Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

A Theoretical Evaluation of the Behavior of Nitrosoamidine upon Reacting with Methoxy Butadiene as Potential Heterodiene or Heterodienophile

Author(s): Mahshid Hamzehloueian*, Mina Haghdadi* and Marjan Lotfi

Volume 19, Issue 10, 2022

Published on: 16 February, 2022

Page: [857 - 866] Pages: 10

DOI: 10.2174/1570178619666220113113638

Price: $65

Abstract

The molecular mechanism of experimentally observed regio- and chemo-selectivity of the cycloaddition reaction of nitrosoamidine 1 and 1-methoxy butadiene 2 has been investigated using DFT calculations at M06-2X/cc-pVDZ level. Accordingly, the possible reaction pathways and factors that govern selectivity are investigated systematically. Analysis of the calculated results showed that the most favorable cyclization reaction occurs through the [2+4] endo-proximal pathway, which is kinetically and thermodynamically controlled. Moreover, analysis of the global and local reactivity indices correctly explains the source of the experimentally observed regio- and chemoselectivity. The electron localization function (ELF) analysis of some selected points along the IRC profile of the most preferred pathway suggested that the reaction takes place via a two-stage one-step mechanism. NCI topological analysis of the possible pathways of [2+4] cycloaddition reaction of 1-E and 2-Z revealed the roles of the attractive interactions between reaction sites, the weak noncovalent interactions observed in the endo approaches, and the repulsive interactions in the regio- and stereo-selectivity of the reaction.

Keywords: Nitrosoamidine, ELF, NCI, DFT study, chemoselectivity, molecular mechanism.

Graphical Abstract

[1]
Ware, R.W.; King, S.B. J. Am. Chem. Soc., 1999, 121, 6769-6770.
[http://dx.doi.org/10.1021/ja9908016]
[2]
Miller, C.A.; Batey, R.A. Org. Lett., 2004, 6(5), 699-702.
[http://dx.doi.org/10.1021/ol0363117] [PMID: 14986953]
[3]
Vogt, P.F.; Miller, M.J. Tetrahedron, 1998, 54, 1317-1348.
[http://dx.doi.org/10.1016/S0040-4020(97)10072-2]
[4]
Streith, J.; Defoin, A. Synthesis; Georg Thieme Verlag, 1994, pp. 1107-1117.
[5]
Brulíková, L.; Harrison, A.; Miller, M.J.; Hlaváč, J. Beilstein J. Org. Chem., 2016, 12, 1949-1980.
[http://dx.doi.org/10.3762/bjoc.12.184] [PMID: 27829901]
[6]
Leach, A.G.; Houk, K.N. J. Org. Chem., 2001, 66(15), 5192-5200.
[http://dx.doi.org/10.1021/jo0104126] [PMID: 11463273]
[7]
Domingo, L.R.; Picher, M.T.; Arroyo, P. Eur. J. Org. Chem., 2006, 2006, 2570-2580.
[http://dx.doi.org/10.1002/ejoc.200500978]
[8]
Domingo, L.R.; Pérez, P.; Sáez, J.A. Tetrahedron, 2013, 69, 107-114.
[http://dx.doi.org/10.1016/j.tet.2012.10.056]
[9]
Monbaliu, J.C.; Tinant, B.; Marchand-Brynaert, J. J. Org. Chem., 2010, 75(16), 5478-5486.
[http://dx.doi.org/10.1021/jo100230r] [PMID: 20704424]
[10]
Anand, A.; Bhargava, G.; Singh, P.; Saloni, M.; Mohinder, P.; Parvesh, S.; Krishna, P. Lett. Org. Chem., 2012, 411-421.
[http://dx.doi.org/10.2174/157017812801322444]
[11]
Adam, W.; Krebs, O. Chem. Rev., 2003, 103(10), 4131-4146.
[http://dx.doi.org/10.1021/cr030004x] [PMID: 14531720]
[12]
Gilchrist, T.; Harris, C.; Hawkins, D.G.; Moody, C.W. J. Chem. Soc., Perkin Trans. 1, 1976, 2166-2715.
[http://dx.doi.org/10.1039/p19760002166]
[13]
Zuman, P.; Shah, B. Chem. Rev., 1994, 94, 1621-1641.
[http://dx.doi.org/10.1021/cr00030a007]
[14]
Monbaliu, J.; Tinant, B.; Peeters, D.; Marchand-Brynaer, J. Tetrahedron, 2010, 51, 1052-1055.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.063]
[15]
Faragher, R.; Gilchrist, T.L. J. Chem. Soc., Perkin Trans. 1, 1979, 249-257.
[http://dx.doi.org/10.1039/p19790000249]
[16]
Francotte, E.; Merényi, R.; Vandenbulcke-Coyette, B.; Viehe, H-G. Helv. Chim. Acta, 1981, 64, 1208-1218.
[http://dx.doi.org/10.1002/hlca.19810640425]
[17]
Monbaliu, J.C.; Dive, G.; Marchand-Brynaert, J.; Peeters, D. J. Mol. Struct. THEOCHEM, 2010, 959, 49-54.
[http://dx.doi.org/10.1016/j.theochem.2010.08.004]
[18]
Savin, A.; Becke, A.D.; Flad, J.; Nesper, R.; Preuss, H.; von Schnering, H.G. Angew. Chem. Int. Ed. Engl., 1991, 30, 409-412.
[http://dx.doi.org/10.1002/anie.199104091]
[19]
Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. Angew. Chem. Int. Ed. Engl., 1997, 36, 1808-1832.
[http://dx.doi.org/10.1002/anie.199718081]
[20]
Savin, A.; Silvi, B.; Colonna, F. Can. J. Chem., 1996, 74, 1088-1096.
[http://dx.doi.org/10.1139/v96-122]
[21]
Noury, S.; Colonna, F.; Savin, A.; Silvi, B. J. Mol. Struct., 1998, 450, 59-68.
[http://dx.doi.org/10.1016/S0022-2860(98)00413-X]
[22]
Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. J. Am. Chem. Soc., 2010, 132(18), 6498-6506.
[http://dx.doi.org/10.1021/ja100936w] [PMID: 20394428]
[23]
Parr, R.G.; Yang, W. Annu. Rev. Phys. Chem., 1995, 46, 701-728.
[http://dx.doi.org/10.1146/annurev.pc.46.100195.003413] [PMID: 24341393]
[24]
Ess, D.H.; Jones, G.O.; Houk, K.N. Adv. Synth. Catal., 2006, (November), 2337-2361.
[http://dx.doi.org/10.1002/adsc.200600431]
[25]
Domingo, L.R.; Aurell, M.J.; Pérez, P.; Contreras, R. Tetrahedron, 2002, 58, 4417-4423.
[http://dx.doi.org/10.1016/S0040-4020(02)00410-6]
[26]
Jaramillo, P.; Domingo, L.R.; Chamorro, E.; Pérez, P. J. Mol. Struct. THEOCHEM, 2008, 865, 68-72.
[http://dx.doi.org/10.1016/j.theochem.2008.06.022]
[27]
Domingo, L.R.; Pérez, P. Org. Biomol. Chem., 2011, 9(20), 7168-7175.
[http://dx.doi.org/10.1039/c1ob05856h] [PMID: 21842104]
[28]
Domingo, L.R.; Chamorro, E.; Pérez, P. J. Org. Chem., 2008, 73(12), 4615-4624.
[http://dx.doi.org/10.1021/jo800572a] [PMID: 18484771]
[29]
Kohn, W. Sham, L.J. Phys. Rev., 1965, 140.
[30]
Boger, D.L.; Patel, M.; Takusagawa, F. J. Org. Chem., 1985, 50, 1911-1916.
[http://dx.doi.org/10.1021/jo00211a025]
[31]
Reed, A.E.; Weinstock, R.B.; Weinhold, F. J. Chem. Phys., 1985, 83, 735-746.
[http://dx.doi.org/10.1063/1.449486]
[32]
Domingo, L.R. RSC Advances, 2014, 4, 32415-32428.
[http://dx.doi.org/10.1039/C4RA04280H]
[33]
Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Tetrahedron, 2016, 72, 1524-1532.
[http://dx.doi.org/10.1016/j.tet.2016.01.061]
[34]
Andrés, J.; González-Navarrete, P.; Safont, V.S. Int. J. Quantum Chem., 2014, 114, 1239-1252.
[http://dx.doi.org/10.1002/qua.24665]
[35]
Andres, J.; Berski, S.; Domingo, L.R.; Polo, V.; Silvi, B. Curr. Org. Chem., 2011, 15, 3566-3575.
[http://dx.doi.org/10.2174/138527211797636156]
[36]
Polo, V.; Andres, J.; Berski, S.; Domingo, L.R.; Silvi, B. J. Phys. Chem. A, 2008, 112(31), 7128-7136.
[http://dx.doi.org/10.1021/jp801429m] [PMID: 18557601]
[37]
Silvi, B. J. Mol. Struct., 2002, 614, 3-10.
[http://dx.doi.org/10.1016/S0022-2860(02)00231-4]
[38]
Domingo, L.R. Molecules, 2016, 21, 1-15.
[39]
Lan, Y.; Zou, L.; Cao, Y.; Houk, K.N. J. Phys. Chem. A, 2011, 115(47), 13906-13920.
[http://dx.doi.org/10.1021/jp207563h] [PMID: 21967148]
[40]
Gonzalez, C.; Schlegel, H.B. J. Phys. Chem., 1990, 94, 5523-5527.
[http://dx.doi.org/10.1021/j100377a021]
[41]
Tomasi, J.; Persico, M. Chem. Rev., 1994, 94, 2027-2094.
[http://dx.doi.org/10.1021/cr00031a013]
[42]
Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys., 1997, 107, 3032-3041.
[http://dx.doi.org/10.1063/1.474659]
[43]
Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A. Ab initio Molecular Orbital Theory; Wiley New York, 1986.
[44]
Blanchard, P.; Brüning, E. Progress in Mathematical Physics; Springer: Berlin, 2015.
[45]
Parr, R.G.; Pearson, R.G. J. Am. Chem. Soc., 1983, 105, 7512-7516.
[http://dx.doi.org/10.1021/ja00364a005]
[46]
Parr, R.G.; Szentpály, L.V.; Liu, S. J. Am. Chem. Soc., 1999, 121, 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[47]
Domingo, L.R.; Pérez, P.; Sáez, J.A. RSC Advances, 2013, 3, 1486-1494.
[http://dx.doi.org/10.1039/C2RA22886F]
[48]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E., Jr; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, revision A; Gaussian, Inc.: Wallingford, CT, 2009.
[49]
Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. Comput. Chem., 1999, 23, 597-604.
[http://dx.doi.org/10.1016/S0097-8485(99)00039-X]
[50]
Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J-P.; Beratan, D.N.; Yang, W.J. Chem. Theory Comput., 2011, 7(3), 625-632.
[http://dx.doi.org/10.1021/ct100641a] [PMID: 21516178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy