Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Mini-Review Article

Metabolomics of Meat Color: Practical Implications

Author(s): Morgan L. Denzer, Frank Kiyimba, Gretchen G. Mafi and Ranjith Ramanathan*

Volume 19, Issue 4, 2022

Published on: 01 February, 2022

Page: [299 - 307] Pages: 9

DOI: 10.2174/1570164619666211230153145

Price: $65

Abstract

Objective: Meat is biochemically active. Various pre-and post-harvest processes affect meat quality. Metabolomics is a valuable tool to elucidate metabolite changes in meat. The overall goal of this mini-review was to provide an overview of various techniques, data analysis, and application of metabolomics in meat color research.

Results: Both targeted and non-targeted approaches are used to determine metabolite profiles in meat. Researchers use gas-, liquid-chromatography, and nuclear magnetic resonance platforms to separate molecules. Metabolomics is used to characterize muscle-specific differences in color stability, meat tenderness, the impact of aging on meat color, and to determine metabolite profile differences between normal-pH and dark-cutting beef. Color stable muscles have more glycolytic metabolites than color labile muscles.

Conclusion: The use of metabolomics has greatly enhanced our understanding of metabolites' role in meat quality. There is a need for multiple databases to obtain comprehensive metabolite libraries specific to food. Metabolomics in combination with wet-laboratory techniques can provide novel insights on the relationship between postmortem metabolism and meat color.

Keywords: Metabolomics, meat color, food quality, meat waste, packaging, dark-cutter.

Graphical Abstract

[1]
Carpenter, C.E.; Cornforth, D.P.; Whittier, D. Consumer preferences for beef color and packaging did not affect eating satisfaction. Meat Sci., 2001, 57(4), 359-363.
[http://dx.doi.org/10.1016/S0309-1740(00)00111-X] [PMID: 22061707]
[2]
Nair, M.N.; Suman, S.P.; Chatli, M.K.; Li, S.; Joseph, P.; Beach, C.M.; Rentfrow, G. Proteome basis for intramuscular variation in color stability of beef semimembranosus. Meat Sci., 2016, 113, 9-16.
[http://dx.doi.org/10.1016/j.meatsci.2015.11.003] [PMID: 26588815]
[3]
Suman, S.P.; Hunt, M.C.; Nair, M.N.; Rentfrow, G. Improving beef color stability: Practical strategies and underlying mechanisms. Meat Sci., 2014, 98(3), 490-504.
[http://dx.doi.org/10.1016/j.meatsci.2014.06.032] [PMID: 25041654]
[4]
Maia Research Analysis. Global Meat Wastage at Store or Losses Due to Discoloration of Meat 2015-2020. 2020. Available from: https://www.maiaresearch.com
[5]
AMSA meat color measurement guidelines. Vol. 2nd editio; American Meat Science Association: Champaign, Illinois, USA, 2012, pp. 1-135.
[6]
Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci., 2005, 71(1), 100-121.
[http://dx.doi.org/10.1016/j.meatsci.2005.03.003] [PMID: 22064056]
[7]
Boykin, C.A.; Eastwood, L.C.; Harris, M.K.; Hale, D.S.; Kerth, C.R.; Griffin, D.B.; Arnold, A.N.; Hasty, J.D.; Belk, K.E.; Woerner, D.R.; Delmore, R.J.; Martin, J.N.; VanOverbeke, D.L.; Mafi, G.G.; Pfeiffer, M.M.; Lawrence, T.E.; McEvers, T.J.; Schmidt, T.B.; Maddock, R.J.; Johnson, D.D.; Carr, C.C.; Scheffler, J.M.; Pringle, T.D.; Stelzleni, A.M.; Gottlieb, J.; Savell, J.W. National beef quality audit-2016: In-plant survey of carcass characteristics related to quality, quantity, and value of fed steers and heifers. J. Anim. Sci., 2017, 95(7), 2993-3002.
[PMID: 28727109] [http://dx.doi.org/10.2527/jas.2017.1543]
[8]
NBQA. The 2016/17 National Beef Quality Audit; NBQA, 2018.
[9]
Mahmood, S.; Turchinsky, N.; Paradis, F.; Dixon, W.T.; Bruce, H.L. Proteomics of dark cutting longissimus thoracis muscle from heifer and steer carcasses. Meat Sci., 2018, 137(137), 47-57.
[http://dx.doi.org/10.1016/j.meatsci.2017.11.014] [PMID: 29154218]
[10]
Ramanathan, R.; Hunt, M.C.; Mancini, R.A.; Nair, M.; Denzer, M.L.; Suman, S. Recent updates in meat color research: Integrating traditional and high-throughput approaches. Meat Muscle Biol, 2020, 4(2), 1-24.
[11]
Ramanathan, R.; Suman, S.P.; Faustman, C. Biomolecular interactions governing fresh meat color in post-mortem skeletal muscle: A review. J. Agric. Food Chem., 2020, 68(46), 12779-12787. Available from: https://pubs.acs.org/doi/10.1021/acs.jafc.9b08098
[http://dx.doi.org/10.1021/acs.jafc.9b08098] [PMID: 32045229]
[12]
Gagaoua, M.; Terlouw, E.M.C.; Micol, D.; Boudjellal, A.; Hocquette, J.F.; Picard, B. Understanding early post-mortem biochemical processes underlying meat color and pH decline in the longissimus thoracis muscle of young blond dÁquitaine bulls using protein biomarkers. J. Agric. Food Chem., 2015, 63(30), 6799-6809.
[http://dx.doi.org/10.1021/acs.jafc.5b02615] [PMID: 26160326]
[13]
Gagaoua, M.; Hughes, J.; Terlouw, E.M.C.; Warner, R.D.; Purslow, P.P.; Lorenzo, J.M. Proteomic biomarkers of beef colour. Trends Food Sci. Technol., 2020, 101, 234-252.
[http://dx.doi.org/10.1016/j.tifs.2020.05.005]
[14]
Balog, J.; Perenyi, D.; Guallar-Hoyas, C.; Egri, A.; Pringle, S.D.; Stead, S.; Chevallier, O.P.; Elliott, C.T.; Takats, Z. Identification of the species of origin for meat products by rapid evaporative ionization mass spectrometry. J. Agric. Food Chem., 2016, 64(23), 4793-4800.
[http://dx.doi.org/10.1021/acs.jafc.6b01041] [PMID: 27167240]
[15]
Chan, W.K.M.; Faustman, C.; Yin, M.; Decker, E.A. Lipid oxidation induced by oxymyoglobin and metmyoglobin with involvement of H2O2 and superoxide anion. Meat Sci., 1997, 46(2), 181-190.
[http://dx.doi.org/10.1016/S0309-1740(97)00014-4] [PMID: 22062041]
[16]
Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Sci., 2010, 86(1), 86-94.
[http://dx.doi.org/10.1016/j.meatsci.2010.04.025] [PMID: 20554121]
[17]
Suman, S.P.; Joseph, P. Color and pigment. Encycl Meat Sci., 2014, 1, 244-251.
[http://dx.doi.org/10.1016/B978-0-12-384731-7.00084-2]
[18]
Feuz, R.; Norwood, F.B.; Ramanathan, R. The spillover effect of marketing discolored beef on consumer preferences for nondiscolored beef. J. Agric. Appl. Econ., 2020, 52(1), 160-176. Available from: https://www.cambridge.org/core/product/identifier/S1074070819000397/type/journal_article
[http://dx.doi.org/10.1017/aae.2019.39]
[19]
Ramanathan, R.; Mancini, R.A. Role of mitochondria in beef color: A review. Meat Muscle Biol, 2018, 2(1), 309-320.
[http://dx.doi.org/10.22175/mmb2018.05.0013]
[20]
Nerimetla, R.; Walgama, C.; Ramanathan, R.; Krishnan, S. Correlating the electrochemical kinetics of myoglobin-films to pH dependent meat color. Electroanalysis, 2014, 26(4), 675-678.
[http://dx.doi.org/10.1002/elan.201300630]
[21]
Kim, Y.H.B.; Ma, D.; Setyabrata, D.; Farouk, M.M.; Lonergan, S.M.; Huff-Lonergan, E.; Hunt, M.C. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Sci., 2018, 144, 74-90.
[http://dx.doi.org/10.1016/j.meatsci.2018.04.031] [PMID: 29731371]
[22]
Ouali, A.; Gagaoua, M.; Boudida, Y.; Becila, S.; Boudjellal, A.; Herrera-Mendez, C.H.; Sentandreu, M.A. Biomarkers of meat tenderness: present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci., 2013, 95(4), 854-870.
[http://dx.doi.org/10.1016/j.meatsci.2013.05.010] [PMID: 23790743]
[23]
Zerby, H.N.; Belk, K.E.; Sofos, J.N.; McDowell, L.R.; Smith, G.C. Case life of seven retail products from beef cattle supplemented with alpha-tocopheryl acetate. J. Anim. Sci., 1999, 77(9), 2458-2463.
[http://dx.doi.org/10.2527/1999.7792458x] [PMID: 10492453]
[24]
Fruet, A.P.B.; Nörnberg, J.L.; Calkins, C.R.; De Mello, A. Effects of different antioxidants on quality of beef patties from steers fed low-moisture distillers grains. Meat Sci., 2019, 154, 119-125.
[http://dx.doi.org/10.1016/j.meatsci.2019.04.014] [PMID: 31031210]
[25]
Tatiyaborworntham, N.; Faustman, C.; Yin, S.; Ramanathan, R.; Mancini, R.A.; Suman, S.P.; Beach, C.M.; Maheswarappa, N.B.; Grunwald, E.W.; Richards, M.P. Redox instability and hemin loss of mutant sperm whale myoglobins induced by 4-hydroxynonenal in vitro. J. Agric. Food Chem., 2012, 60(34), 8473-8483.
[http://dx.doi.org/10.1021/jf301770p] [PMID: 22873347]
[26]
Naveena, B.M.; Faustman, C.; Tatiyaborworntham, N.; Yin, S.; Ramanathan, R.; Mancini, R.A. Detection of 4-hydroxy-2-nonenal adducts of turkey and chicken myoglobins using mass spectrometry. Food Chem., 2010, 122(3), 836-840.
[http://dx.doi.org/10.1016/j.foodchem.2010.02.062]
[27]
Ramanathan, R.; Mancini, R.A.; Joseph, P.; Yin, S.; Tatiyaborworntham, N.; Petersson, K.H. Effects of lactate on ground lamb colour stability and mitochondria- mediated metmyoglobin reduction. Food Chem., 2011, 126(1), 166-171.
[http://dx.doi.org/10.1016/j.foodchem.2010.10.093]
[28]
Yin, S.; Faustman, C.; Tatiyaborworntham, N.; Ramanathan, R.; Maheswarappa, N.B.; Mancini, R.A.; Joseph, P.; Suman, S.P.; Sun, Q. Species-specific myoglobin oxidation. J. Agric. Food Chem., 2011, 59(22), 12198-12203.
[http://dx.doi.org/10.1021/jf202844t] [PMID: 21942622]
[29]
Lee, S.; Joo, S.T.; Alderton, A.L.; Hill, D.W.; Faustman, C. Oxymyoglobin and lipid oxidation in yellowfin tuna (Thunnus albacares) loins. J. Food Sci., 2003, 68(5), 1664-1668.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb12310.x]
[30]
Zhai, C.; Peckham, K.; Belk, K.E.; Ramanathan, R.; Nair, M.N. Carbon chain length of lipid oxidation products influence lactate dehydrogenase and NADH-dependent metmyoglobin reductase activity. J. Agric. Food Chem., 2019, 67(48), 13327-13332.
[http://dx.doi.org/10.1021/acs.jafc.9b05634] [PMID: 31715101]
[31]
Mancini, R.A.; Ramanathan, R. Effects of postmortem storage time on color and mitochondria in beef. Meat Sci., 2014, 98(1), 65-70.
[http://dx.doi.org/10.1016/j.meatsci.2014.04.007] [PMID: 24862957]
[32]
Ramanathan, R.; Mancini, R.A.; Suman, S.P.; Cantino, M.E. Effects of 4-hydroxy-2-nonenal on beef heart mitochondrial ultrastructure, oxygen consumption, and metmyoglobin reduction. Meat Sci., 2012, 90(3), 564-571.
[http://dx.doi.org/10.1016/j.meatsci.2011.09.017] [PMID: 22030110]
[33]
Ramanathan, R.; Mancini, R.A.; Suman, S.P.; Beach, C.M. Covalent binding of 4-hydroxy-2-nonenal to lactate dehydrogenase decreases NADH formation and metmyoglobin reducing activity. J. Agric. Food Chem., 2014, 62(9), 2112-2117.
[http://dx.doi.org/10.1021/jf404900y] [PMID: 24552270]
[34]
Alderton, A.L.; Faustman, C.; Liebler, D.C.; Hill, D.W. Induction of redox instability of bovine myoglobin by adduction with 4-hydroxy-2-nonenal. Biochemistry, 2003, 42(15), 4398-4405.
[http://dx.doi.org/10.1021/bi0271695] [PMID: 12693935]
[35]
Suman, S.P.; Mancini, R.A.; Joseph, P.; Ramanathan, R.; Konda, M.K.R.; Dady, G.; Yin, S. Packaging-specific influence of chitosan on color stability and lipid oxidation in refrigerated ground beef. Meat Sci., 2010, 86(4), 994-998.
[http://dx.doi.org/10.1016/j.meatsci.2010.08.006] [PMID: 20833484]
[36]
Prommachart, R.; Belem, T.S.; Uriyapongson, S.; Rayas-Duarte, P.; Uriyapongson, J.; Ramanathan, R. The effect of black rice water extract on surface color, lipid oxidation, microbial growth, and antioxidant activity of beef patties during chilled storage. Meat Sci., 2020, 164, 108091.
[http://dx.doi.org/10.1016/j.meatsci.2020.108091] [PMID: 32126446]
[37]
Suman, S.P.; Faustman, C.; Lee, S.; Tang, J.; Sepe, H.A.; Vasudevan, P.; Annamalai, T.; Manojkumar, M.; Marek, P.; Venkitanarayanan, K.S. Effect of erythorbate, storage and high-oxygen packaging on premature browning in ground beef. Meat Sci., 2005, 69(2), 363-369.
[http://dx.doi.org/10.1016/j.meatsci.2004.08.008] [PMID: 22062829]
[38]
Grobbel, J.P.; Dikeman, M.E.; Yancey, E.J.; Smith, J.S.; Kropf, D.H.; Milliken, G.A. Effects of ascorbic acid, rosemary, and Origanox™ in preventing bone marrow discoloration in beef lumbar vertebrae in aerobic and anaerobic packaging systems. Meat Sci., 2006, 72(1), 47-56.
[http://dx.doi.org/10.1016/j.meatsci.2005.06.002] [PMID: 22061373]
[39]
Mancini, R.A.; Suman, S.P.; Konda, M.K.R.; Ramanathan, R. Effect of carbon monoxide packaging and lactate enhancement on the color stability of beef steaks stored at 1°C for 9 days. Meat Sci., 2009, 81(1), 71-76.
[http://dx.doi.org/10.1016/j.meatsci.2008.06.021] [PMID: 22063964]
[40]
Mitacek, R.M.; English, A.R.; Mafi, G.G.; VanOverbeke, D.L.; Ramanathan, R. Modified atmosphere packaging improves surface color of dark-cutting beef. Meat Muscle Biol, 2018, 2(1), 57.
[http://dx.doi.org/10.22175/mmb2017.04.0023]
[41]
Ramanathan, R.; Nair, M.N.; Hunt, M.C.; Suman, S.P. Mitochondrial functionality and beef colour: A review of recent research. S. Afr. J. Anim. Sci., 2019, 49(1), 9-19.
[http://dx.doi.org/10.4314/sajas.v49i1.2]
[42]
Seyfert, M.; Hunt, M.C.; Mancini, R.A.; Kropf, D.H.; Stroda, S.L. Internal premature browning in cooked steaks from enhanced beef round muscles packaged in high-oxygen and ultra-low oxygen modified atmospheres. J. Food Sci., 2004, 69(2), FCT142-FCT146.
[http://dx.doi.org/10.1111/j.1365-2621.2004.tb15506.x]
[43]
Ryan, S.M.; Seyfert, M.; Hunt, M.C.; Mancini, R.A. Influence of cooking rate, endpoint temperature, post-cook hold time, and myoglobin redox state on internal color development of cooked ground beef patties. J. Food Sci., 2006, 71(3), C216-C221.
[http://dx.doi.org/10.1111/j.1365-2621.2006.tb15620.x]
[44]
Elroy, N.N.; Rogers, J.; Mafi, G.G.; VanOverbeke, D.L.; Hartson, S.D.; Ramanathan, R. Species-specific effects on non-enzymatic metmyoglobin reduction in vitro. Meat Sci., 2015, 105, 108-113.
[http://dx.doi.org/10.1016/j.meatsci.2015.03.010] [PMID: 25828165]
[45]
Denzer, M.L.; Mowery, C.; Comstock, H.A.; Maheswarappa, N.B.; Mafi, G.; VanOverebeke, D.L. Characterization of the cofactors involved in non-enzymatic metmyoglobin/methemoglobin reduction in vitro. Meat Muscle Biol, 2020, 4(1), 1-10.
[46]
Arihara, K.; Cassens, R.G.; Greaser, M.L.; Luchansky, J.B.; Mozdziak, P.E. Localization of metmyoglobin-reducing enzyme (NADH-cytochrome b(5) reductase) system components in bovine skeletal muscle. Meat Sci., 1995, 39(2), 205-213.
[http://dx.doi.org/10.1016/0309-1740(94)P1821-C] [PMID: 22059826]
[47]
Belskie, K.M.; Van Buiten, C.B.; Ramanathan, R.; Mancini, R.A. Reverse electron transport effects on NADH formation and metmyoglobin reduction. Meat Sci., 2015, 105, 89-92.
[http://dx.doi.org/10.1016/j.meatsci.2015.02.012] [PMID: 25828162]
[48]
Ramanathan, R.; Mancini, R.A. Effects of pyruvate on bovine heart mitochondria-mediated metmyoglobin reduction. Meat Sci., 2010, 86(3), 738-741.
[http://dx.doi.org/10.1016/j.meatsci.2010.06.014] [PMID: 20659785]
[49]
Bowker, B.C.; Grant, A.L.; Forrest, J.C.; Gerrard, D.E. Muscle metabolism and PSE pork. proceedings of the American Society of Animal Society of Animal Science, 2000, 2000.
[http://dx.doi.org/10.2527/jas.00.079ES1001c]
[50]
Zuber, EA; Outhouse, AC; Helm, ET; Gabler, NK; Prusa, KJ; Steadham, EM Contribution of early-postmortem proteome and metabolome to ultimate pH and pork quality. Meat Muscle Biol, 2021, 5(1), 1-17.
[51]
Liu, C.; Zhang, Y.; Yang, X.; Liang, R.; Mao, Y.; Hou, X.; Lu, X.; Luo, X. Potential mechanisms of carbon monoxide and high oxygen packaging in maintaining color stability of different bovine muscles. Meat Sci., 2014, 97(2), 189-196.
[http://dx.doi.org/10.1016/j.meatsci.2014.01.027] [PMID: 24583327]
[52]
Mohan, A.; Muthukrishnan, S.; Hunt, M.C.; Barstow, T.J.; Houser, T.A. Kinetics of myoglobin redox form stabilization by malate dehydrogenase. J. Agric. Food Chem., 2010, 58(11), 6994-7000.
[http://dx.doi.org/10.1021/jf100639n] [PMID: 20465256]
[53]
Mitacek, R.M.; Ke, Y.; Prenni, J.E.; Jadeja, R.; VanOverbeke, D.L.; Mafi, G.G.; Ramanathan, R. Mitochondrial degeneration, depletion of NADH, and oxidative stress decrease color stability of wet-aged beef longissimus steaks. J. Food Sci., 2019, 84(1), 38-50. Available from: http://doi.wiley.com/10.1111/1750-3841.14396
[http://dx.doi.org/10.1111/1750-3841.14396] [PMID: 30496612]
[54]
Kim, Y.H.; Hunt, M.C.; Mancini, R.A.; Seyfert, M.; Loughin, T.M.; Kropf, D.H.; Smith, J.S. Mechanism for lactate-color stabilization in injection-enhanced beef. J. Agric. Food Chem., 2006, 54(20), 7856-7862.
[http://dx.doi.org/10.1021/jf061225h] [PMID: 17002462]
[55]
Ramanathan, R.; Mancini, R.A.; Maheswarappa, N.B. Effects of lactate on bovine heart mitochondria-mediated metmyoglobin reduction. J. Agric. Food Chem., 2010, 58(9), 5724-5729.
[http://dx.doi.org/10.1021/jf1002842] [PMID: 20405943]
[56]
Ramanathan, R.; Mancini, R.A.; Dady, G.A. Effects of pyruvate, succinate, and lactate enhancement on beef longissimus raw color. Meat Sci., 2011, 88(3), 424-428.
[http://dx.doi.org/10.1016/j.meatsci.2011.01.021] [PMID: 21345606]
[57]
Suman, S.P.; Mancini, R.A.; Joseph, P.; Ramanathan, R.; Konda, M.K.R.; Dady, G.; Naveena, B.M.; López-López, I. Color-stabilizing effect of lactate on ground beef is packaging-dependent. Meat Sci., 2010, 84(3), 329-333.
[http://dx.doi.org/10.1016/j.meatsci.2009.08.051] [PMID: 20374793]
[58]
Tang, J.; Faustman, C.; Mancini, R.A.; Seyfert, M.; Hunt, M.C. Mitochondrial reduction of metmyoglobin: dependence on the electron transport chain. J. Agric. Food Chem., 2005, 53(13), 5449-5455.
[http://dx.doi.org/10.1021/jf050092h] [PMID: 15969532]
[59]
Ramanathan, R.; Mancini, R.A.; Van Buiten, C.B.; Suman, S.P.; Beach, C.M. Effects of pyruvate on lipid oxidation and ground beef color. J. Food Sci., 2012, 77(8), C886-C892.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02814.x] [PMID: 22860580]
[60]
Ramanathan, R.; Mancini, R.A.; Konda, M.R. Effects of lactate on beef heart mitochondrial oxygen consumption and muscle darkening. J. Agric. Food Chem., 2009, 57(4), 1550-1555.
[http://dx.doi.org/10.1021/jf802933p] [PMID: 19178274]
[61]
Tang, J.; Faustman, C.; Lee, S.; Hoagland, T.A. Effect of glutathione on oxymyoglobin oxidation. J. Agric. Food Chem., 2003, 51(6), 1691-1695.
[http://dx.doi.org/10.1021/jf025924f] [PMID: 12617606]
[62]
Schauer, N.; Steinhauser, D.; Strelkov, S.; Schomburg, D.; Allison, G.; Moritz, T.; Lundgren, K.; Roessner-Tunali, U.; Forbes, M.G.; Willmitzer, L.; Fernie, A.R.; Kopka, J. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett., 2005, 579(6), 1332-1337.
[http://dx.doi.org/10.1016/j.febslet.2005.01.029] [PMID: 15733837]
[63]
Naz, S.; Vallejo, M.; García, A.; Barbas, C. Method validation strategies involved in non-targeted metabolomics. J. Chromatogr. A, 2014, 1353, 99-105.
[http://dx.doi.org/10.1016/j.chroma.2014.04.071] [PMID: 24811151]
[64]
Gika, H.G.; Theodoridis, G.A.; Wingate, J.E.; Wilson, I.D. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J. Proteome Res., 2007, 6(8), 3291-3303.
[http://dx.doi.org/10.1021/pr070183p] [PMID: 17625818]
[65]
Ma, D.; Kim, Y.H.B.; Cooper, B.; Oh, J.H.; Chun, H.; Choe, J.H.; Schoonmaker, J.P.; Ajuwon, K.; Min, B. Metabolomics profiling to determine the effect of postmortem aging on color and lipid oxidative stabilities of different bovine muscles. J. Agric. Food Chem., 2017, 65(31), 6708-6716.
[http://dx.doi.org/10.1021/acs.jafc.7b02175] [PMID: 28700223]
[66]
Abraham, A.; Dillwith, J.W.; Mafi, G.G.; VanOverbeke, D.L.; Ramanathan, R. Metabolite profile differences between beef longissimus and psoas muscles during display. Meat Muscle Biol [Internet], 2017, 1, 18-27.
[http://dx.doi.org/10.22175/mmb2016.12.0007]
[67]
D’Alessandro, A.; Rinalducci, S.; Marrocco, C.; Zolla, V.; Napolitano, F.; Zolla, L. Love me tender: an Omics window on the bovine meat tenderness network. J. Proteomics, 2012, 75(14), 4360-4380.
[http://dx.doi.org/10.1016/j.jprot.2012.02.013] [PMID: 22361340]
[68]
Ramanathan, R.; Kiyimba, F.; Gonzalez, J.; Mafi, G.; DeSilva, U. Impact of up- and downregulation of metabolites and mitochondrial content on pH and color of the longissimus muscle from normal-pH and dark-cutting beef. J. Agric. Food Chem., 2020, 68(27), 7194-7203. Available from: https://pubs.acs.org/doi/10.1021/acs.jafc.0c01884
[http://dx.doi.org/10.1021/acs.jafc.0c01884] [PMID: 32530278]
[69]
Cônsolo, N.R.B.; Rosa, A.F.; Barbosa, L.C.G.S.; Maclean, P.H.; Higuera-Padilla, A.; Colnago, L.A.; Titto, E.A.L. Preliminary study on the characterization of Longissimus lumborum dark cutting meat in Angus × Nellore crossbreed cattle using NMR-based metabolomics. Meat Sci., 2021, 172, 108350. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0309174020307828
[http://dx.doi.org/10.1016/j.meatsci.2020.108350] [PMID: 33120178]
[70]
Cavanna, D.; Righetti, L.; Elliott, C.; Suman, M. The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. In: Trends in Food Science and Technology; Elsevier Ltd: Amsterdam, 2018; 80, pp. 223-241.
[71]
Römisch-Margl, W.; Prehn, C.; Bogumil, R.; Röhring, C.; Suhre, K.; Adamski, J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 2012, 8(1), 133-142.
[http://dx.doi.org/10.1007/s11306-011-0293-4]
[72]
Want, E.; Masson, P. Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol. Biol., 2011, 708, 277-298.
[http://dx.doi.org/10.1007/978-1-61737-985-7_17] [PMID: 21207297]
[73]
Brown, M.; Wedge, D.C.; Goodacre, R.; Kell, D.B.; Baker, P.N.; Kenny, L.C.; Mamas, M.A.; Neyses, L.; Dunn, W.B. Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 2011, 27(8), 1108-1112.
[http://dx.doi.org/10.1093/bioinformatics/btr079] [PMID: 21325300]
[74]
Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev., 2011, 40(1), 387-426.
[http://dx.doi.org/10.1039/B906712B] [PMID: 20717559]
[75]
Reo, N.V. NMR-based metabolomics. In: Drug and Chemical Toxicology; Taylor & Francis: Milton Park, 2002; pp. 375-382.
[76]
Subbaraj, A.K.; Kim, Y.H.B.; Fraser, K.; Farouk, M.M. A hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) based metabolomics study on colour stability of ovine meat. Meat Sci., 2016, 117, 163-172.
[http://dx.doi.org/10.1016/j.meatsci.2016.02.028] [PMID: 26986230]
[77]
Wishart, D.S. Metabolomics: applications to food science and nutrition research. In: Trends in Food Science and Technology; Elsevier: Amsterdam, 2008; 19, pp. 482-493.
[78]
Hollywood, K.A.; Maatje, M.; Shadi, I.T.; Henderson, A.; McGrouther, D.A.; Goodacre, R.; Bayat, A. Phenotypic profiling of keloid scars using FT-IR microspectroscopy reveals a unique spectral signature. Arch. Dermatol. Res., 2010, 302(10), 705-715.
[http://dx.doi.org/10.1007/s00403-010-1071-2] [PMID: 20700600]
[79]
Lloyd, A.J.; William Allwood, J.; Winder, C.L.; Dunn, W.B.; Heald, J.K.; Cristescu, S.M.; Sivakumaran, A.; Harren, F.J.; Mulema, J.; Denby, K.; Goodacre, R.; Smith, A.R.; Mur, L.A. Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea. Plant J., 2011, 67(5), 852-868.
[http://dx.doi.org/10.1111/j.1365-313X.2011.04639.x] [PMID: 21575089]
[80]
Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmüller, E.; Dörmann, P.; Weckwerth, W.; Gibon, Y.; Stitt, M.; Willmitzer, L.; Fernie, A.R.; Steinhauser, D. GMD@CSB.DB: the golm metabolome database. Bioinformatics, 2005, 21(8), 1635-1638.
[http://dx.doi.org/10.1093/bioinformatics/bti236] [PMID: 15613389]
[81]
Altmaier, E.; Ramsay, S.L.; Graber, A.; Mewes, H.W.; Weinberger, K.M.; Suhre, K. Bioinformatics analysis of targeted metabolomics--uncovering old and new tales of diabetic mice under medication. Endocrinology, 2008, 149(7), 3478-3489.
[http://dx.doi.org/10.1210/en.2007-1747] [PMID: 18372322]
[82]
Ke, Y.; Mitacek, R.M.; Abraham, A.; Mafi, G.G.; VanOverbeke, D.L.; DeSilva, U.; Ramanathan, R. Effects of muscle-specific oxidative stress on cytochrome c release and oxidation-reduction potential properties. J. Agric. Food Chem., 2017, 65(35), 7749-7755.
[http://dx.doi.org/10.1021/acs.jafc.7b01735] [PMID: 28796497]
[83]
Sammel, L.M.; Hunt, M.C.; Kropf, D.H.; Hachmeister, K.A.; Johnson, D.E. Comparison of assays for metmyoglobin reducing ability in beef inside and outside semimembranosus muscle. J. Food Sci., 2002, 67(3), 978-984.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb09439.x]
[84]
English, A.R.; Mafi, G.G.; VanOverbeke, D.L.; Ramanathan, R. Effects of extended aging and modified atmospheric packaging on beef top loin steak color. J. Anim. Sci., 2016, 94(4), 1727-1737.
[http://dx.doi.org/10.2527/jas.2015-0149] [PMID: 27136030]
[85]
Yu, Q.; Tian, X.; Shao, L.; Li, X.; Dai, R. Targeted metabolomics to reveal muscle-specific energy metabolism between bovine longissimus lumborum and psoas major during early postmortem periods. Meat Sci., 2019, 156, 166-173.
[http://dx.doi.org/10.1016/j.meatsci.2019.05.029] [PMID: 31181502]
[86]
Wang, X.; Jiang, G.; Kebreab, E.; Li, J.; Feng, X.; Li, C.; Zhang, X.; Huang, X.; Fang, C.; Fang, R.; Dai, Q. 1H NMR-based metabolomics study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality. Food Res. Int., 2020, 133, 109126.
[http://dx.doi.org/10.1016/j.foodres.2020.109126] [PMID: 32466939]
[87]
D’Alessandro, A.; Marrocco, C.; Zolla, V.; D’Andrea, M.; Zolla, L. Meat quality of the longissimus lumborum muscle of Casertana and Large White pigs: metabolomics and proteomics intertwined. J. Proteomics, 2011, 75(2), 610-627.
[http://dx.doi.org/10.1016/j.jprot.2011.08.024] [PMID: 21920477]
[88]
Yu, Q.; Cooper, B.; Sobreira, T.; Kim, Y.H.B. Utilizing pork exudate metabolomics to reveal the impact of aging on meat quality. Foods, 2021, 10(3), 668.
[http://dx.doi.org/10.3390/foods10030668] [PMID: 33804730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy