Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Natural Killer Cell-targeted Immunotherapy for Cancer

Author(s): Jingyi Tang, Qi Zhu, Zhaoyang Li, Jiahui Yang* and Yu Lai

Volume 17, Issue 6, 2022

Published on: 18 February, 2022

Page: [513 - 526] Pages: 14

DOI: 10.2174/1574888X17666220107101722

Price: $65

Abstract

Natural Killer (NK) cells were initially described in the early 1970s as major histocompatibility complex unrestricted killers due to their ability to spontaneously kill certain tumor cells. In the past decade, the field of NK cell-based treatment has been accelerating exponentially, holding a dominant position in cancer immunotherapy innovation. Generally, research on NK cell-mediated antitumor therapies can be categorized into three areas: choosing the optimal source of allogeneic NK cells to yield massively amplified “off-the-shelf” products, improving NK cell cytotoxicity and longevity, and engineering NK cells with the ability of tumor-specific recognition. In this review, we focused on NK cell manufacturing techniques, some auxiliary methods to enhance the therapeutic efficacy of NK cells, chimeric antigen receptor NK cells, and monoclonal antibodies targeting inhibitory receptors, which can significantly augment the antitumor activity of NK cells. Notably, emerging evidence suggests that NK cells are a promising constituent of multipronged therapeutic strategies, strengthening immune responses to cancer.

Keywords: NK cells, immunotherapy , genetic engineering , chimeric antigen receptor , inhibitory checkpoints, cancerous cells.

Graphical Abstract

[1]
Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 1975; 16(2): 230-9.
[http://dx.doi.org/10.1002/ijc.2910160205] [PMID: 1080480]
[2]
Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5(2): 112-7.
[http://dx.doi.org/10.1002/eji.1830050208] [PMID: 1234049]
[3]
Prager I, Liesche C, van Ooijen H, et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J Exp Med 2019; 216(9): 2113-27.
[http://dx.doi.org/10.1084/jem.20181454] [PMID: 31270246]
[4]
Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural killer (NK) cell-mediated cytotoxicity: Differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 1998; 188(12): 2375-80.
[http://dx.doi.org/10.1084/jem.188.12.2375] [PMID: 9858524]
[5]
Warren HS, Kinnear BF, Phillips JH, Lanier LL. Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J Immunol 1995; 154(10): 5144-52.
[PMID: 7730620]
[6]
Smyth MJ, Zachariae CO, Norihisa Y, Ortaldo JR, Hishinuma A, Matsushima K. IL-8 gene expression and production in human peripheral blood lymphocyte subsets. J Immunol 1991; 146(11): 3815-23.
[PMID: 1827816]
[7]
Bluman EM, Bartynski KJ, Avalos BR, Caligiuri MA. Human natural killer cells produce abundant macrophage inflammatory protein-1 alpha in response to monocyte-derived cytokines. J Clin Invest 1996; 97(12): 2722-7.
[http://dx.doi.org/10.1172/JCI118726] [PMID: 8675682]
[8]
Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G. Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 1998; 161(11): 5821-4.
[PMID: 9834059]
[9]
Oliva A, Kinter AL, Vaccarezza M, et al. Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro. J Clin Invest 1998; 102(1): 223-31.
[http://dx.doi.org/10.1172/JCI2323] [PMID: 9649576]
[10]
Fehniger TA, Shah MH, Turner MJ, et al. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: Implications for the innate immune response. J Immunol 1999; 162(8): 4511-20.
[PMID: 10201989]
[11]
Roda JM, Parihar R, Magro C, Nuovo GJ, Tridandapani S, Carson WE III. Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells. Cancer Res 2006; 66(1): 517-26.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2429] [PMID: 16397268]
[12]
Cuturi MC, Anegón I, Sherman F, et al. Production of hematopoietic colony-stimulating factors by human natural killer cells. J Exp Med 1989; 169(2): 569-83.
[http://dx.doi.org/10.1084/jem.169.2.569] [PMID: 2521357]
[13]
Kärre K. Mechanisms of cytotoxicity by NK cells. FL, USA: Academic Orlando 1985.
[14]
André P, Biassoni R, Colonna M, et al. New nomenclature for MHC receptors. Nat Immunol 2001; 2(8): 661.
[http://dx.doi.org/10.1038/90589] [PMID: 11477395]
[15]
Huntington ND, Cursons J, Rautela J. The cancer-natural killer cell immunity cycle. Nat Rev Cancer 2020; 20(8): 437-54.
[http://dx.doi.org/10.1038/s41568-020-0272-z] [PMID: 32581320]
[16]
Stojanovic A, Fiegler N, Brunner-Weinzierl M, Cerwenka A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-γ production in response to mature dendritic cells. J Immunol 2014; 192(9): 4184-91.
[http://dx.doi.org/10.4049/jimmunol.1302091] [PMID: 24688023]
[17]
Bellanger AP, Courquet S, Pallandre JR, Godet Y, Millon L. Echinococcus multilocularis vesicular fluid induces the expression of immune checkpoint proteins in vitro. Parasite Immunol 2020; 42(6): e12711.
[http://dx.doi.org/10.1111/pim.12711] [PMID: 32171024]
[18]
Seo H, Kim BS, Bae EA, et al. IL21 Therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC Class I-deficient tumors. Cancer Immunol Res 2018; 6(6): 685-95.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0708] [PMID: 29615398]
[19]
Pesce S, Greppi M, Tabellini G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J Allergy Clin Immunol 2017; 139: 335-46.
[20]
Klingemann H. Are natural killer cells superior CAR drivers? OncoImmunology 2014; 3: e28147.
[http://dx.doi.org/10.4161/onci.28147] [PMID: 25340009]
[21]
Dogra P, Rancan C, Ma W, et al. Tissue determinants of human NK cell development, function, and residence. Cell 2020; 180: 749-63.
[http://dx.doi.org/10.1016/j.cell.2020.01.022]
[22]
Quintarelli C, Sivori S, Caruso S, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia 2020; 34(4): 1102-15.
[http://dx.doi.org/10.1038/s41375-019-0613-7] [PMID: 31745215]
[23]
Naeimi Kararoudi M, Nagai Y, Elmas E, et al. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 2020; 136(21): 2416-27.
[http://dx.doi.org/10.1182/blood.2020006200] [PMID: 32603414]
[24]
Alnabhan R, Madrigal A, Saudemont A. Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy 2015; 17(1): 73-85.
[http://dx.doi.org/10.1016/j.jcyt.2014.08.003] [PMID: 25248279]
[25]
Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989; 86(10): 3828-32.
[http://dx.doi.org/10.1073/pnas.86.10.3828] [PMID: 2566997]
[26]
Zhao X, Cai L, Hu Y, Wang H. Cord-blood natural killer cell-based immunotherapy for cancer. Front Immunol 2020; 11: 584099.
[http://dx.doi.org/10.3389/fimmu.2020.584099] [PMID: 33193399]
[27]
Rettman P, Willem C, David G, et al. New insights on the natural killer cell repertoire from a thorough analysis of cord blood cells. J Leukoc Biol 2016; 100(3): 471-9.
[http://dx.doi.org/10.1189/jlb.1HI0116-036R] [PMID: 27067451]
[28]
Gaddy J, Broxmeyer HE. Cord blood CD16+56- cells with low lytic activity are possible precursors of mature natural killer cells. Cell Immunol 1997; 180(2): 132-42.
[http://dx.doi.org/10.1006/cimm.1997.1175] [PMID: 9341743]
[29]
Luevano M, Domogala A, Blundell M, et al. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells. PLoS One 2014; 9(1): e87086.
[http://dx.doi.org/10.1371/journal.pone.0087086] [PMID: 24489840]
[30]
Spanholtz J, Tordoir M, Eissens D, et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One 2010; 5(2): e9221.
[http://dx.doi.org/10.1371/journal.pone.0009221] [PMID: 20169160]
[31]
Dolstra H, Roeven MWH, Spanholtz J, et al. Successful transfer of umbilical cord blood CD34+ hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. Clin Cancer Res 2017; 23(15): 4107-18.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2981] [PMID: 28280089]
[32]
Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994; 8(4): 652-8.
[PMID: 8152260]
[33]
Maki G, Klingemann HG, Martinson JA, Tam YK. Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J Hematother Stem Cell Res 2001; 10(3): 369-83.
[http://dx.doi.org/10.1089/152581601750288975] [PMID: 11454312]
[34]
Song X, Xu C, Wu X, Zhao X, Fan J, Meng S. The potential markers of NK-92 associated to cytotoxicity against K562 cells. Biologicals 2020; 68: 46-53.
[http://dx.doi.org/10.1016/j.biologicals.2020.08.009] [PMID: 32933840]
[35]
Tonn T, Schwabe D, Klingemann HG, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 2013; 15(12): 1563-70.
[http://dx.doi.org/10.1016/j.jcyt.2013.06.017] [PMID: 24094496]
[36]
Huang RS, Shih HA, Lai MC, Chang YJ, Lin S. Enhanced NK-92 cytotoxicity by CRISPR genome engineering using cas9 ribonucleoproteins. Front Immunol 2020; 11: 1008.
[http://dx.doi.org/10.3389/fimmu.2020.01008] [PMID: 32528479]
[37]
Woll PS, Martin CH, Miller JS, Kaufman DS. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 2005; 175(8): 5095-103.
[http://dx.doi.org/10.4049/jimmunol.175.8.5095] [PMID: 16210613]
[38]
Woll PS, Grzywacz B, Tian X, et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 2009; 113(24): 6094-101.
[http://dx.doi.org/10.1182/blood-2008-06-165225] [PMID: 19365083]
[39]
Cichocki F, Bjordahl R, Gaidarova S, et al. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci Transl Med 2020; 12(568): 12.
[http://dx.doi.org/10.1126/scitranslmed.aaz5618] [PMID: 33148626]
[40]
Hermanson DL, Bendzick L, Pribyl L, et al. Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells 2016; 34(1): 93-101.
[http://dx.doi.org/10.1002/stem.2230] [PMID: 26503833]
[41]
Zhu H, Blum RH, Bjordahl R, et al. Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood 2020; 135(6): 399-410.
[http://dx.doi.org/10.1182/blood.2019000621] [PMID: 31856277]
[42]
Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18(2): 85-100.
[http://dx.doi.org/10.1038/s41571-020-0426-7] [PMID: 32934330]
[43]
Zeng J, Tang SY, Toh LL, Wang S. Generation of “Off-the-shelf” natural killer cells from peripheral blood cell-derived induced pluripotent stem cells. Stem Cell Reports 2017; 9(6): 1796-812.
[http://dx.doi.org/10.1016/j.stemcr.2017.10.020] [PMID: 29173894]
[44]
Quéméner A, Morisseau S, Sousa RP, et al. IL-15Rα membrane anchorage in either cis or trans is required for stabilization of IL-15 and optimal signaling. J Cell Sci 2019; 133(5): 133.
[PMID: 31653781]
[45]
Mao Y, van Hoef V, Zhang X, et al. IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood 2016; 128(11): 1475-89.
[http://dx.doi.org/10.1182/blood-2016-02-698027] [PMID: 27465917]
[46]
