Review Article

肠道微生物群、肠道免疫生态位和内脏脂肪组织之间的对话,作为代谢性和炎症性疾病发病机制的新模型:2型糖尿病的范例

卷 29, 期 18, 2022

发表于: 14 February, 2022

页: [3189 - 3201] 页: 13

弟呕挨: 10.2174/0929867329666220105121124

价格: $65

摘要

肠道微生物群(GM)由细菌种类、病毒、真菌和原生动物之间的1000多种微生物组成,是一个广泛的分子相互作用网络的主要参与者,其中包括内分泌系统、免疫反应和代谢。转基因影响许多内分泌功能,如肾上腺类固醇生成、甲状腺功能、性激素、IGF-1通路和在胃肠道系统中产生的多肽。它在血糖控制和肥胖方面是基础作用,同时也在调节免疫系统和相关炎症疾病方面发挥重要作用。肠道黏膜中这种串扰的结果是肠道免疫生态位的形成。内脏脂肪组织(VAT)产生大约600种不同的多肽,它通过几种脂肪因子参与脂质和葡萄糖代谢,以及一些免疫反应。转基因和增值税以双向的方式相互作用:肠道生态失调可以改变增值税脂肪因子和激素分泌,而增值税增生可以改变转基因组成。获得性或遗传因素导致肠道生态失调或增值税增加。这在糖尿病等代谢不良和免疫疾病的发展中起着关键作用。糖尿病与转基因改变的特定模式有关,参与控制黏膜屏障状态的转基因物种的丰富或减少,血糖水平和发挥促抗炎活性。所有这些因素都可以解释西方国家几种炎症的高发病率;此外,除了在糖尿病中观察到的特定改变,这种模式可能代表许多代谢条件的共同途径,并可能为新的、有趣的治疗方法铺平道路。

关键词: 二型糖尿病、肠道微生物群、脂肪组织、免疫力、发病机制、炎症性疾病。

[1]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[2]
Schrijnders, D.; Hendriks, S.H.; Kleefstra, N.; Vissers, P.A.J.; Johnson, J.A. Sex differences in obesity related cancer incidence in relation to type 2 diabetes diagnosis (ZODIAC-49). PLOS One, 2018, 13(1), e0190870.
[3]
Aw, W.; Fukuda, S. Understanding the role of the gut ecosystem in diabetes mellitus. J. Diabetes Investig., 2018, 9(1), 5-12.
[http://dx.doi.org/10.1111/jdi.12673] [PMID: 28390093]
[4]
Haluzík, M.; Kratochvílová, H.; Haluzíková, D.; Mráz, M. Gut as an emerging organ for the treatment of diabetes: Focus on mechanism of action of bariatric and endoscopic interventions. J. Endocrinol., 2018, 237(1), R1-R17.
[http://dx.doi.org/10.1530/JOE-17-0438] [PMID: 29378901]
[5]
Vaarala, O.; Atkinson, M.A.; Neu, J. The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes, 2008, 57(10), 2555-2562.
[http://dx.doi.org/10.2337/db08-0331] [PMID: 18820210]
[6]
Cammarota, G.; Ianiro, G.; Cianci, R.; Bibbò, S.; Gasbarrini, A.; Currò, D. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: Potential for therapy. Pharmacol. Ther., 2015, 149, 191-212.
[http://dx.doi.org/10.1016/j.pharmthera.2014.12.006] [PMID: 25561343]
[7]
Lopetuso, L.R.; Petito, V.; Graziani, C.; Schiavoni, E.; Paroni Sterbini, F.; Poscia, A.; Gaetani, E.; Franceschi, F.; Cammarota, G.; Sanguinetti, M.; Masucci, L.; Scaldaferri, F.; Gasbarrini, A. Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: Time for microbial marker of gastrointestinal disorders. Dig. Dis., 2018, 36(1), 56-65.
[http://dx.doi.org/10.1159/000477205] [PMID: 28683448]
[8]
Tilg, H.; Zmora, N.; Adolph, TE.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol., 2020 20 (1), 40-54. Epub 2019 Aug 6.
[http://dx.doi.org/10.1038/s41577-019-0198-4] [PMID: 31388093]
[9]
Targher, G.; Lonardo, A.; Byrne, C.D. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat. Rev. Endocrinol., 2018, 14(2), 99-114.
[http://dx.doi.org/10.1038/nrendo.2017.173] [PMID: 29286050]
[10]
Cianci, R.; Frosali, S. Uncomplicated diverticular disease: Innate and adaptive immunity in human gut mucosa before and after rifaximin. J. Immunol. Res., 2014, 2014, 696812.
[http://dx.doi.org/10.1155/2014/696812]
[11]
Pagliari, D.; Saviano, A.; Newton, E.E.; Serricchio, M.L.; Dal Lago, A.A.; Gasbarrini, A. Gut microbiota-immune system crosstalk and pancreatic disorders. Mediators Inflamm., 2018, 2018, 7946431.
[12]
Cox, L.M.; Weiner, H.L. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics, 2018, 15(1), 135-145.
[http://dx.doi.org/10.1007/s13311-017-0598-8] [PMID: 29340928]
[13]
Abdallah, F.; Mijouin, L.; Pichon, C. Skin immune landscape: inside and outside the organism. Mediators Inflamm., 2017, 2017, 5095293.
[14]
Budden, K.F.; Shukla, S.D.; Rehman, S.F.; Bowerman, K.L.; Keely, S., Hugenholtz, P.; Armstrong-James, D.P.H.; Adcock, I.M.; Chotirmall, S.H.; Chung, K.F.; Hansbro, P.M. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med.,2019 7(10), 907-920. Epub 2019 Apr 8.
[http://dx.doi.org/10.1016/S2213-2600(18)30510-1] [PMID: 30975495]
[15]
Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut. 2018, 67(1), 120-127.
[http://dx.doi.org/10.1136/gutjnl-2016-312580]
[16]
Cianci, R.; Franza, L.; Schinzari, G.; Rossi, E., Ianiro, G.; Tortora, G.; Gasbarrini, A.; Gambassi, G.; Cammarota, G. The interplay between immunity and microbiota at intestinal immunological niche: the case of cancer. Int. J. Mol. Sci., 2019, 20(3), 501.
[http://dx.doi.org/10.3390/ijms20030501] [PMID: 30682772]
[17]
Gori, S.; Inno, A.; Belluomini, L.; Bocus, P.; Bisoffi, Z.; Russo, A.; Arcaro, G. Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit. Rev. Oncol. Hematol.,2019 143, 139-147.
[http://dx.doi.org/10.1038/nrmicro.2018.12] [PMID: 29355853]
[18]
Pagliari, D.; Gambassi, G.; Piccirillo, C.A.; Cianci, R. The intricate link among gut “Immunological Niche,” microbiota, and xenobiotics in intestinal pathology. Mediators Inflamm., 2017, 2017, 8390595.
[http://dx.doi.org/10.1155/2017/8390595] [PMID: 31634731]
[19]
Hornef, M. Pathogens, commensal symbionts, and pathobionts: Discovery and functional effects on the host. ILAR J., 2015, 56(2), 159-162.
[http://dx.doi.org/10.1093/ilar/ilv007] [PMID: 26323625]
[20]
de Oliveira, G.L.V.; Leite, A.Z.; Higuchi, B.S.; Gonzaga, M.I.; Mariano, V.S. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology, 2017, 152(1), 1-12.
[http://dx.doi.org/10.1111/imm.12765] [PMID: 28556916]
[21]
Kåhrström, CT.; Pariente, N.; Weiss, U. Intestinal microbiota in health and disease. Nature,2016 , 535(7610), 47.
[http://dx.doi.org/10.1038/535047a] [PMID: 27383978]
[22]
Zeng, M.Y.; Inohara, N.; Nuñez, G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol., 2017, 10(1), 18-26.
[http://dx.doi.org/10.1038/mi.2016.75] [PMID: 27554295]
[23]
Al-Asmakh, M.; Zadjali, F. Use of germ-free animal models in microbiota-related research. J. Microbiol. Biotechnol., 2015, 25(10), 1583-1588.
[http://dx.doi.org/10.4014/jmb.1501.01039] [PMID: 26032361]
[24]
Neuman, H.; Debelius, J.W.; Knight, R.; Koren, O. Microbial endocrinology: The interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev., 2015, 39(4), 509-521.
[http://dx.doi.org/10.1093/femsre/fuu010] [PMID: 25701044]
[25]
Geurts, L.; Lazarevic, V.; Derrien, M.; Everard, A.; Van Roye, M.; Knauf, C.; Valet, P.; Girard, M.; Muccioli, G.G.; François, P.; de Vos, W.M.; Schrenzel, J.; Delzenne, N.M.; Cani, P.D. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: Impact on apelin regulation in adipose tissue. Front. Microbiol., 2011, 2, 149.
[http://dx.doi.org/10.3389/fmicb.2011.00149] [PMID: 21808634]
[26]
Gianchecchi, E.; Fierabracci, A. On the pathogenesis of insulin-dependent diabetes mellitus: The role of microbiota. Immunol. Res., 2017, 65(1), 242-256.
[http://dx.doi.org/10.1007/s12026-016-8832-8] [PMID: 27421719]
[27]
Pascale, A.; Marchesi, N.; Marelli, C.; Coppola, A.; Luzi, L.; Govoni, S.; Giustina, A.; Gazzaruso, C. Microbiota and metabolic diseases. Endocrine, 2018, 61(3), 357-371.
[http://dx.doi.org/10.1007/s12020-018-1605-5]
[28]
Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 diabetes and its impact on the immune system. Curr. Diabetes Rev., 2020, 16(5), 442-449.
[http://dx.doi.org/10.2174/1573399815666191024085838] [PMID: 31657690]
[29]
Prasad, M.; Chen, E.W.; Toh, S.A.; Gascoigne, N.R.J. Autoimmune responses and inflammation in type 2 diabetes. J. Leukoc. Biol., 2020, 107(5), 739-748.
[http://dx.doi.org/10.1002/JLB.3MR0220-243R]
[30]
Zefferino, R.; Di Gioia, S. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav., 2021, 11(2), e01960.
[http://dx.doi.org/10.1002/brb3.1960]
[31]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(Pt 1), 263-275.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[32]
Vagnerová, K.; Vodička, M.; Hermanová, P.; Ergang, P.; Šrůtková, D.; Klusoňová, P.; Balounová, K.; Hudcovic, T.; Pácha, J. Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic-pituitary-adrenal axis and the intestine of male mice. Front. Immunol., 2019, 10, 2655.
[http://dx.doi.org/10.3389/fimmu.2019.02655] [PMID: 31798585]
[33]
Yurkovetskiy, L.; Burrows, M.; Khan, A.A.; Graham, L.; Volchkov, P.; Becker, L.; Antonopoulos, D.; Umesaki, Y.; Chervonsky, A.V. Gender bias in autoimmunity is influenced by microbiota. Immunity, 2013, 39(2), 400-412.
[http://dx.doi.org/10.1016/j.immuni.2013.08.013] [PMID: 23973225]
[34]
Sommer, F.; Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol., 2013, 11(4), 227-238.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[35]
Bilski, J.; Mazur-Bialy, A. Role of obesity, mesenteric adipose tissue, and adipokines in inflammatory bowel diseases. Biomolecules, 2019, 9(12), 780.
[36]
Neal, M.D.; Leaphart, C.; Levy, R.; Prince, J.; Billiar, T.R.; Watkins, S.; Li, J.; Cetin, S.; Ford, H.; Schreiber, A.; Hackam, D.J. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol., 2006, 176(5), 3070-3079.
[http://dx.doi.org/10.4049/jimmunol.176.5.3070] [PMID: 16493066]
[37]
Amar, J.; Chabo, C.; Waget, A.; Klopp, P.; Vachoux, C.; Bermúdez-Humarán, L.G.; Smirnova, N.; Bergé, M.; Sulpice, T.; Lahtinen, S.; Ouwehand, A.; Langella, P.; Rautonen, N.; Sansonetti, P.J.; Burcelin, R. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Mol. Med., 2011, 3(9), 559-572.
[http://dx.doi.org/10.1002/emmm.201100159] [PMID: 21735552]
[38]
Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest., 2006, 116(11), 3015-3025.
[http://dx.doi.org/10.1172/JCI28898] [PMID: 17053832]
[39]
Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; Cazaubiel, J.M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr., 2011, 105(5), 755-764.
[http://dx.doi.org/10.1017/S0007114510004319] [PMID: 20974015]
[40]
Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[41]
Shimba, A.; Ikuta, K. Control of immunity by glucocorticoids in health and disease. Semin. Immunopathol., 2020, 42(6), 669-680.
[http://dx.doi.org/10.1007/s00281-020-00827-8]
[42]
Lupien-Meilleur, J.; Andrich, D.E.; Quinn, S.; Micaelli-Baret, C.; St-Amand, R.; Roy, D.; St-Pierre, D.H. Interplay between gut microbiota and gastrointestinal peptides: Potential outcomes on the regulation of glucose control. Can. J. Diabetes, 2020, 44(4), 359-367.
[http://dx.doi.org/10.1016/j.jcjd.2019.10.006] [PMID: 32057671]
[43]
Hira, T.; Ogasawara, S.; Yahagi, A.; Kamachi, M.; Li, J.; Nishimura, S.; Sakaino, M.; Yamashita, T.; Kishino, S.; Ogawa, J.; Hara, H. Novel mechanism of fatty acid sensing in enteroendocrine cells: Specific structures in oxo-fatty acids produced by gut bacteria are responsible for CCK secretion in stc-1 cells via GPR40. Mol. Nutr. Food Res., 2018, 62(19), e1800146.
[http://dx.doi.org/10.1002/mnfr.201800146] [PMID: 29938900]
[44]
Yan, J.; Charles, J.F. Gut microbiota and IGF-1. Calcif. Tissue Int., 2018, 102(4), 406-414.
[http://dx.doi.org/10.1007/s00223-018-0395-3]
[45]
Markle, J.G.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoy, K.D.; Macpherson, A.J.; Danska, J.S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 2013, 339(6123), 1084-1088.
[http://dx.doi.org/10.1126/science.1233521] [PMID: 23328391]
[46]
Vemuri, R.; Sylvia, K.E.; Klein, S.L.; Forster, S.C.; Plebanski, M.; Eri, R.; Flanagan, K.L. The microgenderome revealed: Sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Semin. Immunopathol., 2019, 41(2), 265-275.
[http://dx.doi.org/10.1007/s00281-018-0716-7]
[47]
Paun, A.; Yau, C.; Danska, J.S. The influence of the microbiome on type 1 diabetes. J. Immunol. (Baltimore, MD 1950), 2017, 198(2), 590-595.
[48]
Semenkovich, C.F.; Danska, J.; Darsow, T.; Dunne, J.L.; Huttenhower, C.; Insel, R.A.; McElvaine, A.T.; Ratner, R.E.; Shuldiner, A.R.; Blaser, M.J. American diabetes association and jdrf research symposium: Diabetes and the microbiome. Diabetes, 2015, 64(12), 3967-3977.
[http://dx.doi.org/10.2337/db15-0597] [PMID: 26420863]
[49]
Jandhyala, S.M.; Madhulika, A.; Deepika, G.; Rao, G.V.; Reddy, D.N.; Subramanyam, C.; Sasikala, M.; Talukdar, R. Altered intestinal microbiota in patients with chronic pancreatitis: Implications in diabetes and metabolic abnormalities. Sci. Rep., 2017, 7(1), 43640.
[http://dx.doi.org/10.1038/srep43640] [PMID: 28255158]
[50]
Capurso, G.; Zerboni, G.; Signoretti, M.; Valente, R.; Stigliano, S.; Piciucchi, M.; Delle Fave, G. Role of the gut barrier in acute pancreatitis. J. Clin. Gastroenterol., 2012, 46(Suppl.), S46-S51.
[http://dx.doi.org/10.1097/MCG.0b013e3182652096] [PMID: 22955357]
[51]
Tan, C.; Ling, Z.; Huang, Y.; Cao, Y.; Liu, Q.; Cai, T.; Yuan, H.; Liu, C.; Li, Y.; Xu, K. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas, 2015, 44(6), 868-875.
[http://dx.doi.org/10.1097/MPA.0000000000000355] [PMID: 25931253]
[52]
Han, J.L.; Lin, H.L. Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective. World J. Gastroenterol., 2014, 20(47), 17737-17745.
[http://dx.doi.org/10.3748/wjg.v20.i47.17737] [PMID: 25548472]
[53]
Pekkala, S.; Munukka, E.; Kong, L.; Pöllänen, E.; Autio, R.; Roos, C.; Wiklund, P.; Fischer-Posovszky, P.; Wabitsch, M.; Alen, M.; Huovinen, P.; Cheng, S. Toll-like receptor 5 in obesity: The role of gut microbiota and adipose tissue inflammation. Obesity (Silver Spring), 2015, 23(3), 581-590.
[http://dx.doi.org/10.1002/oby.20993] [PMID: 25611816]
[54]
Stojanović, O.; Trajkovski, M. Microbiota guides insulin trafficking in beta cells. Cell Res., 2019, 29(8), 603-604.
[http://dx.doi.org/10.1038/s41422-019-0200-5] [PMID: 31267016]
[55]
Belizário, J.E.; Faintuch, J. Microbiome and gut dysbiosis. Experientia Suppl., 2018, 109(109), 459-476.
[http://dx.doi.org/10.1007/978-3-319-74932-7_13] [PMID: 30535609]
[56]
Brown, E.M.; Sadarangani, M.; Finlay, B.B. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol., 2013, 14(7), 660-667.
[http://dx.doi.org/10.1038/ni.2611] [PMID: 23778793]
[57]
Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol., 2009, 9(5), 313-323.
[http://dx.doi.org/10.1038/nri2515] [PMID: 19343057]
[58]
Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science, 2012, 336(6086), 1268-1273.
[http://dx.doi.org/10.1126/science.1223490] [PMID: 22674334]
[59]
Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535(7610), 75-84.
[http://dx.doi.org/10.1038/nature18848] [PMID: 27383982]
[60]
Prince, B.T.; Mandel, M.J.; Nadeau, K.; Singh, A.M. Gut microbiome and the development of food allergy and allergic disease. Pediatr. Clin. North Am., 2015, 62(6), 1479-1492.
[http://dx.doi.org/10.1016/j.pcl.2015.07.007] [PMID: 26456445]
[61]
Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol., 2013, 13(11), 790-801.
[http://dx.doi.org/10.1038/nri3535] [PMID: 24096337]
[62]
Ubeda, C.; Djukovic, A.; Isaac, S. Roles of the intestinal microbiota in pathogen protection. Clin. Transl. Immunol., 2017, 6(2), e128.
[http://dx.doi.org/10.1038/cti.2017.2] [PMID: 28243438]
[63]
van den Elsen, L.W.; Poyntz, H.C.; Weyrich, L.S.; Young, W.; Forbes-Blom, E.E. Embracing the gut microbiota: The new frontier for inflammatory and infectious diseases. Clin. Transl. Immunol., 2017, 6(1), e125.
[http://dx.doi.org/10.1038/cti.2016.91] [PMID: 28197336]
[64]
McKenney, P.T.; Pamer, E.G. From hype to hope: The gut microbiota in enteric infectious disease. Cell, 2015, 163(6), 1326-1332.
[http://dx.doi.org/10.1016/j.cell.2015.11.032] [PMID: 26638069]
[65]
Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51, 102590.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.051] [PMID: 31901868]
[66]
Tanase, D.M.; Gosav, E.M.; Neculae, E.; Costea, C.F.; Ciocoiu, M.; Hurjui, L.L.; Tarniceriu, C.C.; Maranduca, M.A.; Lacatusu, C.M.; Floria, M.; Serban, I.L. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients, 2020, 12(12), 3719.
[http://dx.doi.org/10.3390/nu12123719] [PMID: 33276482]
[67]
Pollak, M. The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia, 2017, 60(9), 1662-1667.
[http://dx.doi.org/10.1007/s00125-017-4352-x] [PMID: 28770326]
[68]
Zhang, M.; Feng, R.; Yang, M.; Qian, C.; Wang, Z.; Liu, W.; Ma, J. Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res. Care, 2019, 7(1), e000717.
[http://dx.doi.org/10.1136/bmjdrc-2019-000717]
[69]
Tanaka, H.; Yoshida, S.; Minoura, H.; Negoro, K.; Shimaya, A.; Shimokawa, T.; Shibasaki, M. Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion. Life Sci., 2014, 94(2), 115-121.
[http://dx.doi.org/10.1016/j.lfs.2013.11.010] [PMID: 24269216]
[70]
Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology, 2017, 152(7), 1671-1678.
[http://dx.doi.org/10.1053/j.gastro.2016.12.048] [PMID: 28192102]
[71]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[72]
Tilg, H. Obesity, metabolic syndrome, and microbiota: Multiple interactions. J. Clin. Gastroenterol., 2010, 44(Suppl. 1), S16-S18.
[http://dx.doi.org/10.1097/MCG.0b013e3181dd8b64] [PMID: 20535027]
[73]
Finucane, M.M.; Sharpton, T.J.; Laurent, T.J.; Pollard, K.S. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One, 2014, 9(1), e84689.
[http://dx.doi.org/10.1371/journal.pone.0084689] [PMID: 24416266]
[74]
Kameyama, K.; Itoh, K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ., 2014, 29(4), 427-430.
[http://dx.doi.org/10.1264/jsme2.ME14054] [PMID: 25283478]
[75]
Kieler, I.N.; Osto, M.; Hugentobler, L.; Puetz, L. Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Sci. Reports, 2019, 9(1), 4822.
[http://dx.doi.org/10.1038/s41598-019-41195-0]
[76]
Ohtsu, A.; Takeuchi, Y.; Katagiri, S.; Suda, W.; Maekawa, S.; Shiba, T.; Komazaki, R.; Udagawa, S.; Sasaki, N.; Hattori, M.; Izumi, Y. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice. Oral Dis., 2019, 25(3), 868-880.
[http://dx.doi.org/10.1111/odi.13044] [PMID: 30667148]
[77]
Eid, H.M.; Wright, M.L.; Anil Kumar, N.V.; Qawasmeh, A.; Hassan, S.T.S.; Mocan, A.; Nabavi, S.M.; Rastrelli, L.; Atanasov, A.G.; Haddad, P.S. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front. Pharmacol., 2017, 8, 387.
[http://dx.doi.org/10.3389/fphar.2017.00387] [PMID: 28713266]
[78]
Liu, Y.; Lou, X. Type 2 diabetes mellitus-related environmental factors and the gut microbiota: Emerging evidence and challenges. Clinics (Sao Paulo), 2020, 75, e1277.
[http://dx.doi.org/10.6061/clinics/2020/e1277]
[79]
Segata, N. Gut microbiome: Westernization and the disappearance of intestinal diversity. Curr. Biol., 2015, 25(14), R611-R613.
[http://dx.doi.org/10.1016/j.cub.2015.05.040] [PMID: 26196489]
[80]
Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6), 1332-1345.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[81]
Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y]
[82]
Raisch, J.; Dalmasso, G.; Bonnet, R.; Barnich, N.; Bonnet, M.; Bringer, M.A. How some commensal bacteria would exacerbate colorectal carcinogenesis? Med. Sci. (Paris), 2016, 32(2), 175-182.
[http://dx.doi.org/10.1051/medsci/20163202011] [PMID: 26936175]
[83]
Wexler, A.G.; Goodman, A.L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol., 2017, 2, 17026.
[http://dx.doi.org/10.1038/nmicrobiol.2017.26] [PMID: 28440278]
[84]
Xia, F.; Wen, L.P.; Ge, B.C.; Li, Y.X.; Li, F.P.; Zhou, B.J. Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World J. Diabetes, 2021, 12(8), 1146-1163.
[http://dx.doi.org/10.4239/wjd.v12.i8.1146] [PMID: 34512884]
[85]
Jiang, Z.; Sun, T.Y.; He, Y.; Gou, W.; Zuo, L.S.; Fu, Y.; Miao, Z.; Shuai, M.; Xu, F.; Xiao, C.; Liang, Y.; Wang, J.; Xu, Y.; Jing, L.P.; Ling, W.; Zhou, H.; Chen, Y.M.; Zheng, J.S. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: Results from two large human cohort studies. BMC Med., 2020, 18(1), 371.
[http://dx.doi.org/10.1186/s12916-020-01842-0]
[86]
Salgaço, M.K.; Oliveira, L.G.S.; Costa, G.N.; Bianchi, F.; Sivieri, K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl. Microbiol. Biotechnol., 2019, 103(23-24), 9229-9238.
[http://dx.doi.org/10.1007/s00253-019-10156-y]
[87]
Mokkala, K.; Houttu, N.; Vahlberg, T.; Munukka, E.; Rönnemaa, T.; Laitinen, K. Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta Diabetol., 2017, 54(12), 1147-1149.
[http://dx.doi.org/10.1007/s00592-017-1056-0] [PMID: 28980079]
[88]
Geurts, L.; Neyrinck, A.M.; Delzenne, N.M.; Knauf, C.; Cani, P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes, 2014, 5(1), 3-17.
[http://dx.doi.org/10.3920/BM2012.0065] [PMID: 23886976]
[89]
Sircana, A.; Framarin, L.; Leone, N.; Berrutti, M.; Castellino, F.; Parente, R.; De Michieli, F.; Paschetta, E.; Musso, G. Altered gut microbiota in type 2 diabetes: Just a Coincidence? Curr. Diab. Rep., 2018, 18(10), 98.
[http://dx.doi.org/10.1007/s11892-018-1057-6] [PMID: 30215149]
[90]
Taira, R.; Yamaguchi, S.; Shimizu, K.; Nakamura, K.; Ayabe, T.; Taira, T. Bacterial cell wall components regulate adipokine secretion from visceral adipocytes. J. Clin. Biochem. Nutr., 2015, 56(2), 149-154.
[http://dx.doi.org/10.3164/jcbn.14-74] [PMID: 25759521]
[91]
Gaspar, R.C.; Pauli, J.R.; Shulman, G.I. An update on brown adipose tissue biology: A discussion of recent findings. Am. J. Physiol. Endocrinol. Metab., 2021, 320(3), E488-e495.
[http://dx.doi.org/10.1152/ajpendo.00310.2020]
[92]
Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev., 2010, 11(1), 11-18.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00623.x] [PMID: 19656312]
[93]
González, N.; Moreno-Villegas, Z.; González-Bris, A.; Egido, J.; Lorenzo, Ó. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc. Diabetol., 2017, 16(1), 44.
[http://dx.doi.org/10.1186/s12933-017-0528-4]
[94]
Le Jemtel, T.H.; Samson, R.; Milligan, G.; Jaiswal, A.; Oparil, S. Visceral adipose tissue accumulation and residual cardiovascular risk. Curr. Hypertens. Rep., 2018, 20(9), 77.
[http://dx.doi.org/10.1007/s11906-018-0880-0] [PMID: 29992362]
[95]
Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol., 2017, 13(11), 633-643.
[http://dx.doi.org/10.1038/nrendo.2017.90] [PMID: 28799554]
[96]
Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta, 2013, 417(80), 84.
[97]
Bienertova-Vasku, J.; Vinciguerra, M. Adipokines as biomarkers in health and disease. Dis. Markers, 2018, 2018, 5696815.
[98]
Alvarez-Guaita, A.; Patel, S.; Lim, K.; Haider, A.; Dong, L.; Conway, O.J.; Ma, M.K.L.; Chiarugi, D.; Saudek, V.; O’Rahilly, S.; Savage, D.B. Phenotypic characterization of Adig null mice suggests roles for adipogenin in the regulation of fat mass accrual and leptin secretion. Cell Rep., 2021, 34(10), 108810.
[http://dx.doi.org/10.1016/j.celrep.2021.108810] [PMID: 33691105]
[99]
Grases-Pintó, B.; Abril-Gil, M.; Castell, M.; Rodríguez-Lagunas, M.J.; Burleigh, S.; Fåk Hållenius, F.; Prykhodko, O.; Pérez-Cano, F.J.; Franch, À. Influence of leptin and adiponectin supplementation on intraepithelial lymphocyte and microbiota composition in suckling rats. Front. Immunol., 2019, 10, 2369.
[http://dx.doi.org/10.3389/fimmu.2019.02369] [PMID: 31708912]
[100]
Batra, A.; Okur, B.; Glauben, R.; Erben, U.; Ihbe, J.; Stroh, T.; Fedke, I.; Chang, H.D.; Zeitz, M.; Siegmund, B. Leptin: A critical regulator of CD4+ T-cell polarization in vitro and in vivo. Endocrinology, 2010, 151(1), 56-62.
[http://dx.doi.org/10.1210/en.2009-0565] [PMID: 19966187]
[101]
Fantuzzi, G.; Faggioni, R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc. Biol., 2000, 68(4), 437-446.
[PMID: 11037963]
[102]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[103]
Fantuzzi, G. Adiponectin in inflammatory and immune-mediated diseases. Cytokine, 2013, 64(1), 1-10.
[http://dx.doi.org/10.1016/j.cyto.2013.06.317] [PMID: 23850004]
[104]
Suriano, F.; Van Hul, M.; Cani, P.D. Gut microbiota and regulation of myokine-adipokine function. Curr. Opin. Pharmacol., 2020, 52, 9-17.
[http://dx.doi.org/10.1016/j.coph.2020.03.006] [PMID: 32388413]
[105]
Patterson, E.; Ryan, P.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Gut microbiota, obesity and diabetes. Postgrad. Med. J., 2016, 92(1087), 286-300.
[http://dx.doi.org/10.1136/postgradmedj-2015-133285] [PMID: 26912499]
[106]
Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10), 577-591.
[http://dx.doi.org/10.1038/nrendo.2015.128] [PMID: 26260141]
[107]
Hu, J.; Kyrou, I.; Tan, B.K.; Dimitriadis, G.K.; Ramanjaneya, M.; Tripathi, G.; Patel, V.; James, S.; Kawan, M.; Chen, J.; Randeva, H.S. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via gpr43 in brown adipocytes. Endocrinology, 2016, 157(5), 1881-1894.
[http://dx.doi.org/10.1210/en.2015-1944] [PMID: 26990063]
[108]
Heiss, C.N.; Olofsson, L.E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun., 2018, 10(3), 163-171.
[http://dx.doi.org/10.1159/000481519] [PMID: 29131106]
[109]
Saad, M.J.; Santos, A.; Prada, P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda), 2016, 31(4), 283-293.
[http://dx.doi.org/10.1152/physiol.00041.2015] [PMID: 27252163]
[110]
Balakumar, M.; Prabhu, D.; Sathishkumar, C.; Prabu, P.; Rokana, N.; Kumar, R.; Raghavan, S.; Soundarajan, A.; Grover, S.; Batish, V.K.; Mohan, V.; Balasubramanyam, M. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur. J. Nutr., 2018, 57(1), 279-295.
[http://dx.doi.org/10.1007/s00394-016-1317-7] [PMID: 27757592]
[111]
Guadagnini, D.; Rocha, G.Z.; Santos, A.; Assalin, H.B.; Hirabara, S.M.; Curi, R.; Oliveira, A.G.; Prada, P.O.; Saad, M.J.A. Microbiota determines insulin sensitivity in TLR2-KO mice. Life Sci., 2019, 234, 116793.
[http://dx.doi.org/10.1016/j.lfs.2019.116793] [PMID: 31465735]
[112]
Caesar, R. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Can. J. Diabetes, 2019, 43(3), 224-231.
[http://dx.doi.org/10.1016/j.jcjd.2019.01.007] [PMID: 30929665]
[113]
Zhang, C.; Ma, S.; Wu, J.; Luo, L.; Qiao, S.; Li, R.; Xu, W.; Wang, N.; Zhao, B.; Wang, X.; Zhang, Y.; Wang, X. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin. Pharmacol. Res., 2020, 159, 104985.
[http://dx.doi.org/10.1016/j.phrs.2020.104985] [PMID: 32504839]
[114]
Vallianou, N.G.; Stratigou, T.; Tsagarakis, S. Metformin and gut microbiota: Their interactions and their impact on diabetes. Hormones (Athens), 2019, 18(2), 141-144.
[http://dx.doi.org/10.1007/s42000-019-00093-w] [PMID: 30719628]
[115]
He, C.; Shan, Y.; Song, W. Targeting gut microbiota as a possible therapy for diabetes. Nutr. Res., 2015, 35(5), 361-367.
[http://dx.doi.org/10.1016/j.nutres.2015.03.002] [PMID: 25818484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy