Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

N-heterocycles: Recent Advances in Biological Applications

Author(s): Monica Dinodia*

Volume 20, Issue 7, 2023

Published on: 04 February, 2022

Page: [735 - 747] Pages: 13

DOI: 10.2174/1570193X19666211231101747

Price: $65

Abstract

Nitrogen based heterocycles display an impressive repertoire of biological activities, including antioxidant, antimicrobial, anti-tuberculosis, analgesic, anti-inflammatory, anti-viral, anti-HIV, anticancer, anti-helminthic, and other pharmacological activities. Numerous novel nitrogen-based heterocycles have been synthesized, which showed various physiological properties, and their application in medicinal chemistry is ever-growing. The present review will provide an in-depth view of Nheterocyclic compounds that showed biological activities in the last 5 years (2017-2021). This review article will be helpful for the structural design of effective and sustainable N-heterocyclic drugs against diseases with minimal side effects.

Keywords: Synthesis, drugs, biological activities, Nitrogen based heterocycles

« Previous
[1]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[2]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synth. Commun., 2019, 49(19), 2437-2459.
[http://dx.doi.org/10.1080/00397911.2019.1639755]
[3]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313]
[4]
Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. Copper-catalyzed aerobic C(sp2)-H functionalization for C-N bond formation: synthesis of pyrazoles and indazoles. J. Org. Chem., 2013, 78(8), 3636-3646.
[http://dx.doi.org/10.1021/jo400162d] [PMID: 23547954]
[5]
Santos, C.M.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2018, 157, 1460-1479.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.073] [PMID: 30282319]
[6]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[7]
Zárate-Zárate, D.; Aguilar, R.; Hernández-Benitez, R.I.; Labarrios, E.M.; Delgado, F.; Tamariz, J. Synthesis of α-Ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 2015, 71(38), 6961-6978.
[http://dx.doi.org/10.1016/j.tet.2015.07.010]
[8]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[9]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[10]
Nagaraju, K.; Suresh, M.; Sreekantha, B.J. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2019, 23(28), 3154-3190.
[11]
Fang, W-Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H-L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: a critical review. Eur. J. Med. Chem., 2019, 173, 117-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.063] [PMID: 30995567]
[12]
Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: a review. Eur. J. Med. Chem., 2018, 152, 436-488.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.061] [PMID: 29751237]
[13]
Smith, B.R.; Eastman, C.M.; Njardarson, J.T.; Beyond, C.; Beyond, C. H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem., 2014, 57(23), 9764-9773.
[http://dx.doi.org/10.1021/jm501105n] [PMID: 25255063]
[14]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56(23), 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[15]
Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev., 2015, 44(11), 3505-3521.
[http://dx.doi.org/10.1039/C5CS00083A] [PMID: 25882084]
[16]
Gordon, E.M.; Barrett, R.W.; Dower, W.J.; Fodor, S.P.; Gallop, M.A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J. Med. Chem., 1994, 37(10), 1385-1401.
[http://dx.doi.org/10.1021/jm00036a001] [PMID: 8182695]
[17]
Chaudhari, K.; Surana, S.; Jain, P.; Patel, H.M. Mycobacterium tuberculosis (MTB) GyrB inhibitors: an attractive approach for developing novel drugs against TB. Eur. J. Med. Chem., 2016, 124, 160-185.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.034] [PMID: 27569197]
[18]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Shafiee, A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for alzheimer’s disease. Eur. J. Med. Chem., 2017, 128, 332-345.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.060] [PMID: 27876467]
[19]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[20]
Ma, X.; Lv, X.; Zhang, J. Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): an update of recent medicinal chemistry efforts. Eur. J. Med. Chem., 2018, 143, 449-463.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.049] [PMID: 29202407]
[21]
Kaur, R.; Dahiya, L.; Kumar, M. Fructose-1,6-bisphosphatase inhibitors: a new valid approach for management of type 2 diabetes mellitus. Eur. J. Med. Chem., 2017, 141, 473-505.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.029] [PMID: 29055870]
[22]
Patel, R.V.; Keum, Y-S.; Park, S.W. Sketching the historical development of pyrimidones as the inhibitors of the HIV integrase. Eur. J. Med. Chem., 2015, 97, 649-663.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.005] [PMID: 25084622]
[23]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[24]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[25]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: an overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[26]
Rashid, H.U.; Xu, Y.; Muhammad, Y.; Wang, L.; Jiang, J. Research advances on anticancer activities of matrine and its derivatives: an updated overview. Eur. J. Med. Chem., 2019, 161, 205-238.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.037] [PMID: 30359819]
[27]
a) Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009];
b) Malik, N.; Iyamu, I.D.; Scheidt, K.A.; Schiltz, G.E. Synthesis of a novel fused pyrrolodiazepine-based library with anti-cancer activity. Tetrahedron Lett., 2018, 59(15), 1513-1516.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.021] [PMID: 29610541]
[28]
Huo, J-L.; Wang, S.; Yuan, X-H.; Yu, B.; Zhao, W.; Liu, H-M. Discovery of [1,2,4]triazolo[1,5-a]pyrimidines derivatives as potential anticancer agents. Eur. J. Med. Chem., 2021, 211, 113108.
[http://dx.doi.org/10.1016/j.ejmech.2020.113108] [PMID: 33385852]
[29]
Zhi, S.; Li, Y.; Qiang, J.; Hu, J.; Song, W.; Zhao, J. Synthesis and anticancer evaluation of benzo-N-heterocycles transition metal complexes against esophageal cancer cell lines. J. Inorg. Biochem., 2019, 201, 110816.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110816] [PMID: 31518868]
[30]
El-Adl, K.; El-Helby, A.A.; Ayyad, R.R.; Mahdy, H.A.; Khalifa, M.M.; Elnagar, H.A.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors. Bioorg. Med. Chem., 2021, 29, 115872.
[http://dx.doi.org/10.1016/j.bmc.2020.115872] [PMID: 33214036]
[31]
Antifungal. Wikipedia. The free encyclopedia. Available from: https://en.wikipedia.org/wiki/Antifungal
[32]
Garibotto, F.M.; Garro, A.D.; Masman, M.F.; Rodríguez, A.M.; Luiten, P.G.M.; Raimondi, M.; Zacchino, S.A.; Somlai, C.; Penke, B.; Enriz, R.D. New small-size peptides possessing antifungal activity. Bioorg. Med. Chem., 2010, 18(1), 158-167.
[http://dx.doi.org/10.1016/j.bmc.2009.11.009] [PMID: 19959366]
[33]
Onnis, V.; Cocco, M.T.; Fadda, R.; Congiu, C. Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl)pyridines. Bioorg. Med. Chem., 2009, 17(17), 6158-6165.
[http://dx.doi.org/10.1016/j.bmc.2009.07.066] [PMID: 19679483]
[34]
Tang, H.; Zheng, C.; Lv, J.; Wu, J.; Li, Y.; Yang, H.; Fu, B.; Li, C.; Zhou, Y.; Zhu, J. Synthesis and antifungal activities in vitro of novel pyrazino [2,1-a] isoquinolin derivatives. Bioorg. Med. Chem. Lett., 2010, 20(3), 979-982.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.050] [PMID: 20036534]
[35]
Delong, W.; Yongling, W.; Lanying, W.; Juntao, F.; Xing, Z. Design, synthesis and evaluation of 3-arylidene azetidin-2-ones as potential antifungal agents against alternaria solani Sorauer. Bioorg. Med. Chem., 2017, 25(24), 6661-6673.
[http://dx.doi.org/10.1016/j.bmc.2017.11.003] [PMID: 29137937]
[36]
Sakly, R.; Edziri, H.; Askri, M.; Knorr, M.; Strohmann, C.; Mastouri, M. One-Pot Four-Component domino strategy for the synthesis of novel spirooxindole–pyrrolidine/pyrrolizidine-linked 1,2,3-triazole conjugates via stereo- and regioselective [3+2] cycloaddition reactions: In Vitro antibacterial and antifungal studies. C. R. Chim., 2018, 21(1), 41-53.
[http://dx.doi.org/10.1016/j.crci.2017.11.009]
[37]
Bolous, M.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Maruoka, K.; Antharam, V.C.; Thangamani, S. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorg. Med. Chem. Lett., 2019, 29(16), 2059-2063.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.022] [PMID: 31320146]
[38]
Wang, X.; Fu, X.; Chen, M.; Wang, A.; Yan, J.; Mei, Y.; Wang, M.; Yang, C. Novel 1,3,5-thiadiazine-2-thione derivatives containing a hydrazide moiety: design, synthesis and bioactive evaluation against phytopathogenic Fungi in Vitro and in Vivo. Chin. Chem. Lett., 2019, 30(7), 1419-1422.
[http://dx.doi.org/10.1016/j.cclet.2019.03.038]
[39]
Sheng, T.; Kong, M.; Wang, Y.; Wu, H.; Gu, Q.; Chuang, A.S.; Li, S.; Gao, X. Discovery and preliminary mechanism of 1-carbamoyl β-carbolines as new antifungal candidates. Eur. J. Med. Chem., 2021, 222, 113563.
[http://dx.doi.org/10.1016/j.ejmech.2021.113563] [PMID: 34118721]
[40]
Blokhina, S.V.; Sharapova, A.V.; Ol’khovich, M.V.; Doroshenko, I.A.; Levshin, I.B.; Perlovich, G.L. Synthesis and antifungal activity of new hybrids thiazolo[4,5-d]pyrimidines with (1H-1,2,4)triazole. Bioorg. Med. Chem. Lett., 2021, 40, 127944.
[http://dx.doi.org/10.1016/j.bmcl.2021.127944] [PMID: 33713781]
[41]
a) Rashid, H.; Martines, M.A.U.; Duarte, H.; Rashid, A.P.; Jorge, J.; Rasool, S.; Muhammad, R.; Ahmad, N.; Umar, M.N. Research developments in the syntheses, anti-inflammatory activities and structure–activity relationships of pyrimidines. RSC Advances, 2021, 11(11), 6060-6098.
[http://dx.doi.org/10.1039/D0RA10657G];
b) Ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[42]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[43]
Oruç, E.E.; Koçyigit-Kaymakçioglu, B.; Oral, B.; Altunbas-Toklu, H.Z.; Kabasakal, L.; Rollas, S. Synthesis of some novel azo derivatives of 3,5-dimethyl-1-(2-hydroxyethyl)pyrazole as potent analgesic agents. Arch. Pharm. (Weinheim), 2006, 339(5), 267-272.
[http://dx.doi.org/10.1002/ardp.200500202] [PMID: 16586426]
[44]
Unlü, S.; Baytas, S.N.; Kupeli, E.; Yesilada, E. Studies on novel 7-acyl-5-chloro-2-oxo-3H-benzoxazole derivatives as potential analgesic and anti-inflammatory agents. Arch. Pharm. (Weinheim), 2003, 336(6-7), 310-321.
[http://dx.doi.org/10.1002/ardp.200300748] [PMID: 12953219]
[45]
Sharma, R.; Bali, A.; Chaudhari, B.B. Synthesis of methanesulphonamido-benzimidazole derivatives as gastro-sparing antiinflammatory agents with antioxidant effect. Bioorg. Med. Chem. Lett., 2017, 27(13), 3007-3013.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.017] [PMID: 28512025]
[46]
R, K.; Bodke, Y.D. Synthesis, analgesic and anti-inflammatory activity of benzofuran pyrazole heterocycles. Chemical Data Collections, 2020, 28, 100453.
[http://dx.doi.org/10.1016/j.cdc.2020.100453]
[47]
Gonçalves, D.S. de S Melo, S.M.; Jacomini, A.P.; J V da Silva, M.; Pianoski, K.E.; Ames, F.Q.; Aguiar, R.P.; Oliveira, A.F.; Volpato, H.; Bidóia, D.L.; Nakamura, C.V.; Bersani-Amado, C.A.; Back, D.F.; Moura, S.; Paula, F.R.; Rosa, F.A. Synthesis of novel 3,5,6-trisubstituted 2-pyridone derivatives and evaluation for their anti-inflammatory activity. Bioorg. Med. Chem., 2020, 28(12), 115549.
[http://dx.doi.org/10.1016/j.bmc.2020.115549] [PMID: 32503692]
[48]
Ahmed, E.M.; Hassan, M.S.A.; El-Malah, A.A.; Kassab, A.E. New pyridazine derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents; design, synthesis and biological evaluation. Bioorg. Chem., 2020, 95, 103497.
[http://dx.doi.org/10.1016/j.bioorg.2019.103497] [PMID: 31838289]
[49]
Kumar, S.; Kumar, A.; Agrawal, A.; Sahu, J.K. Synthesis, in Vivo biological assessment and molecular docking study of some newer indole derivatives as COX 1/2 inhibitors. J. Mol. Struct., 2021, 1230, 129831.
[http://dx.doi.org/10.1016/j.molstruc.2020.129831]
[50]
Arif, T.; Bhosale, J.D.; Kumar, N.; Mandal, T.K.; Bendre, R.S.; Lavekar, G.S.; Dabur, R. Natural products--antifungal agents derived from plants. J. Asian Nat. Prod. Res., 2009, 11(7), 621-638.
[http://dx.doi.org/10.1080/10286020902942350] [PMID: 20183299]
[51]
Tripathi, K.D. Essentials of medical pharmacology; Jaypee Brothers Medical Publishers: New Delhi, 2013.
[52]
Reddy, G.M.; Garcia, J.R.; Reddy, V.H.; Kumari, A.K.; Zyryanov, G.V.; Yuvaraja, G. An efficient and green approach: one pot, multi component, reusable catalyzed synthesis of pyranopyrazoles and investigation of biological assays. J. Saudi Chem. Soc., 2019, 23(3), 263-273.
[http://dx.doi.org/10.1016/j.jscs.2018.07.003]
[53]
Ben Salem, A.; Ben Salah, B.; Mhalla, D.; Trigui, M.; Mourer, M.; Regnouf-de-Vains, J-B.; Kossentini, M. Synthesis, crystal structure and biological studies of novel amidrazones, triazoles, thiatriazole and triazine compounds. J. Mol. Struct., 2020, 1214, 128209.
[http://dx.doi.org/10.1016/j.molstruc.2020.128209]
[54]
Abdelhameed, R.M.; Darwesh, O.M.; El-Shahat, M. Synthesis of arylidene hydrazinylpyrido[2,3-d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon, 2020, 6(9), e04956.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04956] [PMID: 32995633]
[55]
Gunasekar, S.; Saamanthi, M.; Aruna, S. Synthesis and biological evaluations of new pyrazole hydrazides as potent anti-microbial agent. Mater. Today Proc., 2021, 45, 7132-7137.
[http://dx.doi.org/10.1016/j.matpr.2021.02.024]
[56]
Malasala, S.; Ahmad, M.N.; Akunuri, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 112996.
[http://dx.doi.org/10.1016/j.ejmech.2020.112996] [PMID: 33190958]
[57]
Coronavirus disease (COVID-19) situation reports. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
[58]
Jin, K.; Sang, Y.; De Clercq, E.; Pannecouque, C.; Meng, G. Design and synthesis of a novel series of non-nucleoside HIV-1 inhibitors bearing pyrimidine and N-substituted aromatic piperazine. Bioorg. Med. Chem. Lett., 2018, 28(22), 3491-3495.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.010] [PMID: 30318436]
[59]
Okano, Y.; Saito-Tarashima, N.; Kurosawa, M.; Iwabu, A.; Ota, M.; Watanabe, T.; Kato, F.; Hishiki, T.; Fujimuro, M.; Minakawa, N. Synthesis and biological evaluation of novel imidazole nucleosides as potential anti-dengue virus agents. Bioorg. Med. Chem., 2019, 27(11), 2181-2186.
[http://dx.doi.org/10.1016/j.bmc.2019.04.015] [PMID: 31003866]
[60]
Macan, A.M.; Harej, A.; Cazin, I. Klobučar, M.; Stepanić V.; Pavelić K.; Pavelić S.K.; Schols, D.; Snoeck, R.; Andrei, G.; Raić-Malić S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur. J. Med. Chem., 2019, 184, 111739.
[http://dx.doi.org/10.1016/j.ejmech.2019.111739] [PMID: 31586832]
[61]
Kumar, S.; Gupta, S.; Abadi, L.F.; Gaikwad, S.; Desai, D.; Bhutani, K.K.; Kulkarni, S.; Singh, I.P. Synthesis and in-vitro anti-HIV-1 evaluation of novel pyrazolo[4,3-c]pyridin-4-one derivatives. Eur. J. Med. Chem., 2019, 183, 111714.
[http://dx.doi.org/10.1016/j.ejmech.2019.111714] [PMID: 31557609]
[62]
Moesslacher, J.; Battisti, V.; Delang, L.; Neyts, J.; Abdelnabi, R.; Pürstinger, G.; Urban, E.; Langer, T. Identification of 2-(4-(Phenylsulfonyl)piperazine-1-yl)pyrimidine analogues as novel inhibitors of chikungunya virus. ACS Med. Chem. Lett., 2020, 11(5), 906-912.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00662] [PMID: 32435404]
[63]
Cihan-Üstündağ G.; Zopun, M.; Vanderlinden, E.; Ozkirimli, E.; Persoons, L.; Çapan, G.; Naesens, L. Superior inhibition of influenza virus hemagglutinin-mediated fusion by indole-substituted spirothiazolidinones. Bioorg. Med. Chem., 2020, 28(1), 115130.
[http://dx.doi.org/10.1016/j.bmc.2019.115130] [PMID: 31753804]
[64]
Wang, M.; Zhang, G.; Zhao, J.; Cheng, N.; Wang, Y.; Fu, Y.; Zheng, Y.; Wang, J.; Zhu, M.; Cen, S.; He, J.; Wang, Y. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur. J. Med. Chem., 2021, 214, 113208.
[http://dx.doi.org/10.1016/j.ejmech.2021.113208] [PMID: 33571829]
[65]
Khodair, A.I.; El-Barbary, A.A.; Imam, D.R.; Kheder, N.A.; Elmalki, F.; Ben Hadda, T. Synthesis, antiviral, DFT and molecular docking studies of some novel 1,2,4-triazine nucleosides as potential bioactive compounds. Carbohydr. Res., 2021, 500, 108246.
[http://dx.doi.org/10.1016/j.carres.2021.108246] [PMID: 33516074]
[66]
Verma, V.A.; Saundane, A.R.; Meti, R.S.; Vennapu, D.R. Synthesis of novel indolo[3,2-c]isoquinoline derivatives bearing pyrimidine, piperazine rings and their biological evaluation and docking studies against COVID-19 virus main protease. J. Mol. Struct., 2021, 1229, 129829.
[http://dx.doi.org/10.1016/j.molstruc.2020.129829] [PMID: 33390613]
[67]
Kozlovskaya, L.I.; Volok, V.P.; Shtro, A.A.; Nikolaeva, Y.V.; Chistov, A.A.; Matyugina, E.S.; Belyaev, E.S.; Jegorov, A.V.; Snoeck, R.; Korshun, V.A.; Andrei, G.; Osolodkin, D.I.; Ishmukhametov, A.A.; Aralov, A.V. Phenoxazine nucleoside derivatives with a multiple activity against RNA and DNA viruses. Eur. J. Med. Chem., 2021, 220, 113467.
[http://dx.doi.org/10.1016/j.ejmech.2021.113467] [PMID: 33894564]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy