[1]
(a) World Malaria Report 2020. Available from: https://www.who.int/publications/i/item/9789240015791
(b) de Villiers, K.A.; Egan, T.J. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Acc. Chem. Res., 2021, 54(11), 2649-2659.
[http://dx.doi.org/10.1021/acs.accounts.1c00154] [PMID: 33982570]
(c) Combrinck, J.M.; Mabotha, T.E.; Ncokazi, K.K.; Ambele, M.A.; Taylor, D.; Smith, P.J.; Hoppe, H.C.; Egan, T.J. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol., 2013, 8(1), 133-137.
[http://dx.doi.org/10.1021/cb300454t] [PMID: 23043646]
(d) Fitzroy, S-M.; Gildenhuys, J.; Olivier, T.; Tshililo, N.O.; Kuter, D.; de Villiers, K.A. The effects of quinoline and non-quinoline inhibitors on the kinetics of lipidmediated β-hematin crystallization. Langmuir, 2017, 33(30), 7529-7537.
[http://dx.doi.org/10.1021/acs.langmuir.7b01132] [PMID: 28689414]
(b) de Villiers, K.A.; Egan, T.J. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Acc. Chem. Res., 2021, 54(11), 2649-2659.
[http://dx.doi.org/10.1021/acs.accounts.1c00154] [PMID: 33982570]
(c) Combrinck, J.M.; Mabotha, T.E.; Ncokazi, K.K.; Ambele, M.A.; Taylor, D.; Smith, P.J.; Hoppe, H.C.; Egan, T.J. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol., 2013, 8(1), 133-137.
[http://dx.doi.org/10.1021/cb300454t] [PMID: 23043646]
(d) Fitzroy, S-M.; Gildenhuys, J.; Olivier, T.; Tshililo, N.O.; Kuter, D.; de Villiers, K.A. The effects of quinoline and non-quinoline inhibitors on the kinetics of lipidmediated β-hematin crystallization. Langmuir, 2017, 33(30), 7529-7537.
[http://dx.doi.org/10.1021/acs.langmuir.7b01132] [PMID: 28689414]
[2]
(a) Kumar, S.; Bhardwaj, T.R.; Prasad, D.N.; Singh, R.K. Drug targets for resistant malaria: Historic to future perspectives. Biomed. Pharmacother., 2018, 104, 8-27.
[http://dx.doi.org/10.1016/j.biopha.2018.05.009] [PMID: 29758416]
(b) Dziwornu, G.A.; Coertzen, D.; Leshabane, M.; Korkor, C.M.; Cloete, C.K.; Njoroge, M.; Gibhard, L.; Lawrence, N.; Reader, J.; van der Watt, M.; Wittlin, S.; Birkholtz, L.M.; Chibale, K. Antimalarial benzimidazole derivatives incorporating phenolic mannich base side chains inhibit microtubule and hemozoin formation: Structure-activity relationship and In Vivo oral efficacy studies. J. Med. Chem., 2021, 64(8), 5198-5215.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00354] [PMID: 33844521]
[http://dx.doi.org/10.1016/j.biopha.2018.05.009] [PMID: 29758416]
(b) Dziwornu, G.A.; Coertzen, D.; Leshabane, M.; Korkor, C.M.; Cloete, C.K.; Njoroge, M.; Gibhard, L.; Lawrence, N.; Reader, J.; van der Watt, M.; Wittlin, S.; Birkholtz, L.M.; Chibale, K. Antimalarial benzimidazole derivatives incorporating phenolic mannich base side chains inhibit microtubule and hemozoin formation: Structure-activity relationship and In Vivo oral efficacy studies. J. Med. Chem., 2021, 64(8), 5198-5215.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00354] [PMID: 33844521]
[3]
Openshaw, R.; Maepa, K.; Benjamin, S.J.; Wainwright, L.; Combrinck, J.M.; Hunter, R.; Egan, T.J. A diverse range of hemozoin inhibiting scaffolds act on Plasmodium falciparum as heme complexes. ACS Infect. Dis., 2021, 7(2), 362-376.
[http://dx.doi.org/10.1021/acsinfecdis.0c00680] [PMID: 33430579]
[http://dx.doi.org/10.1021/acsinfecdis.0c00680] [PMID: 33430579]
[4]
Navidpour, L.; Chibale, K.; Esmaeilli, S.; Chiaee, A.; Hadj-Esfandiari, N.; Irani, M.; Koulaei, S.A.; Yassa, N. Antimalarial activities of (Z)-2-(nitroheteroarylmethylene)-3(2 H)-benzofuranone derivatives: In vitro, in vivo assessment and β-hematin formation inhibition activity. Antimicrob. Agents Chemother., 2021, 65(9), e0268320.
[http://dx.doi.org/10.1128/AAC.02683-20] [PMID: 34228544]
[http://dx.doi.org/10.1128/AAC.02683-20] [PMID: 34228544]
[5]
Mbaba, M.; Dingle, L.M.K.; Zulu, A.I.; Laming, D.; Swart, T.; de la Mare, J.A.; Hoppe, H.C.; Edkins, A.L.; Khanye, S.D. Coumarin-annulated ferrocenyl 1,3-oxazine derivatives possessing in vitro antimalarial and antitrypanosomal potency. Molecules, 2021, 26(5), 1333. https://pubmed.ncbi.nlm.nih.gov/33801371/
[6]
Nguyen, P.T.V.; Van Dat, T.; Mizukami, S.; Nguyen, D.L.H.; Mosaddeque, F.; Kim, S.N.; Nguyen, D.H.B.; Đinh, O.T.; Vo, T.L.; Nguyen, G.L.T.; Quoc Duong, C.; Mizuta, S.; Tam, D.N.H.; Truong, M.P.; Huy, N.T.; Hirayama, K. 2D-quantitative structure-activity relationships model using PLS method for anti-malarial activities of anti-haemozoin compounds. Malar. J., 2021, 20(1), 264.
[http://dx.doi.org/10.1186/s12936-021-03775-2] [PMID: 34116665]
[http://dx.doi.org/10.1186/s12936-021-03775-2] [PMID: 34116665]
[7]
Ma, W.; Balta, V.A.; West, R.; Newlin, K.N.; Miljanić, O.S.; Sullivan, D.J.; Vekilov, P.G.; Rimer, J.D. A second mechanism employed by artemisinins to suppress Plasmodium falciparum hinges on inhibition of hematin crystallization. J. Biol. Chem., 2021, 296, 100123.
[http://dx.doi.org/10.1074/jbc.RA120.016115] [PMID: 33239360]
[http://dx.doi.org/10.1074/jbc.RA120.016115] [PMID: 33239360]
[8]
Ribbiso, K.A.; Heller, L.E.; Taye, A.; Julian, E.; Willems, A.V.; Roepe, P.D. Artemisinin-based drugs target the plasmodium falciparum heme detoxification pathway. Antimicrob. Agents Chemother., 2021, 65(4), e02137-e20.
[http://dx.doi.org/10.1128/AAC.02137-20] [PMID: 33495226]
[http://dx.doi.org/10.1128/AAC.02137-20] [PMID: 33495226]
[9]
Lawong, A.; Gahalawat, S.; Okombo, J.; Striepen, J.; Yeo, T.; Mok, S.; Deni, I.; Bridgford, J.L.; Niederstrasser, H.; Zhou, A.; Posner, B.; Wittlin, S.; Gamo, F.J.; Crespo, B.; Churchyard, A.; Baum, J.; Mittal, N.; Winzeler, E.; Laleu, B.; Palmer, M.J.; Charman, S.A.; Fidock, D.A.; Ready, J.M.; Phillips, M.A. Novel antimalarial tetrazoles and amides active against the hemoglobin degradation pathway in Plasmodium falciparum. J. Med. Chem., 2021, 64(5), 2739-2761.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02022] [PMID: 33620219]
[http://dx.doi.org/10.1021/acs.jmedchem.0c02022] [PMID: 33620219]
[10]
Asgharian, P.; Ghalbi, Z.; Sarvari, Y.; Delazar, A.; Bamdad, S.; Asnaashari, S. Phytochemical and antimalarial effects of ecballium elaterium (L.) rich. Growing in Iran. Jundishapur J. Nat. Pharm. Prod., 2021, 16(2), e103156. [https://sites.kowsarpub.com/jjnpp/articles/103156.html
[11]
Olanlokun, J.O.; Babarinde, C.O.; Olorunsogo, O.O. Antimalarial properties and preventive effects on mitochondrial dysfunction by extract and fractions of Phyllanthus amarus (Schum. and Thonn) in Plasmodium berghei-infected mice. J. Basic Clin. Physiol. Pharmacol., 2020, 32(3), 255-266.
[http://dx.doi.org/10.1515/jbcpp-2020-0046] [PMID: 33161386]
[http://dx.doi.org/10.1515/jbcpp-2020-0046] [PMID: 33161386]
[12]
Samuel, B.; Adekunle, Y.A. Isolation and structure elucidation of anti-malarial principles from terminalia mantaly H. Perrier stem bark. Int. J. Biol. Chem. Sci., 2021, 15(1), 282-292.
[http://dx.doi.org/10.4314/ijbcs.v15i1.25]
[http://dx.doi.org/10.4314/ijbcs.v15i1.25]
[13]
Ishmail, F.Z.; Melis, D.R.; Mbaba, M.; Smith, G.S. Diversification of quinoline-triazole scaffolds with CORMs: Synthesis, in vitro and in silico biological evaluation against plasmodium falciparum. J. Inorg. Biochem., 2021, 215, 111328.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111328] [PMID: 33340802]
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111328] [PMID: 33340802]
[14]
Mali, S.N.; Pandey, A. Molecular modeling studies on 2,4-disubstituted imidazopyridines as anti-malarials: Atom-based 3D-QSAR, molecular docking, virtual screening, in-silico ADMET and theoretical analysis. J. Comput. Biophys. Chem., 2021, 20(03), 267-282.
[http://dx.doi.org/10.1142/S2737416521500125]
[http://dx.doi.org/10.1142/S2737416521500125]
[15]
Sandlin, R.D.; Fong, K.Y.; Wicht, K.J.; Carrell, H.M.; Egan, T.J.; Wright, D.W. Identification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(3), 316-325.
[http://dx.doi.org/10.1016/j.ijpddr.2014.08.002] [PMID: 25516843]
[http://dx.doi.org/10.1016/j.ijpddr.2014.08.002] [PMID: 25516843]
[16]
Mali, S.N.; Pandey, A. Hemozoin (beta-hematin) formation inhibitors; A promising target for the development of new antimalarials: Current update and a future prospect. Comb. Chem. High Throughput Screen., 2021. Online ahead of print
[http://dx.doi.org/10.2174/1386207325666210924104036] [PMID: 34565319]
[http://dx.doi.org/10.2174/1386207325666210924104036] [PMID: 34565319]