Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Editorial

Potential Involvement of Laccases as Efficient Biocatalysts in the Field of Organic Synthesis: An Editorial Presenting a Short Overview on Functional Applicability and Fate

Author(s): Pankaj Kumar Chaurasia*, Shashi Lata Bharati*, Sunil Kumar, Sunita Singh and Ashutosh Mani

Volume 19, Issue 6, 2022

Published on: 04 January, 2022

Page: [676 - 680] Pages: 5

DOI: 10.2174/1570193X19666220104093251

Abstract

Laccases, one of the expressively accepted biocatalysts, are oxidoreductases strongly known for their pronounced catalytic applications. Their involvement in the various types’ organic synthesis is one of the most attractive fields of bio-catalysis. In this editorial, authors have briefly assessed and explored the synthetic applicability and potential fate of this interesting oxidoreductase enzyme in organic synthesis and presented various scientific proofs based on researches done in related fields proving their versatile acceptability.

Keywords: Laccases, biocatalysts, redox mediators, mechanism, oxidation, organic synthesis.

[1]
Mayolo-Deloisa, K.; González-González, M.; Rito-Palomares, M. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Front. Bioeng. Biotechnol., 2020, 8(8), 222.
[http://dx.doi.org/10.3389/fbioe.2020.00222] [PMID: 32266246]
[2]
Chaurasia, P.K.; Bharati, S.L. Significance of laccases in food chemistry and related bioremediation. In: Soft Chemistry and Food Fermentation; Grumezescu A.M.; Holban A.M; Elsevier: Amsterdam, 2017; pp. 299-335.
[http://dx.doi.org/10.1016/B978-0-12-811412-4.00011-4]
[3]
Mogharabi, M.; Faramarzi, M.A. Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv. Synth. Catal., 2014, 356, 897-927.
[http://dx.doi.org/10.1002/adsc.201300960]
[4]
Kudanga, T.; Nemadziva, B.; Le Roes-Hill, M. Laccase catalysis for the synthesis of bioactive compounds. Appl. Microbiol. Biotechnol., 2017, 101(1), 13-33.
[http://dx.doi.org/10.1007/s00253-016-7987-5] [PMID: 27872999]
[5]
Sousa, A.C.; Martins, L.O.; Robalo, M.P. Laccases: versatile biocatalysts for the synthesis of heterocyclic cores. Molecules, 2021, 26(12), 3719.
[http://dx.doi.org/10.3390/molecules26123719] [PMID: 34207073]
[6]
Bassanini, I.; Ferrandi, E.E.; Riva, S.; Monti, D. Biocatalysis with laccases: An updated overview. Catalysts, 2021, 11, 26.
[http://dx.doi.org/10.3390/catal11010026]
[7]
Chaurasia, P.K.; Bharati, S.L.; Sharma, M.; Singh, S.K.; Yadav, R.S.S.; Yadava, S. Fungal laccases and their biotechnological significances in the current perspective: A review. Curr. Org. Chem., 2015, 19(19), 1916-1934.
[http://dx.doi.org/10.2174/1385272819666150629175237]
[8]
Chaurasia, P.K.; Bharati, S.L.; Sarma, C. Laccases in pharmaceutical chemistry: A comprehensive appraisal. Mini Rev. Org. Chem., 2016, 13, 430-451.
[http://dx.doi.org/10.2174/1570193X13666161019124854]
[9]
Piontek, K.; Antorini, M.; Choinowski, T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J. Biol. Chem., 2002, 277(40), 37663-37669.
[http://dx.doi.org/10.1074/jbc.M204571200] [PMID: 12163489]
[10]
Riva, S. Laccases: blue enzymes for green chemistry. Trends Biotechnol., 2006, 24(5), 219-226.
[http://dx.doi.org/10.1016/j.tibtech.2006.03.006] [PMID: 16574262]
[11]
Morozova, O.V.; Shumakovich, G.P.; Shleev, S.V.; Iaropolov, A.I. Laccase-mediator systems and their applications: A review. Prikl. Biokhim. Mikrobiol., 2007, 43(5), 583-597.
[http://dx.doi.org/10.1134/S0003683807050055] [PMID: 18038679]
[12]
Johannes, C.; Majcherczyk, A. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl. Environ. Microbiol., 2000, 66(2), 524-528.
[http://dx.doi.org/10.1128/AEM.66.2.524-528.2000] [PMID: 10653713]
[13]
Bourbonnais, R.; Leech, D.; Paice, M.G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim. Biophys. Acta, 1998, 1379(3), 381-390.
[http://dx.doi.org/10.1016/S0304-4165(97)00117-7] [PMID: 9545600]
[14]
Fabbrini, M.; Galli, C.; Gentili, P. Comparing the catalytic efficiency of some mediators of laccase. J. Mol. Catal., B Enzym., 2002, 16(5), 231-240.
[http://dx.doi.org/10.1016/S1381-1177(01)00067-4]
[15]
Bourbonnais, R.; Paice, M.G.; Freiermuth, B.; Bodie, E.; Borneman, S. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl. Environ. Microbiol., 1997, 63(12), 4627-4632.
[http://dx.doi.org/10.1128/aem.63.12.4627-4632.1997] [PMID: 16535747]
[16]
Cheng, H.N.; Delagrave, S.; Gu, Q.-M.; Michalopoulos, D.; Murphy, D. Laccase activity enhancers. Patent no. WO 2003023043, 2003.
[17]
Morozova, O.V.; Shumakovich, G.P.; Gorbacheva, M.A.; Shleev, S.V.; Yaropolov, A.I. “Blue” laccases. Biochemistry (Mosc.), 2007, 72(10), 1136-1150.
[http://dx.doi.org/10.1134/S0006297907100112] [PMID: 18021071]
[18]
Solomon, E.I.; Sundaram, U.M.; Machonkin, T.E. Multicopper oxidases and xygenases. Chem. Rev., 1996, 96(7), 2563-2606.
[http://dx.doi.org/10.1021/cr950046o] [PMID: 11848837]
[19]
Malmström, B.G. Enzymology of oxygen. Annu. Rev. Biochem., 1982, 51, 21-59.
[http://dx.doi.org/10.1146/annurev.bi.51.070182.000321] [PMID: 6287915]
[20]
Reinhammar, B.R.M.; Vänngård, T.I. The electron-accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation-reduction titrations. Eur. J. Biochem., 1971, 18(4), 463-468.
[http://dx.doi.org/10.1111/j.1432-1033.1971.tb01264.x] [PMID: 4993479]
[21]
Solomon, E.I.; Baldwin, M.J.; Lowery, M.D. Electronic structures of active sites in copper proteins: contributions to reactivity. Chem. Rev., 1992, 92, 521-542.
[http://dx.doi.org/10.1021/cr00012a003]
[22]
Quintanar, L.; Yoon, J.; Aznar, C.P.; Palmer, A.E.; Andersson, K.K.; Britt, R.D.; Solomon, E.I. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation. J. Am. Chem. Soc., 2005, 127(40), 13832-13845.
[http://dx.doi.org/10.1021/ja0421405] [PMID: 16201804]
[23]
Solomon, E.I.; Tuczek, F.; Root, D.E.; Brown, C.A. Spectroscopy of binuclear dioxygen complexes. Chem. Rev., 1994, 94, 827-856.
[http://dx.doi.org/10.1021/cr00027a013]
[24]
(a)Chaurasia, P.K.; Yadav, R.S.S.; Yadava, S. A review on mechanism of laccase action. Res. Rev. Biosci., 2013, 7(2), 66-71.
(b)Chaurasia, P.K.; Bharati, S.L.; Singh, S.K. Comparative studies on the blue and yellow laccases. Res. Plant Sci., 2013, 1(2), 32-37.
[http://dx.doi.org/10.12691/plant-1-2-5]
[25]
Bourbonnais, R.; Paice, M.G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett., 1990, 267(1), 99-102.
[http://dx.doi.org/10.1016/0014-5793(90)80298-W] [PMID: 2365094]
[26]
Marjasvaara, A.; Jänis, J.; Vainiotalo, P. Oxidation of a laccase mediator ABTS as studied by ESI-FTICR mass spectrometry. J. Mass Spectrom., 2008, 43(4), 470-477.
[http://dx.doi.org/10.1002/jms.1332] [PMID: 17975855]
[27]
Astolfi, P.; Brandi, P.; Galli, C.; Gentili, P.; Gerini, M.F.; Greci, L.; Lanzalunga, O. New mediators for the enzyme laccase: mechanistic features and selectivity in the oxidation of non-phenolic substrates. New J. Chem., 2005, 29, 1308-1317.
[http://dx.doi.org/10.1039/b507657a]
[28]
Bibi, I.; Bhatti, H.N.; Asgher, M. Comparative study of natural and synthetic phenolic compounds as efficient laccase mediators for the transformation of cationic dye. Biochem. Eng. J., 2011, 56, 225-231.
[http://dx.doi.org/10.1016/j.bej.2011.07.002]
[29]
Aracri, E.; Vidal, T. Enhancing the effectiveness of a laccase–TEMPO treatment has a biorefining effect on sisal cellulose fibres. Cellulose, 2012, 19, 867-877.
[http://dx.doi.org/10.1007/s10570-012-9686-4]
[30]
Liebminger, S.; Siebenhofer, M.; Guebitz, G. Oxidation of glycerol by 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) in the presence of laccase. Bioresour. Technol., 2009, 100(20), 4541-4545.
[http://dx.doi.org/10.1016/j.biortech.2009.04.051] [PMID: 19464170]
[31]
Kadereit, D.; Waldmann, H. Enzymatic protecting group techniques. Chem. Rev., 2001, 101(11), 3367-3396.
[http://dx.doi.org/10.1021/cr010146w] [PMID: 11749404]
[32]
Nicotra, S.; Intra, A.; Ottolina, G.; Riva, S.; Danieli, B. Laccase-mediated oxidation of the steroid hormone 17β-estradiol in organic solvents. Tetrahedron Asymmetry, 2004, 15, 2927-2931.
[http://dx.doi.org/10.1016/j.tetasy.2004.06.034]
[33]
Navarra, C.; Goodwin, C.; Burton, S.; Danieli, B.; Riva, S. Laccase-mediated oxidation of phenolic derivatives. J. Mol. Catal., B Enzym., 2010, 65, 52-57.
[http://dx.doi.org/10.1016/j.molcatb.2009.12.016]
[34]
Chirivì, C.; Fontana, G.; Monti, D.; Ottolina, G.; Riva, S.; Danieli, B. The quest for new mild and selective modifications of natural structures: Laccase-catalysed oxidation of ergot alkaloids leads to unexpected stereoselective C-4 hydroxylation. Chemistry, 2012, 18(33), 10355-10361.
[http://dx.doi.org/10.1002/chem.201201076] [PMID: 22777708]
[35]
Baratto, L.; Candido, A.; Marzorati, M.; Sagui, F.; Riva, S.; Danieli, B. Laccase-mediated oxidation of natural glycosides. J. Mol. Catal., B Enzym., 2006, 39, 3-8.
[http://dx.doi.org/10.1016/j.molcatb.2006.01.011]
[36]
Potthast, A.; Rosenau, T.; Chen, C-L.; Gratzl, J.S. A novel method for conversion of benzyl alcohols to benzaldehydes by laccase-catalysed oxidation. J. Mol. Catal. Chem., 1996, 108, 5-9.
[http://dx.doi.org/10.1016/1381-1169(95)00251-0]
[37]
Fabbrini, M.; Galli, C.; Gentili, P.; Macchitella, D. An oxidation of alcohols by oxygen with the enzyme laccase and mediation by TEMPO. Tetrahedron Lett., 2001, 42, 7551-7553.
[http://dx.doi.org/10.1016/S0040-4039(01)01463-0]
[38]
Baiocco, P.; Barreca, A.M.; Fabbrini, M.; Galli, C.; Gentili, P. Promoting laccase activity towards non-phenolic substrates: A mechanistic investigation with some laccase-mediator systems. Org. Biomol. Chem., 2003, 1(1), 191-197.
[http://dx.doi.org/10.1039/B208951C] [PMID: 12929410]
[39]
Fritz-Langhals, E.; Kunath, B. Synthesis of aromatic aldehydes by laccase-mediator assisted oxidation. Tetrahedron Lett., 1998, 39, 5955-5956.
[http://dx.doi.org/10.1016/S0040-4039(98)01215-5]
[40]
Potthast, A.; Rosenau, T.; Chen, C-L.; Gratzl, J.S. Selective enzymic oxidation of aromatic methyl groups to aldehydes. J. Org. Chem., 1995, 60, 4320-4321.
[http://dx.doi.org/10.1021/jo00119a006]
[41]
(a)Chaurasia, P.K.; Yadava, S.; Bharati, S.L.; Singh, S.K. Syntheses of aromatic aldehydes by laccase of Pleurotus ostreatus MTCC-1801. Synth. Commun., 2014, 44(17), 2535-2544.
[http://dx.doi.org/10.1080/00397911.2014.904879]
(b)Chaurasia, P.K.; Yadav, R.S.S.; Yadava, S. Purification and characterization of yellow laccase from Trametes hirsuta MTCC-1171 and its application in synthesis of aromatic aldehydes. Process Biochem., 2014, 49, 1647-1655.
[http://dx.doi.org/10.1016/j.procbio.2014.06.016]
(c)Chaurasia, P.K.; Singh, S.K.; Bharati, S.L. Role of laccase from Coriolus versicolor MTCC-138 in selective oxidation of aromatic methyl group. Bioorg. Khim., 2014, 40(3), 315-319.
[http://dx.doi.org/10.7868/S0132342314020031] [PMID: 25898738]
(d)Chaurasia, P.K.; Yadav, A.; Yadav, S.S.; Yadava, S. Purification and characterization of laccase secreted by Phellinus linteus MTCC-1175 and its role in the selective oxidation of aromatic methyl group. Prikl. Biokhim. Mikrobiol., 2013, 49(6), 592-599.
[http://dx.doi.org/10.7868/S0555109913060068] [PMID: 25434183]
[42]
Cannatelli, M.D.; Ragauskas, A.J. Two decades of laccases: Advancing sustainability in the chemical industry. Chem. Rec., 2017, 17(1), 122-140.
[http://dx.doi.org/10.1002/tcr.201600033] [PMID: 27492131]

© 2024 Bentham Science Publishers | Privacy Policy