.doi.org/10.1164/rccm.202005-1885OC] [PMID: 32866033]
[7]
Alosaimi, B.; Hamed, M.E.; Naeem, A.; Alsharef, A.A.; AlQahtani, S.Y.; AlDosari, K.M.; Alamri, A.A.; Al-Eisa, K.; Khojah, T.; Assiri, A.M.; Enani, M.A. MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and el-evated inflammatory innate immune response in the lower respiratory tract. Cytokine, 2020, 126, 154895.
[http://dx.doi.org/10.1016/j.cyto.2019.154895] [PMID: 31706200]
[8]
Neidleman, J.; Luo, X.; George, A.F.; McGregor, M.; Yang, J.; Yun, C.; Murray, V.; Gill, G.; Greene, W.C.; Vasquez, J. Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19. MedRxiv, 2021.
[9]
Silvin, A.; Chapuis, N.; Dunsmore, G.; Goubet, A-G.; Dubuisson, A.; Derosa, L.; Almire, C.; Hénon, C.; Kosmider, O.; Droin, N. Elevat-ed calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell, 2020, 182(6), 1401-1418.
[http://dx.doi.org/10.1016/j.cell.2020.08.002]
[10]
Zimmermann, J.; Klimkait, T.; Briand, F.; Obrecht, D. Dual anti-viral and immunomodulatory activity of the CXCR4 inhibitor Balixafor-tide (POL6326) in preclinical in vitro and in vivo SARS-CoV2 infection models. Swiss Med. Wkly., 2021, 14S-14S.
[11]
Tahirovic, Y.A.; Pelly, S.; Jecs, E.; Miller, E.J.; Sharma, S.K.; Liotta, D.C.; Wilson, L.J. Small molecule and peptide-based CXCR4 modula-tors as therapeutic agents. A patent review for the period from 2010 to 2018. Expert Opin. Ther. Pat., 2020, 30(2), 87-101.
[http://dx.doi.org/10.1080/13543776.2020.1707186] [PMID: 31854208]
[12]
Mirza, M.U.; Saadabadi, A.; Vanmeert, M.; Salo-Ahen, O.M.H.; Abdullah, I.; Claes, S.; De Jonghe, S.; Schols, D.; Ahmad, S.; Froeyen, M. Discovery of HIV entry inhibitors via a hybrid CXCR4 and CCR5 receptor pharmacophore-based virtual screening approach. Eur. J. Pharm. Sci., 2020, 155, 105537.
[http://dx.doi.org/10.1016/j.ejps.2020.105537] [PMID: 32890663]
[13]
Bai, R.; Shi, Q.; Liang, Z.; Yoon, Y.; Han, Y.; Feng, A.; Liu, S.; Oum, Y.; Yun, C.C.; Shim, H. Development of CXCR4 modulators by virtual HTS of a novel amide-sulfamide compound library. Eur. J. Med. Chem., 2017, 126, 464-475.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.026] [PMID: 27914361]
[14]
Pérez-Nueno, V.I.; Pettersson, S.; Ritchie, D.W.; Borrell, J.I.; Teixidó, J. Discovery of novel HIV entry inhibitors for the CXCR4 receptor by prospective virtual screening. J. Chem. Inf. Model., 2009, 49(4), 810-823.
[http://dx.doi.org/10.1021/ci800468q] [PMID: 19358515]
[15]
Taha, M.O.; Bustanji, Y.; Al-Ghussein, M.A.; Mohammad, M.; Zalloum, H.; Al-Masri, I.M.; Atallah, N. Pharmacophore modeling, quanti-tative structure-activity relationship analysis, and in silico screening reveal potent glycogen synthase kinase-3β inhibitory activities for ci-metidine, hydroxychloroquine, and gemifloxacin. J. Med. Chem., 2008, 51(7), 2062-2077.
[http://dx.doi.org/10.1021/jm7009765] [PMID: 18324764]
[16]
Taha, M.O.; Dahabiyeh, L.A.; Bustanji, Y.; Zalloum, H.; Saleh, S. Combining ligand-based pharmacophore modeling, quantitative struc-ture-activity relationship analysis and in silico screening for the discovery of new potent hormone sensitive lipase inhibitors. J. Med. Chem., 2008, 51(20), 6478-6494.
[http://dx.doi.org/10.1021/jm800718k] [PMID: 18808096]
[17]
Taha, M.O.; Bustanji, Y.; Al-Bakri, A.G.; Yousef, A-M.; Zalloum, W.A.; Al-Masri, I.M.; Atallah, N. Discovery of new potent human pro-tein tyrosine phosphatase inhibitors via pharmacophore and QSAR analysis followed by in silico screening. J. Mol. Graph. Model., 2007, 25(6), 870-884.
[http://dx.doi.org/10.1016/j.jmgm.2006.08.008] [PMID: 17035054]
[18]
Abu Hammad, A.M.; Taha, M.O. Pharmacophore modeling, quantitative structure-activity relationship analysis, and shape-complemented in silico screening allow access to novel influenza neuraminidase inhibitors. J. Chem. Inf. Model., 2009, 49(4), 978-996.
[http://dx.doi.org/10.1021/ci8003682] [PMID: 19341295]
[19]
Taha, M.O.; Habash, M.; Hatmal, M.M.; Abdelazeem, A.H.; Qandil, A. Ligand-based modeling followed by in vitro bioassay yielded new potent glucokinase activators. J. Mol. Graph. Model., 2015, 56, 91-102.
[http://dx.doi.org/10.1016/j.jmgm.2014.12.003] [PMID: 25574766]
[20]
Skerlj, R.; Bridger, G.; McEachern, E.; Harwig, C.; Smith, C.; Kaller, A.; Veale, D.; Yee, H.; Skupinska, K.; Wauthy, R.; Wang, L.; Baird, I.; Zhu, Y.; Burrage, K.; Yang, W.; Sartori, M.; Huskens, D.; De Clercq, E.; Schols, D. Design of novel CXCR4 antagonists that are potent in-hibitors of T-tropic (X4) HIV-1 replication. Bioorg. Med. Chem. Lett., 2011, 21(5), 1414-1418.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.021] [PMID: 21295470]
[21]
Skerlj, R.; Bridger, G.; McEachern, E.; Harwig, C.; Smith, C.; Wilson, T.; Veale, D.; Yee, H.; Crawford, J.; Skupinska, K.; Wauthy, R.; Yang, W.; Zhu, Y.; Bogucki, D.; Di Fluri, M.; Langille, J.; Huskens, D.; De Clercq, E.; Schols, D. Synthesis and SAR of novel CXCR4 an-tagonists that are potent inhibitors of T tropic (X4) HIV-1 replication. Bioorg. Med. Chem. Lett., 2011, 21(1), 262-266.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.023] [PMID: 21109432]
[22]
Skerlj, R.T.; Bridger, G.J.; Kaller, A.; McEachern, E.J.; Crawford, J.B.; Zhou, Y.; Atsma, B.; Langille, J.; Nan, S.; Veale, D.; Wilson, T.; Harwig, C.; Hatse, S.; Princen, K.; De Clercq, E.; Schols, D. Discovery of novel small molecule orally bioavailable C-X-C chemokine re-ceptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. J. Med. Chem., 2010, 53(8), 3376-3388.
[http://dx.doi.org/10.1021/jm100073m] [PMID: 20297846]
[23]
Kirchmair, J.; Markt, P.; Distinto, S.; Wolber, G.; Langer, T. Evaluation of the performance of 3D virtual screening protocols: RMSD com-parisons, enrichment assessments, and decoy selection--what can we learn from earlier mistakes? J. Comput. Aided Mol. Des., 2008, 22(3-4), 213-228.
[http://dx.doi.org/10.1007/s10822-007-9163-6] [PMID: 18196462]
[24]
Smellie, A.; Kahn, S.D.; Teig, S.L. Analysis of conformational coverage. 1. Validation and estimation of coverage. J. Chem. Inf. Comput. Sci., 1995, 35(2), 285-294.
[http://dx.doi.org/10.1021/ci00024a018]
[25]
Mansi, I.; Al-Sha’er, M.A.; Mhaidat, N.; Taha, M. Ligand based pharmacophore modeling followed by biological screening lead to discov-ery of novel PDK1 inhibitors as anticancer agents. Anticancer. Agents Med. Chem., 2020, 20(4), 476-485.
[http://dx.doi.org/10.2174/1871520620666191224110600] [PMID: 31889497]
[26]
Daoud, S.; Taha, M.O.J. Pharmacophore modeling of JAK1: A target infested with activity-cliffs. J. Mol. Graph., 2020, 99, 107615.
[http://dx.doi.org/10.1016/j.jmgm.2020.107615] [PMID: 32339898]
[27]
Al-Barghouthy, E.Y.; Abuhammad, A.; Taha, M.O. QSAR-guided pharmacophore modeling and subsequent virtual screening identify novel TYK2 inhibitor. Med. Chem. Res., 2019, 28(9), 1368-1387.
[http://dx.doi.org/10.1007/s00044-019-02377-7]
[28]
Shahin, R.; Alqtaishat, S.; Taha, M.O. Elaborate ligand-based modeling reveal new submicromolar Rho kinase inhibitors. J. Comput. Aided Mol. Des., 2012, 26(2), 249-266.
[http://dx.doi.org/10.1007/s10822-011-9509-y] [PMID: 22167443]
[29]
Triballeau, N.; Acher, F.; Brabet, I.; Pin, J-P.; Bertrand, H-O. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem., 2005, 48(7), 2534-2547.
[http://dx.doi.org/10.1021/jm049092j] [PMID: 15801843]
[30]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[31]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailabil-ity of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[33]
Li, H.; Wang, R. A focus on CXCR4 in Alzheimer’s disease. Brain Circ., 2017, 3(4), 199-203.
[http://dx.doi.org/10.4103/bc.bc_13_17] [PMID: 30276325]
[34]
Insel, P.A.; Wilderman, A.; Zambon, A.C.; Snead, A.N.; Murray, F.; Aroonsakool, N.; McDonald, D.S.; Zhou, S.; McCann, T.; Zhang, L.; Sriram, K.; Chinn, A.M.; Michkov, A.V.; Lynch, R.M.; Overland, A.C.; Corriden, R.G. Protein–Coupled Receptor (GPCR) expression in native cells:“Novel” endoGPCRs as physiologic regulators and therapeutic targets. Mol. Pharmacol., 2015, 88(1), 181-187.
[http://dx.doi.org/10.1124/mol.115.098129] [PMID: 25737495]
[35]
Jacob, L.; Hoffmann, B.; Stoven, V.; Vert, J-P. Virtual screening of GPCRs: An in silico chemogenomics approach. BMC Bioinformatics, 2008, 9(1), 363.
[http://dx.doi.org/10.1186/1471-2105-9-363] [PMID: 18775075]
[36]
Moro, S.; Bacilieri, M.; Deflorian, F.; Spalluto, G. G protein-coupled receptors as challenging druggable targets: Insights from in silico studies. New J. Chem., 2006, 30(3), 301-308.
[http://dx.doi.org/10.1039/b516389g]
[37]
Costanzi, S.; Tikhonova, I.G.; Harden, T.K.; Jacobson, K.A. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands. J. Comput. Aided Mol. Des., 2009, 23(11), 747-754.
[http://dx.doi.org/10.1007/s10822-008-9218-3] [PMID: 18483766]
[38]
Rohrbaugh, R.H.; Jurs, P.C. Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships. Anal. Chim. Acta, 1987, 199, 99-109.
[http://dx.doi.org/10.1016/S0003-2670(00)82801-9]
[39]
Kier, L.B.; Hall, L.H. Molecular Connectivity in Structure-Activity Analysis; Wiley & Sons: New York, 1986.
[40]
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-; VCH Verlag GmbH: Weinheim, 2008.
[41]
Bosshard, H.R. Molecular recognition by induced fit: How fit is the concept? News Physiol. Sci., 2001, 16(4), 171-173.
[http://dx.doi.org/10.1152/physiologyonline.2001.16.4.171] [PMID: 11479367]
[42]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M. Heterogeneous CPU+GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]
[43]
Abuhamdah, S.; Habash, M.; Taha, M.O. Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors. J. Comput. Aided Mol. Des., 2013, 27(12), 1075-1092.
[http://dx.doi.org/10.1007/s10822-013-9699-6] [PMID: 24338032]
[44]
Al-Sha’er, M.A.; Khanfar, M.A.; Taha, M.O. Discovery of novel urokinase plasminogen activator (uPA) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis. J. Mol. Model., 2014, 20(1), 2080.
[http://dx.doi.org/10.1007/s00894-014-2080-4] [PMID: 24469103]
[45]
Wu, B.; Chien, E.Y.T.; Mol, C.D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F.C.; Hamel, D.J.; Kuhn, P.; Handel, T.M.; Cherezov, V.; Stevens, R.C. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science, 2010, 330(6007), 1066-1071.
[http://dx.doi.org/10.1126/science.1194396] [PMID: 20929726]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy