[1]
Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 2005; 44(22): 3358-93.
[http://dx.doi.org/10.1002/anie.200460587]
[http://dx.doi.org/10.1002/anie.200460587]
[2]
Li Y, Fu Q, Yu S, Yan M, Berglund L. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules 2016; 17(4): 1358-64.
[http://dx.doi.org/10.1021/acs.biomac.6b00145]
[http://dx.doi.org/10.1021/acs.biomac.6b00145]
[3]
Lazzari LK, Zampieri VB, Zanini M, Zattera AJ, Baldasso C. Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose 2017; 24: 3421-31.
[http://dx.doi.org/10.1007/s10570-017-1349-z]
[http://dx.doi.org/10.1007/s10570-017-1349-z]
[4]
Pajorova J, Skogberg A, Hadraba D, et al. Broz A, Travnickova M, Zikmundova M, Honkanen M, Hannula M, Lahtinen P, Tomkova M, Bacakova L, Kallio P Cellulose mesh with charged nanocellulose coatings as a promising carrier of skin and stem cells for regenerative applications. Biomacromolecules 2020; 21(12): 4857-70.
[http://dx.doi.org/10.1021/acs.biomac.0c01097]
[http://dx.doi.org/10.1021/acs.biomac.0c01097]
[5]
Prieur B, Meub M, Wittemann M, et al. Klein S, Bellayer S, Fontaine G, Bourbigot S Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS). Polym Degrad Stabil 2016; 127: 32-43.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.01.015]
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.01.015]
[6]
Van Nieuwenhove I, Renders T, Lauwaert J, De Roo T, De Clercq J, Verberckmoes A. Biobased resin using lignin and glyoxal. ACS Sustainable Chem& Eng 2020; 8(51): 18789-809.
[http://dx.doi.org/10.1021/acssuschemeng.0c07227]
[http://dx.doi.org/10.1021/acssuschemeng.0c07227]
[7]
Cemin A, Ferrarini F, Poletto M, et al. Bonetto LR, Bortoluz J, Lemée L, Guégan R, Esteves VI, Giovanela M Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye. Int J Biol Macromol 2021; 170: 375-89.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.155]
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.155]
[8]
Parit M, Jiang Z. Towards lignin derived thermoplastic polymers. Int J Biol Macromol 2020; 165(Pt B): 3180-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.173]
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.173]
[9]
Schneider WDH, Dillon AJP, Camassola M. Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. Biotechnol Adv 2021; 47(107685)
[http://dx.doi.org/10.1016/j.biotechadv.2020.107685]
[http://dx.doi.org/10.1016/j.biotechadv.2020.107685]
[10]
Zhong L-X, Peng XW, Yang D, Cao X-F, Sun R-C. Long-chain anhydride modification: a new strategy for preparing xylan films. J Agric Food Chem 2013; 61(3): 655-61.
[http://dx.doi.org/10.1021/jf304818f]
[http://dx.doi.org/10.1021/jf304818f]
[11]
Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA. Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym 2013; 92(2): 2154-62.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.054]
[http://dx.doi.org/10.1016/j.carbpol.2012.11.054]
[12]
Yamaguchi A, Mimura N, Shirai M, Sato O. Cascade utilization of biomass: strategy for conversion of cellulose, hemicellulose, and lignin into useful chemicals. ACS Sustainable Chem& Eng 2019; 7(12): 10445-51.
[http://dx.doi.org/10.1021/acssuschemeng.9b00786 ]
[http://dx.doi.org/10.1021/acssuschemeng.9b00786 ]
[13]
Braga RS, Poletto M. Preparation and characterization of hemicellulose films from sugarcane bagasse. Materials 2020; 13(4)(941)
[http://dx.doi.org/10.3390/ma13040941]
[http://dx.doi.org/10.3390/ma13040941]