Zhu H, Blum RH, Bernareggi D, et al. Metabolic reprograming via deletion of cish in human ipsc-derived nk cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 2020; 27(2): 224-237.e6.
[http://dx.doi.org/10.1016/j.stem.2020.05.008] [PMID: 32531207]
[47]
Delconte RB, Kolesnik TB, Dagley LF, et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat Immunol 2016; 17(7): 816-24.
[http://dx.doi.org/10.1038/ni.3470] [PMID: 27213690]
[48]
Felices M, Lenvik AJ, McElmurry R, et al. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight 2018; 3(3): 3.
[http://dx.doi.org/10.1172/jci.insight.96219] [PMID: 29415897]
[49]
Knudson KM, Hicks KC, Alter S, Schlom J, Gameiro SR. Mechanisms involved in IL-15 superagonist enhancement of anti-PD-L1 therapy. J Immunother Cancer 2019; 7(1): 82.
[http://dx.doi.org/10.1186/s40425-019-0551-y] [PMID: 30898149]
[50]
Cooley S, He F, Bachanova V, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv 2019; 3(13): 1970-80.
[http://dx.doi.org/10.1182/bloodadvances.2018028332] [PMID: 31266741]
[51]
Mitra S, Ring AM, Amarnath S, et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 2015; 42(5): 826-38.
[http://dx.doi.org/10.1016/j.immuni.2015.04.018] [PMID: 25992859]
[52]
Trinchieri G, Matsumoto-Kobayashi M, Clark SC, Seehra J, London L, Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med 1984; 160(4): 1147-69.
[http://dx.doi.org/10.1084/jem.160.4.1147] [PMID: 6434688]
[53]
Sharma R, Das A. IL-2 mediates NK cell proliferation but not hyperactivity. Immunol Res 2018; 66(1): 151-7.
[http://dx.doi.org/10.1007/s12026-017-8982-3] [PMID: 29256180]
[54]
Arenas-Ramirez N, Zou C, Popp S, et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci Transl Med 2016; 8(367): 367ra166.
[http://dx.doi.org/10.1126/scitranslmed.aag3187] [PMID: 27903862]
[55]
Bentebibel SE, Hurwitz ME, Bernatchez C, et al. A first-in-human study and biomarker analysis of nktr-214, a novel il2rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov 2019; 9(6): 711-21.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1495] [PMID: 30988166]
[56]
Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987; 316(15): 889-97.
[http://dx.doi.org/10.1056/NEJM198704093161501] [PMID: 3493432]
[57]
Koreth J, Kim HT, Jones KT, et al. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versusitalic>-host disease. Blood 2016; 128(1): 130-7.
[http://dx.doi.org/10.1182/blood-2016-02-702852] [PMID: 27073224]
[58]
Roy A, Krzykwa E, Lemieux R, Néron S. Increased efficiency of gamma-irradiated versusitalic> mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J Hematother Stem Cell Res 2001; 10(6): 873-80.
[http://dx.doi.org/10.1089/152581601317210962] [PMID: 11798513]
[59]
Granzin M, Soltenborn S, Müller S, et al. Fully automated expansion and activation of clinical-grade natural killer cells for adoptive immunotherapy. Cytotherapy 2015; 17(5): 621-32.
[http://dx.doi.org/10.1016/j.jcyt.2015.03.611] [PMID: 25881519]
[60]
Szmania S, Lapteva N, Garg T, et al. Ex vivo expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunotherapy 2015; 38: 24.
[http://dx.doi.org/10.1097/CJI.0000000000000059]
[61]
Shah NN, Baird K, Delbrook CP, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood 2015; 125(5): 784-92.
[http://dx.doi.org/10.1182/blood-2014-07-592881] [PMID: 25452614]
[62]
Kweon S, Phan MT, Chun S, et al. Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Front Immunol 2019; 10: 879.
[http://dx.doi.org/10.3389/fimmu.2019.00879] [PMID: 31105701]
[63]
Felices M, Lenvik TR, Davis ZB, Miller JS, Vallera DA. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol 2016; 1441: 333-46.
[http://dx.doi.org/10.1007/978-1-4939-3684-7_28] [PMID: 27177679]
[64]
Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol 2017; 31: 64-75.
[http://dx.doi.org/10.1016/j.smim.2017.07.011] [PMID: 28882429]
[65]
Gleason MK, Ross JA, Warlick ED, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 2014; 123(19): 3016-26.
[http://dx.doi.org/10.1182/blood-2013-10-533398] [PMID: 24652987]
[66]
Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 2015; 125(26): 4024-31.
[http://dx.doi.org/10.1182/blood-2014-12-614636] [PMID: 25887777]
[67]
Felices M, Lenvik TR, Kodal B, et al. Potent cytolytic activity and specific il15 delivery in a second-generation trispecific killer engager. Cancer Immunol Res 2020; 8(9): 1139-49.
[PMID: 32661096]
[68]
Cheng Y, Zheng X, Wang X, et al. Trispecific killer engager 161519 enhances natural killer cell function and provides anti-tumor activity against CD19-positive cancers. Cancer Biol Med 2020; 17(4): 1026-38.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0399] [PMID: 33299651]
[69]
Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019; 177(7): 1701-1713.e16.
[http://dx.doi.org/10.1016/j.cell.2019.04.041] [PMID: 31155232]
[70]
Ramos CA, Ballard B, Zhang H, et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest 2017; 127(9): 3462-71.
[http://dx.doi.org/10.1172/JCI94306] [PMID: 28805662]
[71]
Qi J, Chen SS, Chiorazzi N, Rader C. An IgG1-like bispecific antibody targeting CD52 and CD20 for the treatment of B-cell malignancies. Methods 2019; 154: 70-6.
[http://dx.doi.org/10.1016/j.ymeth.2018.08.008] [PMID: 30145356]
[72]
Das A, Barik S, Banerjee S, et al. A monoclonal antibody against neem leaf glycoprotein recognizes carcinoembryonic antigen (CEA) and restricts CEA expressing tumor growth. J Immunother 2014; 37(8): 394-406.
[http://dx.doi.org/10.1097/CJI.0000000000000050] [PMID: 25198527]
[73]
Moore PA, Shah K, Yang Y, et al. Development of MGD007, a gpA33 x CD3-Bispecific DART protein for T-Cell immunotherapy of metastatic colorectal cancer. Mol Cancer Ther 2018; 17(8): 1761-72.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1086] [PMID: 29866746]
[74]
Chang DK, Moniz RJ, Xu Z, et al. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer 2015; 14: 119.
[http://dx.doi.org/10.1186/s12943-015-0384-3] [PMID: 26062742]
[75]
Zhang S, Zhang HS, Cordon-Cardo C, Ragupathi G, Livingston PO. Selection of tumor antigens as targets for immune attack using immunohistochemistry: Protein antigens. Clin Cancer Res 1998; 4(11): 2669-76.
[PMID: 9829729]
[76]
Oberschmidt O, Kloess S, Koehl U. Redirected primary human chimeric antigen receptor natural killer cells as an “Off-the-shelf immunotherapy” for improvement in cancer treatment. Front Immunol 2017; 8: 654.
[http://dx.doi.org/10.3389/fimmu.2017.00654] [PMID: 28649246]
[77]
Olson JA, Leveson-Gower DB, Gill S, Baker J, Beilhack A, Negrin RS. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 2010; 115(21): 4293-301.
[http://dx.doi.org/10.1182/blood-2009-05-222190] [PMID: 20233969]
[78]
Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020; 382(6): 545-53.
[http://dx.doi.org/10.1056/NEJMoa1910607] [PMID: 32023374]
[79]
Abbasi J. CAR natural killer cell therapy safe and effective in first trial. JAMA 2020; 323(10): 916-6.
[http://dx.doi.org/10.1001/jama.2020.1940] [PMID: 32154845]
[80]
Yang Y, Badeti S, Tseng HC, et al. Superior expansion and cytotoxicity of human primary NK and CAR-NK cells from various sources via enriched metabolic pathways. Mol Ther Methods Clin Dev 2020; 18: 428-45.
[http://dx.doi.org/10.1016/j.omtm.2020.06.014] [PMID: 32695845]
[81]
Oei VYS, Siernicka M, Graczyk-Jarzynka A, et al. Intrinsic functional potential of NK-Cell subsets constrains retargeting driven by chimeric antigen receptors. Cancer Immunol Res 2018; 6(4): 467-80.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0207] [PMID: 29459477]
[82]
Zhang C, Oberoi P, Oelsner S, et al. Chimeric antigen receptor-engineered NK-92 cells: An off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front Immunol 2017; 8: 533.
[http://dx.doi.org/10.3389/fimmu.2017.00533] [PMID: 28572802]
[83]
Wang Z, Zhu J, Gu H, et al. The clinical significance of abnormal tim-3 expression on nk cells from patients with gastric cancer. Immunol Invest 2015; 44(6): 578-89.
[http://dx.doi.org/10.3109/08820139.2015.1052145] [PMID: 26214042]
[84]
Chen X, Han J, Chu J, et al. A combinational therapy of EGFR- CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 2016; 7(19): 27764-77.
[http://dx.doi.org/10.18632/oncotarget.8526] [PMID: 27050072]
[85]
Huang Y, Zeng J, Liu T, Xu Q, Song X, Zeng J. DNAM1 and 2B4 costimulatory domains enhance the cytotoxicity of anti-GPC3 chimeric antigen receptor-modified natural killer cells against hepatocellular cancer cells in vitro. Cancer Manag Res 2020; 12: 3247-55.
[http://dx.doi.org/10.2147/CMAR.S253565] [PMID: 32440221]
[86]
Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 2018; 32(2): 520-31.
[http://dx.doi.org/10.1038/leu.2017.226] [PMID: 28725044]
[87]
Chu Y, Yahr A, Huang B, Ayello J, Barth M, S Cairo M. Romidepsin alone or in combination with anti-CD20 chimeric antigen receptor expanded natural killer cells targeting Burkitt lymphoma in vitro and in immunodeficient mice. OncoImmunology 2017; 6(9): e1341031.
[http://dx.doi.org/10.1080/2162402X.2017.1341031] [PMID: 28932644]
[88]
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 2018; 23(2): 181-192.e5.
[http://dx.doi.org/10.1016/j.stem.2018.06.002] [PMID: 30082067]
[89]
Ingegnere T, Mariotti FR, Pelosi A, et al. Human CAR NK cells: A new non-viral method allowing high efficient transfection and strong tumor cell killing. Front Immunol 2019; 10: 957.
[http://dx.doi.org/10.3389/fimmu.2019.00957] [PMID: 31114587]
[90]
Wilk AJ, Weidenbacher NL, Vergara R, et al. Charge-altering releasable transporters enable phenotypic manipulation of natural killer cells for cancer immunotherapy. Blood Adv 2020; 4(17): 4244-55.
[http://dx.doi.org/10.1182/bloodadvances.2020002355] [PMID: 32898247]
[91]
Felices M, Miller JS. Targeting KIR blockade in multiple myeloma: Trouble in checkpoint paradise? Clin Cancer Res 2016; 22(21): 5161-3.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1582] [PMID: 27430580]
[92]
Romagné F, André P, Spee P, et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 2009; 114(13): 2667-77.
[http://dx.doi.org/10.1182/blood-2009-02-206532] [PMID: 19553639]
[93]
Haanen JB, Cerundolo V. NKG2A, a New Kid on the Immune Checkpoint Block. Cell 2018; 175(7): 1720-2.
[http://dx.doi.org/10.1016/j.cell.2018.11.048] [PMID: 30550781]
[94]
Mingari MC, Pietra G, Moretta L. Immune checkpoint inhibitors: Anti-NKG2A Antibodies on Board. Trends Immunol 2019; 40(2): 83-5.
[http://dx.doi.org/10.1016/j.it.2018.12.009] [PMID: 30609967]
[95]
Hsu J, Hodgins JJ, Marathe M, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest 2018; 128(10): 4654-68.
[http://dx.doi.org/10.1172/JCI99317] [PMID: 30198904]
[96]
Nishino M, Giobbie-Hurder A, Manos MP, et al. Immune-related tumor response dynamics in melanoma patients treated with pembrolizumab: Identifying markers for clinical outcome and treatment decisions. Clin Cancer Res 2017; 23(16): 4671-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0114] [PMID: 28592629]
[97]
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018; 378(22): 2093-104.
[http://dx.doi.org/10.1056/NEJMoa1801946] [PMID: 29658845]
[98]
Tu MM, Ng TL, De Jong FC, Zuiverloon TCM, Fazzari FGT, Theodorescu D. Molecular biomarkers of response to PD-1/ PD-L1 immune checkpoint blockade in advanced bladder cancer. Bladder Cancer 2019; 5(2): 131-45.
[http://dx.doi.org/10.3233/BLC-190218] [PMID: 33365377]
[99]
Boyerinas B, Jochems C, Fantini M, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti–PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 2015; 3(10): 1148-57.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0059] [PMID: 26014098]
[100]
Dong W, Wu X, Ma S, et al. The mechanism of anti-pd-l1 antibody efficacy against pd-l1-negative tumors identifies NK Cells expressing PD-L1 as a cytolytic effector. Cancer Discov 2019; 9(10): 1422-37.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1259] [PMID: 31340937]
[101]
Zhang D, Zheng Y, Lin Z, et al. Equipping natural killer cells with specific targeting and checkpoint blocking aptamers for enhanced adoptive immunotherapy in solid tumors. Angew Chem Int Ed Engl 2020; 59(29): 12022-8.
[http://dx.doi.org/10.1002/anie.202002145] [PMID: 32246555]
[102]
Xu L, Huang Y, Tan L, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int Immunopharmacol 2015; 29(2): 635-41.
[http://dx.doi.org/10.1016/j.intimp.2015.09.017] [PMID: 26428847]
[103]
da Silva IP, Gallois A, Jimenez-Baranda S, et al. Reversal of NK- cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res 2014; 2(5): 410-22.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0171] [PMID: 24795354]
[104]
Zhang W, Feng H, Chen Q, Lu X, Ge J. The functional potency of natural killer cells in response to IL-2/IL-15/IL-21 stimulation is limited by a concurrent upregulation of Tim-3 in bladder cancer. Exp Cell Res 2018; 372(2): 92-8.
[http://dx.doi.org/10.1016/j.yexcr.2018.09.013] [PMID: 30243902]
[105]
Qin S, Dong B, Yi M, Chu Q, Wu K. Prognostic values of TIM-3 expression in patients with solid tumors: A meta-analysis and database evaluation. Front Oncol 2020; 10: 1288.
[http://dx.doi.org/10.3389/fonc.2020.01288] [PMID: 32850398]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy