Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article

(+)-Nootkatone: Progresses in Synthesis, Structural Modifications, Pharmacology and Ecology Uses

Author(s): Yu-Bin Wang, Jian-Long Li, Fang-Fang Xu, Xiao-Dong Han, Yun-Shan Wu and Bo Liu*

Volume 2, Issue 2, 2022

Published on: 14 March, 2022

Page: [129 - 142] Pages: 14

DOI: 10.2174/2210298102666220117141156

Price: $65

Abstract

(+)-Nootkatone is a type of eremophilane naturally derived sesquiterpenoids with a grapefruit smell from plants, widely used in the food and cosmetics industries. Many investigations elucidated that (+)-nootkatone presents extensive pharmacological activity, such as antiproliferation in cancer cells, anti-inflammatory, antioxidant nitration stress, etc. In addition, (+)- nootkatone has been registered by the Environmental Protection Agency as a new active ingredient for use in insecticides and insect repellents against ticks, mosquitoes, and a wide variety of other biting pests. Because of the increasingly stringent environmental supervision and market demand for “natural” (+)-nootkatone, the explorations for producing this high-value chemical by green chemosynthesis and biosynthesis technology are in progress. Structural derivatization is becoming one of the most important ways to exploit pharmaceutical and ecological applications. This review covered the progress of the above research and application advances comprehensively to encourage interested scientists to implement further studies.

Keywords: (+)-Nootkatone, chemosynthesis, biosynthesis, pharmacological effect, ecological use, structural modifications.

Graphical Abstract

[1]
Erdtman, H.; Hirose, Y.; Theander, O. The chemistry of the natural order Cupressales. Acta Chem. Scand., 1962, 16, 1311-1314.
[http://dx.doi.org/10.1007/BFb0102062]
[2]
Schreier, P. Enzymes and flavour biotechnology. In: Biotechnology of Aroma Compounds; Berger, R.G., Ed.; Berlin, Heidelberg, and New York: Springer, 1997; p. 51.
[3]
MacLeod, W.D., Jr; Buigues, N.M. Sesquiterpenes. I. Nootkatone, a new grapefruit flavor constituent. J. Food Sci., 1964, 29, 565-568.
[http://dx.doi.org/10.1111/j.1365-2621.1964.tb00411.x]
[4]
Sawamura, M.; Kuriyama, T. Quantitative determination of volatile constituents in the pummelo (Citrus grandis Osbeck forma Tosa-buntan). J. Agric. Food Chem., 1988, 36(3), 567-569.
[http://dx.doi.org/10.1021/jf00081a040]
[5]
Zhu, B.C.R.; Henderson, G.; Chen, F.; Maistrello, L.; Laine, R.A. Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). J. Chem. Ecol., 2001, 27(3), 523-531.
[http://dx.doi.org/10.1023/A:1010301308649] [PMID: 11441443]
[6]
Li, R.; Zeng, C.B.; Li, J.N.; Zhu, K.L.; Lin, X.X.; Wen, J.F.; Guo, H.J.; Weng, W.F.; Wang, D.; Ji, S.G. Characterization of the fruits and seeds of Alpinia oxyphylla miq by high-performance liquid chromatography (HPLC) and near-Infrared Spectroscopy (NIRS) with Partial Least-Squares (PLS) Regression. Anal. Lett., 2020, 53(11), 1667-1682.
[http://dx.doi.org/10.1080/00032719.2020.1715996]
[7]
Jaiswal, Y.; Liang, Z.; Guo, P.; Ho, H.M.; Chen, H.; Zhao, Z. Tissue-specific metabolite profiling of Cyperus rotundus L. rhizomes and (+)-nootkatone quantitation by laser microdissection, ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and gas chromatography-mass spectrometry techniques. J. Agric. Food Chem., 2014, 62(29), 7302-7316.
[http://dx.doi.org/10.1021/jf502494z] [PMID: 24938835]
[8]
Haring, H.G.; Rijkens, F.; Boelens, H.; Vandergen, A. Olfactory studies on enantiomeric eremophilane sesquiterpenoids. J. Agric. Food Chem., 1972, 20(5), 1018-1021.
[http://dx.doi.org/10.1021/jf60183a011]
[9]
Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A., Jr; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; Dekant, W.; Deodhar, C.; Fryer, A.D.; Gadhia, S.; Jones, L.; Joshi, K.; Lapczynski, A.; Lavelle, M.; Liebler, D.C.; Na, M.; O’Brien, D.; Patel, A.; Penning, T.M.; Ritacco, G.; Rodriguez-Ropero, F.; Romine, J.; Sadekar, N.; Salvito, D.; Schultz, T.W.; Siddiqi, F.; Sipes, I.G.; Sullivan, G.; Thakkar, Y.; Tokura, Y.; Tsang, S. RIFM fragrance ingredient safety assessment, nootkatone, CAS Registry Number 4674-50-4. Food Chem. Toxicol., 2020, 141(Suppl. 1), 111426.
[http://dx.doi.org/10.1016/j.fct.2020.111426] [PMID: 32461160]
[10]
United States Environmental Protection Agency (EPA): Nootkatone Now Registered by EPA. Available from: https://www.epa.gov/pesticides/nootkatone-now-registered-epa
[11]
Rana, V.S.; Blazquez, M.A. Compositions of the volatile oils of Citrus macroptera and C. maxima. Nat. Prod. Commun., 2012, 7(10), 1371-1372.
[http://dx.doi.org/10.1177/1934578X1200701032] [PMID: 23157014]
[12]
Xie, J.; Wang, S.; Sun, B.; Ito, Y. Isolation and purification of nootkatone from the essential oil of fruits of Alpinia oxyphylla Miquel by high-speed counter-current chromatography. Food Chem., 2009, 117(2), 375-380.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.011] [PMID: 20209043]
[13]
Morley, R.; Minceva, M. Trapping multiple dual mode liquid-liquid chromatography: Preparative separation of nootkatone from a natural product extract. J. Chromatogr. A, 2020, 1625, 461272.
[http://dx.doi.org/10.1016/j.chroma.2020.461272] [PMID: 32709324]
[14]
Majetich, G.; Behnke, M.; Hull, K. A stereoselective synthesis of (+/-)-nootkatone and (+/-)-valencene via an intramolecular sakurai reaction. J. Org. Chem., 1985, 50(19), 3615-3618.
[http://dx.doi.org/10.1021/jo00219a034]
[15]
Sauer, A.M.; Crowe, W.E.; Henderson, G.; Laine, R.A. An efficient and economic asymmetric synthesis of (+)-nootkatone, tetrahydronootkatone, and derivatives. Org. Lett., 2009, 11(16), 3530-3533.
[http://dx.doi.org/10.1021/ol8023709] [PMID: 19630428]
[16]
Yanami, T.; Miyashita, M.; Yoshikoshi, A. Synthetic study of (+)-nootkatone from (-)-β-pinene. J. Org. Chem., 1980, 45, 607-612.
[http://dx.doi.org/10.1021/jo01292a010]
[17]
Marshall, J.A.; Ruden, R.A. The stereoselective total synthesis of racemic nootkatone. J. Org. Chem., 1971, 36(4), 594-596.
[http://dx.doi.org/10.1021/jo00803a023]
[18]
Dastur, K.P. A stereoselective approach to eremophilane sesquiterpenes. A synthesis of (±)-nootkatone. J. Am. Chem. Soc., 1973, 95, 6509-6510.
[http://dx.doi.org/10.1021/ja00800a089]
[19]
Shaffer, G.W.; Eschinasi, E.H.; Purzycki, K.L.; Doerr, A.B. Oxidations of valencene. J. Org. Chem., 1975, 40(15), 2181-2185.
[http://dx.doi.org/10.1021/jo00903a010]
[20]
Wilson, C.W. III; Shaw, P.E. Synthesis of nootkatone from valencene. J. Agric. Food Chem., 1978, 26(6), 1430-1432.
[http://dx.doi.org/10.1021/jf60220a054]
[21]
Salvador, J.A.R.; Clark, J.H. The allylic oxidation of unsaturated steroids by tert-butyl hydroperoxide using surface functionalised silica supported metal catalysts. Green Chem., 2002, 4, 352-356.
[http://dx.doi.org/10.1039/b201500p]
[22]
Handore, K.L.; Seetharamsingh, B.; Reddy, D.S. Ready access to functionally embellished cis-hydrindanes and cis-decalins: protecting group-free total syntheses of (±)-Nootkatone and ±Noreremophilane. J. Org. Chem., 2013, 78(16), 8149-8154.
[http://dx.doi.org/10.1021/jo401033j] [PMID: 23855542]
[23]
de Melo, C.N.; Meireles, A.M.; da Silva, V.S.; Robles-Azocar, P.; de Freitas-Silva, G. Manganese complex catalyst for valencene oxidation: The first use of metalloporphyrins for the selective production of nootkatone. Inorg. Chim. Acta, 2021, 515, 120031.
[http://dx.doi.org/10.1016/j.ica.2020.120031]
[24]
Milhim, M.; Hartz, P.; Gerber, A.; Bernhardt, R. A novel short chain dehydrogenase from Bacillus megaterium for the conversion of the sesquiterpene nootkatol to (+)-nootkatone. J. Biotechnol., 2019, 301, 52-55.
[http://dx.doi.org/10.1016/j.jbiotec.2019.05.017] [PMID: 31150680]
[25]
Schulz, S.; Girhard, M.; Gassmeyer, S.K.; Jaeger, V.D.; Schwarze, D.; Vogel, A.; Urlacher, V.B. Selective enzymatic synthesis of the grapefruit flavor (+)-nootkatone. ChemCatChem, 2015, 7(4), 601-604.
[http://dx.doi.org/10.1002/cctc.201402952]
[26]
Kolwek, J.; Behrens, C.; Linke, D.; Krings, U.; Berger, R.G. Cell-free one-pot conversion of (+)-valencene to (+)-nootkatone by a unique dye-decolorizing peroxidase combined with a laccase from Funalia trogii. J. Ind. Microbiol. Biotechnol., 2018, 45(2), 89-101.
[http://dx.doi.org/10.1007/s10295-017-1998-9] [PMID: 29270883]
[27]
Wriessnegger, T.; Augustin, P.; Engleder, M.; Leitner, E.; Müller, M.; Kaluzna, I.; Schürmann, M.; Mink, D.; Zellnig, G.; Schwab, H.; Pichler, H. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab. Eng., 2014, 24, 18-29.
[http://dx.doi.org/10.1016/j.ymben.2014.04.001] [PMID: 24747046]
[28]
Meng, X.; Liu, H.; Xu, W.; Zhang, W.; Wang, Z.; Liu, W. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone. Microb. Cell Fact., 2020, 19(1), 21.
[http://dx.doi.org/10.1186/s12934-020-1295-6] [PMID: 32013959]
[29]
Guo, X.; Sun, J.; Li, D.; Lu, W. Heterologous biosynthesis of (+)-nootkatone in unconventional yeast Yarrowia lipolytica. Biochem. Eng. J., 2018, 137, 125-131.
[http://dx.doi.org/10.1016/j.bej.2018.05.023]
[30]
Gou, Y.; Zhang, F.; Tang, Y.; Jiang, C.; Bai, G.; Xie, H.; Chen, M.; Liao, Z. Engineering nootkatone biosynthesis in Artemisia annua. ACS Synth. Biol., 2021, 10(5), 957-963.
[http://dx.doi.org/10.1021/acssynbio.1c00016] [PMID: 33973783]
[31]
Furusawa, M.; Hashimoto, T.; Noma, Y.; Asakawa, Y. Highly efficient production of nootkatone, the grapefruit aroma from valencene, by biotransformation. Chem. Pharm. Bull. (Tokyo), 2005, 53(11), 1513-1514.
[http://dx.doi.org/10.1248/cpb.53.1513] [PMID: 16272746]
[32]
Palmerin-Carreno, D.M.; Rutiaga-Quinones, O.M.; Verde Calvo, J.R.; Prado-Barragan, A.; Huerta-Ochoa, S. Screening of microorganisms for bioconversion of (+)-valencene to (+)-nootkatone. Lebensm. Wiss. Technol., 2015, 64(2), 788-793.
[http://dx.doi.org/10.1016/j.lwt.2015.06.065]
[33]
Krügener, S.; Krings, U.; Zorn, H.; Berger, R.G. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation. Bioresour. Technol., 2010, 101(2), 457-462.
[http://dx.doi.org/10.1016/j.biortech.2009.08.087] [PMID: 19765983]
[34]
Fraatz, M.A.; Riemer, S.J.L.; Stoeber, R.; Kaspera, R.; Nimtz, M.; Berger, R.G.; Zorn, H. A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone. J. Mol. Catal., B Enzym., 2009, 61(3-4), 202-207.
[http://dx.doi.org/10.1016/j.molcatb.2009.07.001]
[35]
Li, X.; Ren, J.N.; Fan, G.; Zhang, L.L.; Peng, Z.Q.; Pan, S.Y. Catalytic condition optimization in the conversion of nootkatone from valencene by Yarrowia lipolytica. J. Food Process. Preserv., 2021, 45(2), e14962.
[http://dx.doi.org/10.1111/jfpp.14962]
[36]
Palmerin-Carreno, D.M.; Rutiaga-Quinones, O.M.; Verde-Calvo, J.R.; Prado-Barragan, A.; Huerta-Ochoa, S. Whole cell bioconversion of (+)-valencene to (+)-nootkatone in 100% organic phase using Yarrowia lipolytica 2.2ab. Int. J. Chem. React. Eng., 2016, 14(4), 939-944.
[http://dx.doi.org/10.1515/ijcre-2016-0013]
[37]
Palmerin-Carreno, D.M.; Castillo-Araiza, C.O.; Rutiaga-Quinones, O.M.; Verde-Calvo, J.R.; Huerta-Ochoa, S. Kinetic, oxygen mass transfer and hydrodynamic studies in a three-phase stirred tank bioreactor for the bioconversion of (+)-valencene on Yarrowia lipolytica 2.2ab. Biochem. Eng. J., 2016, 113, 37-46.
[http://dx.doi.org/10.1016/j.bej.2016.05.008]
[38]
Palmerin-Carreno, D.M.; Rutiaga-Quinones, O.M.; Verde-Calvo, J.R.; Huerta-Ochoa, S. Bioconversion of (+)-nootkatone by Botryodiplodia theobromae using a membrane aerated biofilm reactor. Rev. Mex. Ing. Quim., 2014, 13(3), 757-764.
[39]
Castillo-Araiza, C.O.; Palmerin-Carreno, D.; Prado-Barragan, A.; Huerta-Ochoa, S. On the conceptual design of a partitioning technology for the bioconversion of (+)-valencene to (+)-nootkatone on whole cells: Experimentation and modelling. Chem. Eng. Process., 2017, 122, 493-507.
[http://dx.doi.org/10.1016/j.cep.2017.05.008]
[40]
Bezerra Rodrigues Dantas, L.; Silva, A.L.M.; da Silva Júnior, C.P.; Alcântara, I.S.; Correia de Oliveira, M.R.; Oliveira Brito Pereira Bezerra Martins, A.; Ribeiro-Filho, J.; Coutinho, H.D.M.; Rocha Santos Passos, F.; Quintans-Junior, L.J.; Alencar de Menezes, I.R.; Pezzani, R.; Vitalini, S. Nootkatone inhibits acute and chronic inflammatory responses in mice. Molecules, 2020, 25(9), 2181.
[http://dx.doi.org/10.3390/molecules25092181] [PMID: 32392744]
[41]
Choi, H.J.; Lee, J.H.; Jung, Y.S. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells. Biochem. Biophys. Res. Commun., 2014, 447(2), 278-284.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.121] [PMID: 24704449]
[42]
Tsoyi, K.; Jang, H.J.; Lee, Y.S.; Kim, Y.M.; Kim, H.J.; Seo, H.G.; Lee, J.H.; Kwak, J.H.; Lee, D.U.; Chang, K.C. (+)-Nootkatone and (+)-valencene from rhizomes of Cyperus rotundus increase survival rates in septic mice due to heme oxygenase-1 induction. J. Ethnopharmacol., 2011, 137(3), 1311-1317.
[http://dx.doi.org/10.1016/j.jep.2011.07.062] [PMID: 21843620]
[43]
Wang, Y.; Wang, M.; Fan, K.; Li, T.; Yan, T.; Wu, B.; Bi, K.; Jia, Y. Protective effects of Alpinae oxyphyllae Fructus extracts on lipopolysaccharide-induced animal model of Alzheimer’s disease. J. Ethnopharmacol., 2018, 217, 98-106.
[http://dx.doi.org/10.1016/j.jep.2018.02.015] [PMID: 29447949]
[44]
Wang, Y.; Wang, M.; Xu, M.; Li, T.; Fan, K.; Yan, T.; Xiao, F.; Bi, K.; Jia, Y. Nootkatone, a neuroprotective agent from Alpiniae oxyphyllae Fructus, improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer’s disease. Int. Immunopharmacol., 2018, 62, 77-85.
[http://dx.doi.org/10.1016/j.intimp.2018.06.042] [PMID: 29990697]
[45]
He, B.; Xu, F.; Xiao, F.; Yan, T.; Wu, B.; Bi, K.; Jia, Y. Neuroprotective effects of nootkatone from Alpiniae oxyphyllae Fructus against amyloid-β-induced cognitive impairment. Metab. Brain Dis., 2018, 33(1), 251-259.
[http://dx.doi.org/10.1007/s11011-017-0154-6] [PMID: 29177693]
[46]
Qi, Y.; Cheng, X.; Jing, H.; Yan, T.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Combination of schisandrin and nootkatone exerts neuroprotective effect in Alzheimer’s disease mice model. Metab. Brain Dis., 2019, 34(6), 1689-1703.
[http://dx.doi.org/10.1007/s11011-019-00475-4] [PMID: 31422511]
[47]
Qi, Y.; Cheng, X.; Gong, G.; Yan, T.; Du, Y.; Wu, B.; Bi, K.; Jia, Y. Synergistic neuroprotective effect of schisandrin and nootkatone on regulating inflammation, apoptosis and autophagy via the PI3K/AKT pathway. Food Funct., 2020, 11(3), 2427-2438.
[http://dx.doi.org/10.1039/C9FO02927C] [PMID: 32129354]
[48]
Miyazawa, M.; Tougo, H.; Ishihara, M. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi. Nat. Prod. Lett., 2001, 15(3), 205-210.
[http://dx.doi.org/10.1080/10575630108041281] [PMID: 11858553]
[49]
Chen, P.; Wang, P.P.; Jiao, Z.Z.; Xiang, L. Sesquiterpenoids from the fruits of Alpinia oxyphylla and their anti-acetylcholinesterase activity. Helv. Chim. Acta, 2014, 97(3), 388-397.
[http://dx.doi.org/10.1002/hlca.201300234]
[50]
Sánchez-Martínez, J.D.; Bueno, M.; Alvarez-Rivera, G.; Tudela, J.; Ibañez, E.; Cifuentes, A. In vitro neuroprotective potential of terpenes from industrial orange juice by-products. Food Funct., 2021, 12(1), 302-314.
[http://dx.doi.org/10.1039/D0FO02809F] [PMID: 33300906]
[51]
Yan, T.; Li, F.; Xiong, W.; Wu, B.; Xiao, F.; He, B.; Jia, Y. Nootkatone improves anxiety- and depression-like behavior by targeting hyperammonemia-induced oxidative stress in D-galactosamine model of liver injury. Environ. Toxicol., 2021, 36(4), 694-706.
[http://dx.doi.org/10.1002/tox.23073] [PMID: 33270352]
[52]
Murase, T.; Misawa, K.; Haramizu, S.; Minegishi, Y.; Hase, T. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. Am. J. Physiol. Endocrinol. Metab., 2010, 299(2), E266-E275.
[http://dx.doi.org/10.1152/ajpendo.00774.2009] [PMID: 20501876]
[53]
Park, J.E.; Park, J.S.; Leem, Y.H.; Kim, D.Y.; Kim, H.S. NQO1 mediates the anti-inflammatory effects of nootkatone in lipopolysaccharide-induced neuroinflammation by modulating the AMPK signaling pathway. Biol. Med. (Aligarh), 2021, 164, 354-368.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.015] [PMID: 33460769]
[54]
Hung, L.V.M.; Moon, J.Y.; Ryu, J.Y.; Cho, S.K. Nootkatone, an AMPK activator derived from grapefruit, inhibits KRAS downstream pathway and sensitizes non-small-cell lung cancer A549 cells to adriamycin. Phytomedicine, 2019, 63, 153000.
[http://dx.doi.org/10.1016/j.phymed.2019.153000] [PMID: 31280139]
[55]
Zhu, X.; Li, X.; Chen, Z. Inhibition of anticancer growth in Retinoblastoma cells by naturally occurring sesquiterpene nootkatone is mediated via autophagy, endogenous ROS production, cell cycle arrest and inhibition of NF-κB signalling pathway. J. BUON, 2020, 25(1), 427-431.
[PMID: 32277665]
[56]
Yoo, E.; Lee, J.; Lertpatipanpong, P.; Ryu, J.; Kim, C.T.; Park, E.Y.; Baek, S.J. Anti-proliferative activity of A. oxyphylla and its bioactive constituent nootkatone in colorectal cancer cells. BMC Cancer, 2020, 20(1), 881.
[http://dx.doi.org/10.1186/s12885-020-07379-y] [PMID: 32928152]
[57]
Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Hamadi, N.; Ali, B.H. In vivo protective effects of nootkatone against particles-induced lung injury caused by diesel exhaust is mediated via the NF-κB pathway. Nutrients, 2018, 10(3), 263.
[http://dx.doi.org/10.3390/nu10030263] [PMID: 29495362]
[58]
Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Ali, B.H. Thrombosis and systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles and the effect of nootkatone thereon. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(5), H917-H927.
[http://dx.doi.org/10.1152/ajpheart.00313.2017] [PMID: 29351455]
[59]
Chang, K.C.; Lee, D.U. Nootkatone from the rhizomes of Cyperus rotundus protects against ischemia-reperfusion mediated acute myocardial injury in the rat. Int. J. Pharmacol., 2016, 12(8), 845-850.
[http://dx.doi.org/10.3923/ijp.2016.845.850]
[60]
Meeran, M.F.N.; Azimullah, S.; Al Ahbabi, M.M.; Jha, N.K.; Lakshmanan, V.K.; Goyal, S.N.; Ojha, S. Nootkatone, a dietary fragrant bioactive compound, attenuates dyslipidemia and intramyocardial lipid accumulation and favorably alters lipid metabolism in a rat model of myocardial injury: An in vivo and in vitro study. Molecules, 2020, 25(23), 2181.
[http://dx.doi.org/10.3390/molecules25235656] [PMID: 33266249]
[61]
Ali, B.H.; Al Balushi, K.A.; Ashique, M.; Shalaby, A.; Al Kindi, M.A.; Adham, S.A.; Karaca, T.; Beegam, S.; Yuvaraju, P.; Nemmar, A. chronic water-pipe smoke exposure induces injurious effects to reproductive systemin male mice. Front. Physiol., 2017, 8, 158.
[http://dx.doi.org/10.3389/fphys.2017.00158] [PMID: 28420996]
[62]
Ali, B.H.; Adham, S.A.; Al Balushi, K.A.; Shalaby, A.; Waly, M.I.; Manoj, P.; Beegam, S.; Yuvaraju, P.; Nemmar, A. Reproductive toxicity to male mice of nose only exposure to water- pipe smoke. Cell. Physiol. Biochem., 2015, 35(1), 29-37.
[http://dx.doi.org/10.1159/000369672] [PMID: 25547785]
[63]
Ali, B.H.; Al-Salam, S.; Adham, S.A.; Al Balushi, K.; Al Za’abi, M.; Beegam, S.; Yuvaraju, P.; Manoj, P.; Nemmar, A. Testicular toxicity of water pipe smoke exposure in mice and the effect of treatment with nootkatone thereon. Oxid. Med. Cell. Longev., 2019, 2019, 2416935.
[http://dx.doi.org/10.1155/2019/2416935] [PMID: 31341528]
[64]
Kavaz, D.; Idris, M.; Onyebuchi, C. Physiochemical characterization, antioxidative, anticancer cells proliferation and food pathogens antibacterial activity of chitosan nanoparticles loaded with Cyperus articulatus rhizome essential oils. Int. J. Biol. Macromol., 2019, 123, 837-845.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.177] [PMID: 30465833]
[65]
Adukwu, E.C.; Allen, S.C.H.; Phillips, C.A. The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus. J. Appl. Microbiol., 2012, 113(5), 1217-1227.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05418.x] [PMID: 22862808]
[66]
Pekmezovic, M.; Aleksic, I.; Barac, A.; Arsic-Arsenijevic, V.; Vasiljevic, B.; Nikodinovic-Runic, J.; Senerovic, L. Prevention of polymicrobial biofilms composed of Pseudomonas aeruginosa and pathogenic fungi by essential oils from selected Citrus species. Pathog. Dis., 2016, 74(8), ftw102.
[http://dx.doi.org/10.1093/femspd/ftw102] [PMID: 27702795]
[67]
Uysal, A.; Zengin, G.; Aktumsek, A.; Rigano, D.; Senatore, F.; Sanda, M.A. Daphne oleoides: An alternative source of important sesquiterpenes. Int. J. Food Prop., 2017, 20(3), 549-559.
[http://dx.doi.org/10.1080/10942912.2016.1168836]
[68]
Yamaguchi, T. Antibacterial properties of nootkatone against gram-positive bacteria Nat. Prod. Commun., 2019, 14(6), 1934578X19859999.
[http://dx.doi.org/10.1177/1934578X19859999]
[69]
Farha, A.K.; Yang, Q.Q.; Kim, G.; Zhang, D.; Mavumengwana, V.; Habimana, O.; Li, H.B.; Corke, H.; Gan, R.Y. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control, 2020, 112, 107154.
[http://dx.doi.org/10.1016/j.foodcont.2020.107154]
[70]
Zhang, Q.; Hu, X.; Hui, F.; Song, Q.; Cui, C.; Wang, C.; Zhao, Q. Ethanol extract and its dichloromethane fraction of Alpinia oxyphylla Miquel exhibited hepatoprotective effects against CCl4-induced oxidative damage in vitro and in vivo with the involvement of Nrf2. Biomed. Pharmacother., 2017, 91, 812-822.
[http://dx.doi.org/10.1016/j.biopha.2017.04.131] [PMID: 28501008]
[71]
Kurdi, A.; Hassan, K.; Venkataraman, B.; Rajesh, M. Nootkatone confers hepatoprotective and anti-fibrotic actions in a murine model of liver fibrosis by suppressing oxidative stress, inflammation, and apoptosis. J. Biochem. Mol. Toxicol., 2018, 32(2), e22017.
[http://dx.doi.org/10.1002/jbt.22017] [PMID: 29214688]
[72]
Seo, E.J.; Lee, D.U.; Kwak, J.H.; Lee, S.M.; Kim, Y.S.; Jung, Y.S. Antiplatelet effects of Cyperus rotundus and its component (+)-nootkatone. J. Ethnopharmacol., 2011, 135(1), 48-54.
[http://dx.doi.org/10.1016/j.jep.2011.02.025] [PMID: 21354294]
[73]
Kubo, M.; Matsuda, H.; Suo, T.; Yamanaka, J.; Sakanaka, M.; Yoshimura, M. Study on Alpiniae Fructus. I. Pharmacological evidence of efficacy of Alpiniae fructus on ancient herbal literature. Yakugaku Zasshi, 1995, 115(10), 852-862.
[http://dx.doi.org/10.1248/yakushi1947.115.10_852] [PMID: 8531064]
[74]
Wang, S.; Zhao, Y.; Zhang, J.; Huang, X.; Wang, Y.; Xu, X.; Zheng, B.; Zhou, X.; Tian, H.; Liu, L.; Mei, Q. Antidiarrheal effect of Alpinia oxyphylla Miq. (Zingiberaceae) in experimental mice and its possible mechanism of action. J. Ethnopharmacol., 2015, 168, 182-190.
[http://dx.doi.org/10.1016/j.jep.2015.03.066] [PMID: 25861952]
[75]
Yamahara, J.; Li, Y.H.; Tamai, Y. Anti-ulcer effect in rats of bitter cardamon constituents. Chem. Pharm. Bull. (Tokyo), 1990, 38(11), 3053-3054.
[http://dx.doi.org/10.1248/cpb.38.3053] [PMID: 2085887]
[76]
Zang, M.; Xu, S.; Maitland-Toolan, K.A.; Zuccollo, A.; Hou, X.; Jiang, B.; Wierzbicki, M.; Verbeuren, T.J.; Cohen, R.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes, 2006, 55(8), 2180-2191.
[http://dx.doi.org/10.2337/db05-1188] [PMID: 16873680]
[77]
Miyazawa, M.; Nakamura, Y.; Ishikawa, Y. Insecticidal sesquiterpene from Alpinia oxyphylla against Drosophila melanogaster. J. Agric. Food Chem., 2000, 48(8), 3639-3641.
[http://dx.doi.org/10.1021/jf000325z] [PMID: 10956162]
[78]
Henderson, G.; Heumann, D.O.; Laine, R.A.; Maistrello, L.; Zhu, B.C.R.; Chen, F. Extracts of vetiver oil as repellent and toxicant to ants, ticks, and cockroaches, United States Patent US2003/0073748 A1, 2003.
[79]
Ellis, M.D.; Baxendale, F.P. Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants. J. Econ. Entomol., 1997, 90(5), 1087-1091.
[http://dx.doi.org/10.1093/jee/90.5.1087]
[80]
Tawatsin, A.; Wratten, S.D.; Scott, R.R.; Thavara, U.; Techadamrongsin, Y. Repellency of volatile oils from plants against three mosquito vectors. J. Vector Ecol., 2001, 26(1), 76-82.
[PMID: 11469188]
[81]
Maistrello, L.; Henderson, G.; Laine, R.A. Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol., 2001, 94(6), 1532-1537.
[http://dx.doi.org/10.1603/0022-0493-94.6.1532] [PMID: 11777060]
[82]
Maistrello, L.; Henderson, G.; Laine, R.A. Effects of nootkatone and a borate compound on Formosan subterranean termite (Isoptera: Rhinotermitidae) and its symbiont protozoa. J. Entomol. Sci., 2001, 36(3), 229-236.
[http://dx.doi.org/10.18474/0749-8004-36.3.229]
[83]
Maistrello, L.; Henderson, G.; Laine, R.A. Comparative effects of vetiver oil, nootkatone and disodium octaborate tetrahydrate on Coptotermes formosanus and its symbiotic fauna. Pest Manag. Sci., 2003, 59(1), 58-68.
[http://dx.doi.org/10.1002/ps.601] [PMID: 12558100]
[84]
Ibrahim, S.A.; Henderson, G.; Zhu, B.C.R.; Fei, H.; Laine, R.A. Toxicity and behavioral effects of nootkatone, 1,10-dihydronootkatone, and tetrahydronootkatone to the formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol., 2004, 97(1), 102-111.
[http://dx.doi.org/10.1093/jee/97.1.102] [PMID: 14998133]
[85]
Nix, K.E.; Henderson, G.; Laine, R.A. Field evaluation of nootkatone and tetrahydronootkatone as wood treatments against Coptotermes formosanus. Sociobiology, 2003, 42(2), 413-424.
[86]
Panella, N.A.; Dolan, M.C.; Karchesy, J.J.; Xiong, Y.; Peralta-Cruz, J.; Khasawneh, M.; Montenieri, J.A.; Maupin, G.O. Use of novel compounds for pest control: Insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. J. Med. Entomol., 2005, 42(3), 352-358.
[http://dx.doi.org/10.1093/jmedent/42.3.352] [PMID: 15962787]
[87]
Dietrich, G.; Dolan, M.C.; Peralta-Cruz, J.; Schmidt, J.; Piesman, J.; Eisen, R.J.; Karchesy, J.J. Repellent activity of fractioned compounds from Chamaecyparis nootkatensis essential oil against nymphal Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol., 2006, 43(5), 957-961.
[http://dx.doi.org/10.1093/jmedent/43.5.957] [PMID: 17017233]
[88]
Dolan, M.C.; Jordan, R.A.; Schulze, T.L.; Schulze, C.J.; Manning, M.C.; Ruffolo, D.; Schmidt, J.P.; Piesman, J.; Karchesy, J.J. Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey. J. Econ. Entomol., 2009, 102(6), 2316-2324.
[http://dx.doi.org/10.1603/029.102.0638] [PMID: 20069863]
[89]
Bharadwaj, A.; Stafford, K.C., III; Behle, R.W. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol., 2012, 49(5), 1035-1044.
[http://dx.doi.org/10.1603/ME11251] [PMID: 23025184]
[90]
Mao, L.; Henderson, G. Evaluation of potential use of nootkatone against maize weevil (Sitophilus zeamais Motschulsky) and rice weevil [S. oryzae (L.)] (Coleoptera: Curculionidae). J. Stored Prod. Res., 2010, 46(2), 129-132.
[http://dx.doi.org/10.1016/j.jspr.2010.01.002]
[91]
Addesso, K.M.; O’Neal, P.A.; Leahy, S.; Trostel, K.; Behle, R.W. Evaluation of a lignin-encapsulated nootkatone formulation against Tetranychus urticae (Acari: Tetranychidae). Fla. Entomol., 2018, 101(3), 435-440.
[http://dx.doi.org/10.1653/024.101.0321]
[92]
Clarkson, T.C.; Janich, A.J.; Sanchez-Vargas, I.; Markle, E.D.; Gray, M.; Foster, J.R.; Black Iv, W.C.; Foy, B.D.; Olson, K.E. Nootkatone is an effective repellent against Aedes aegypti and Aedes albopictus. Insects, 2021, 12(5), 386.
[http://dx.doi.org/10.3390/insects12050386] [PMID: 33925333]
[93]
McAllister, J.C.; Adams, M.F. Mode of action for natural products isolated from essential oils of two trees is different from available mosquito adulticides. J. Med. Entomol., 2010, 47(6), 1123-1126.
[http://dx.doi.org/10.1603/ME10098] [PMID: 21175062]
[94]
Habash, S.S.; Könen, P.P.; Loeschcke, A.; Wüst, M.; Jaeger, K.E.; Drepper, T.; Grundler, F.M.W.; Schleker, A.S.S. The plant sesquiterpene nootkatone efficiently reduces Heterodera schachtii parasitism by activating plant defense. Int. J. Mol. Sci., 2020, 21(24), 9627.
[http://dx.doi.org/10.3390/ijms21249627] [PMID: 33348829]
[95]
Arantes, S.F.; Farooq, A.; Hanson, J.R. The preparation and microbiological hydroxylation of the sesquiterpenoid nootkatone. J. Chem. Res. Synop., 1999, (3), 248-248A.
[http://dx.doi.org/10.1039/a808988d]
[96]
Furusawa, M.; Hashimoto, T.; Noma, Y.; Asakawa, Y. Biotransformation of citrus aromatics nootkatone and valencene by microorganisms. Chem. Pharm. Bull. (Tokyo), 2005, 53(11), 1423-1429.
[http://dx.doi.org/10.1248/cpb.53.1423] [PMID: 16272725]
[97]
Gliszczyńska, A.; Łysek, A.; Janeczko, T.; Świtalska, M.; Wietrzyk, J.; Wawrzeńczyk, C. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites. Bioorg. Med. Chem., 2011, 19(7), 2464-2469.
[http://dx.doi.org/10.1016/j.bmc.2011.01.062] [PMID: 21377882]
[98]
Galisteo Pretel, A.; Pérez Del Pulgar, H.; Olmeda, A.S.; Gonzalez-Coloma, A.; Barrero, A.F.; Quílez Del Moral, J.F. Novel insect antifeedant and ixodicidal nootkatone derivatives. Biomolecules, 2019, 9(11), 742.
[http://dx.doi.org/10.3390/biom9110742] [PMID: 31744055]
[99]
Zhu, B.C.R.; Henderson, G.; Sauer, A.M.; Yu, Y.; Crowe, W.; Laine, R.A. Structure-activity of valencenoid derivatives and their repellence to the Formosan subterranean termite. J. Chem. Ecol., 2003, 29(12), 2695-2701.
[http://dx.doi.org/10.1023/B:JOEC.0000008013.07845.4c] [PMID: 14969356]
[100]
Zhu, B.C.R.; Henderson, G.; Sauer, A.M.; Crowe, W.; Laine, R.A. Structural requirements for repellency: Norsesquiterpenes and sesquiterpenoid derivatives of nootkatone against the Formosan subterranean termite (Isoptera: Rhinotermitidae). Pest Manag. Sci., 2010, 66(8), 875-878.
[http://dx.doi.org/10.1002/ps.1956] [PMID: 20602525]
[101]
Guo, Y.; Zhang, Q.; Liu, Z.; Bao, C.; Fan, J.; Yang, R. Non-food bioactive products: Design and semisynthesis of novel (+)-nootkatone derivatives containing isoxazoline moiety as insecticide candidates. Ind. Crops Prod., 2019, 140, 111706.
[http://dx.doi.org/10.1016/j.indcrop.2019.111706]
[102]
Guo, Y.; Hou, E.; Ma, N.; Liu, Z.; Fan, J.; Yang, R. Discovery, biological evaluation and docking studies of novel N-acyl-2-aminothiazoles fused (+)-nootkatone from Citrus paradisi Macf. as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 104, 104294.
[http://dx.doi.org/10.1016/j.bioorg.2020.104294] [PMID: 32987307]
[103]
Alkhaibari, I.S.; Raj K C, H.; Alnufaie, R.; Gilmore, D.; Alam, M.A. Synthesis of chimeric thiazolo-nootkatone derivatives as potent antimicrobial agents. ChemMedChem, 2021, 16(17), 2628-2637.
[http://dx.doi.org/10.1002/cmdc.202100230] [PMID: 33955181]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy