Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Elegant, Flexible Vesicular Nanocarriers for the Efficient Skin Delivery of Topically Applied Drugs

Author(s): Waleed Albalawi, Surur Alharbi, Fahad Alanazi, Hameed Alahmadi, Mothib Alghamdi, Ghareb M. Soliman* and Mohamed A. Safwat

Volume 19, Issue 4, 2023

Published on: 25 February, 2022

Page: [493 - 508] Pages: 16

DOI: 10.2174/1573413718666211230111538

Price: $65

Abstract

Background: Skin diseases represent a major health concern worldwide and negatively impact patients’ quality of life. Despite the availability of various efficacious drugs, their therapeutic outcome is often limited due to shortcomings related to the formidable skin barrier and unfavorable physicochemical properties of drugs. Flexible nano-vesicles have shown tremendous potential to overcome these hurdles and improve the local therapeutic effect of these drugs.

Objective: This review article is aimed to shed light on flexible nano-vesicular carriers as a means to combat skin diseases.

Methods: The literature was reviewed using PubMed database using various keywords such as liposomes, flexible (deformable liposomes) (transferosomes), ethosomes, transethosomes, niosomes, and spanlastics.

Results: Liposomes and niosomes were found effective for the loading and release of both hydrophilic and lipophilic drugs. However, their limited skin penetration led to drug delivery to the outermost layers of skin only. This necessitates the search for innovative vesicular carriers, including liposomes, flexible (deformable liposomes), ethosomes, transethosomes, and spanlastics. These flexible nano-vesicular carriers showed enhanced drug delivery and deposition across various skin layers, which was better than their corresponding conventional vesicles. This resulted in superior drug efficacy against various skin diseases such as skin cancer, inflammatory skin diseases, superficial fungal infections, etc.

Conclusion: Flexible nano-vesicular carriers have proven themselves as efficient drug delivery systems that are able to deliver their cargo into the deep skin layers and thus, improve the therapeutic outcome of various skin diseases. However, there remain some challenges that need to be addressed before these nanocarriers can be translated from the lab to clinics.

Keywords: Skin diseases, liposomes, flexible liposomes, ethosomes, transethosomes, spanlastics.

Graphical Abstract

[1]
Bayat, F.; Hosseinpour-Moghadam, R.; Mehryab, F.; Fatahi, Y.; Shakeri, N.; Dinarvand, R.; Ten Hagen, T.L.M.; Haeri, A. Potential application of liposomal nanodevices for non-cancer diseases: An update on design, characterization and biopharmaceutical evaluation. Adv. Colloid Interface Sci., 2020, 277, 102121.
[http://dx.doi.org/10.1016/j.cis.2020.102121] [PMID: 32092487]
[2]
Potts, R. Skin barrier: Principles of percutaneous absorption. Arch. Dermatol., 1997, 133(7), 924.
[http://dx.doi.org/10.1001/archderm.1997.03890430146031]
[3]
Potts, R.O.; Buy, R. Mechanisms of transdermal drug delivery; Marcel Dekker, Inc.: New York, 1997.
[4]
Supe, S.; Takudage, P. Methods for evaluating penetration of drug into the skin: A review. Skin Res. Technol., 2021, 27(3), 299-308.
[PMID: 33095948]
[5]
Kováčik, A.; Kopečná, M.; Vávrová, K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv., 2020, 17(2), 145-155.
[http://dx.doi.org/10.1080/17425247.2020.1713087] [PMID: 31910342]
[6]
Bolzinger, M-A.; Briançon, S.; Pelletier, J. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci., 2012, 17(3), 156-165.
[http://dx.doi.org/10.1016/j.cocis.2012.02.001]
[7]
Ban, C.; Park, J-B.; Cho, S.; Kim, H.R.; Kim, Y.J.; Choi, Y.J.; Chung, W.J.; Kweon, D.H. Reduction of focal sweating by lipid nanoparticle-delivered myricetin. Sci. Rep., 2020, 10(1), 13132.
[http://dx.doi.org/10.1038/s41598-020-69985-x] [PMID: 32753614]
[8]
Shah, S.M.; Ashtikar, M.; Jain, A.S.; Makhija, D.T.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Jagtap, A.A.; Nagarsenker, M.S.; Fahr, A. LeciPlex, invasomes, and liposomes: A skin penetration study. Int. J. Pharm., 2015, 490(1-2), 391-403.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.042] [PMID: 26002568]
[9]
Patzelt, A.; Lademann, J. Drug delivery to hair follicles. Expert Opin. Drug Deliv., 2013, 10(6), 787-797.
[http://dx.doi.org/10.1517/17425247.2013.776038] [PMID: 23530745]
[10]
Zeb, A.; Arif, S.T.; Malik, M. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig., 2019, 49(5), 485-517.
[http://dx.doi.org/10.1007/s40005-018-00418-8]
[11]
Li, J.; Wang, X.; Zhang, T. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci., 2015, 10(2), 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[12]
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[13]
Elsayed, M.M.A.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research. Int. J. Pharm., 2007, 332(1-2), 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.005] [PMID: 17222523]
[14]
Brunssen, A.; Waldmann, A.; Eisemann, N.; Katalinic, A. Impact of skin cancer screening and secondary prevention campaigns on skin cancer incidence and mortality: A systematic review. J. Am. Acad. Dermatol., 2017, 76(1), 129-139.e10.
[http://dx.doi.org/10.1016/j.jaad.2016.07.045] [PMID: 27707591]
[15]
Rogers, H.W.; Weinstock, M.A.; Feldman, S.R.; Coldiron, B.M. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol., 2015, 151(10), 1081-1086.
[http://dx.doi.org/10.1001/jamadermatol.2015.1187] [PMID: 25928283]
[16]
Nikolaou, V.; Stratigos, A.J. Emerging trends in the epidemiology of melanoma. Br. J. Dermatol., 2014, 170(1), 11-19.
[http://dx.doi.org/10.1111/bjd.12492] [PMID: 23815297]
[17]
Garbe, C.; Eigentler, T.K.; Keilholz, U.; Hauschild, A.; Kirkwood, J.M. Systematic review of medical treatment in melanoma: Current status and future prospects. Oncologist, 2011, 16(1), 5-24.
[http://dx.doi.org/10.1634/theoncologist.2010-0190] [PMID: 21212434]
[18]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[19]
Cossu, A.; Casula, M.; Cesaraccio, R.; Lissia, A.; Colombino, M.; Sini, M.C.; Budroni, M.; Tanda, F.; Paliogiannis, P.; Palmieri, G. Epidemiology and genetic susceptibility of malignant melanoma in North Sardinia, Italy. Eur. J. Cancer Prev., 2017, 26(3), 263-267.
[http://dx.doi.org/10.1097/CEJ.0000000000000223] [PMID: 26999380]
[20]
Bickers, D.R.; Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol., 2006, 126(12), 2565-2575.
[http://dx.doi.org/10.1038/sj.jid.5700340] [PMID: 17108903]
[21]
Serrano, G.; Almudéver, P.; Serrano, J-M.; Milara, J.; Torrens, A.; Expósito, I.; Cortijo, J. Phosphatidylcholine liposomes as carriers to improve topical ascorbic acid treatment of skin disorders. Clin. Cosmet. Investig. Dermatol., 2015, 8, 591-599.
[PMID: 26719718]
[22]
Psoriasis, L.M. Lancet, 2003, 361(9364), 1197-1204.
[http://dx.doi.org/10.1016/S0140-6736(03)12954-6] [PMID: 12686053]
[23]
Wollina, U.; Tirant, M.; Vojvodic, A.; Lotti, T. Treatment of psoriasis: Novel approaches to topical delivery. Open Access Maced. J. Med. Sci., 2019, 7(18), 3018-3025.
[http://dx.doi.org/10.3889/oamjms.2019.414] [PMID: 31850114]
[24]
Parisi, R.; Symmons, D.P.; Griffiths, C.E.; Ashcroft, D.M. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Invest. Dermatol., 2013, 133(2), 377-385.
[http://dx.doi.org/10.1038/jid.2012.339] [PMID: 23014338]
[25]
Gibbs, S. Skin disease and socioeconomic conditions in rural Africa: Tanzania. Int. J. Dermatol., 1996, 35(9), 633-639.
[http://dx.doi.org/10.1111/j.1365-4362.1996.tb03687.x] [PMID: 8876289]
[26]
Rachakonda, T.D.; Schupp, C.W.; Armstrong, A.W. Psoriasis prevalence among adults in the United States. J. Am. Acad. Dermatol., 2014, 70(3), 512-516.
[http://dx.doi.org/10.1016/j.jaad.2013.11.013] [PMID: 24388724]
[27]
Danielsen, K.; Olsen, A.O.; Wilsgaard, T.; Furberg, A.S. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort. Br. J. Dermatol., 2013, 168(6), 1303-1310.
[http://dx.doi.org/10.1111/bjd.12230] [PMID: 23374051]
[28]
Faergemann, J. Management of seborrheic dermatitis and pityriasis versicolor. Am. J. Clin. Dermatol., 2000, 1(2), 75-80.
[http://dx.doi.org/10.2165/00128071-200001020-00001] [PMID: 11702314]
[29]
Gupta, A.K.; Bluhm, R.; Barlow, J.O.; Fleischer, A.B., Jr; Feldman, S.R. Prescribing practices for seborrheic dermatitis vary with the physician’s specialty: Implications for clinical practice. J. Dermatolog. Treat., 2004, 15(4), 208-213.
[http://dx.doi.org/10.1080/09546630410032430] [PMID: 15764032]
[30]
Pathophysiology of atopic dermatitis: Clinical implications. In: Allergy and asthma proceedings; Kim, J; Kim, B.E.; Leung, D.Y., Eds.; OceanSide Publications, 2019.
[31]
Ho, V.; Schacter, D.; Miller, R. Acne management for the 90s: Current treatment guidelines. Can. J. Diagn., 1995, 12, 1-25.
[32]
Arora, M.K.; Yadav, A.; Saini, V. Role of hormones in acne vulgaris. Clin. Biochem., 2011, 44(13), 1035-1040.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.06.984] [PMID: 21763298]
[33]
Falcocchio, S.; Ruiz, C.; Pastor, F.J. Propionibacterium acnes GehA lipase, an enzyme involved in acne development, can be successfully inhibited by defined natural substances. J. Mol. Catal., B Enzym., 2006, 40(3-4), 132-137.
[http://dx.doi.org/10.1016/j.molcatb.2006.02.011]
[34]
Leyden, J.J.; Kligman, A.M. Acne vulgaris: New concepts in pathogenesis and treatment. Drugs, 1976, 12(4), 292-300.
[http://dx.doi.org/10.2165/00003495-197612040-00004] [PMID: 134884]
[35]
Gupta, A.K.; Ryder, J.E.; Chow, M.; Cooper, E.A. Dermatophytosis: The management of fungal infections. Skinmed, 2005, 4(5), 305-310.
[http://dx.doi.org/10.1111/j.1540-9740.2005.03435.x] [PMID: 16282753]
[36]
Gretzula, J.; Penneys, N.S. Complex viral and fungal skin lesions of patients with acquired immunodeficiency syndrome. J. Am. Acad. Dermatol., 1987, 16(6), 1151-1154.
[http://dx.doi.org/10.1016/S0190-9622(87)70149-2] [PMID: 3036915]
[37]
Bseiso, E.A.; Nasr, M.; Sammour, O.; Abd El Gawad, N.A. Recent advances in topical formulation carriers of antifungal agents. Indian J. Dermatol. Venereol. Leprol., 2015, 81(5), 457-463.
[http://dx.doi.org/10.4103/0378-6323.162328] [PMID: 26261140]
[38]
Hawkins, D.M.; Smidt, A.C. Superficial fungal infections in children. Pediatr. Clin. North Am., 2014, 61(2), 443-455.
[http://dx.doi.org/10.1016/j.pcl.2013.12.003] [PMID: 24636655]
[39]
Gupta, A.K.; Einarson, T.R.; Summerbell, R.C.; Shear, N.H. An overview of topical antifungal therapy in dermatomycoses. A North American perspective. Drugs, 1998, 55(5), 645-674.
[http://dx.doi.org/10.2165/00003495-199855050-00004] [PMID: 9585862]
[40]
Rahimpour, Y.; Hamishehkar, H. Liposomes in cosmeceutics. Expert Opin. Drug Deliv., 2012, 9(4), 443-455.
[http://dx.doi.org/10.1517/17425247.2012.666968] [PMID: 22413847]
[41]
Nikolaou, V.; Stratigos, A.J.; Katsambas, A.D. Established treatments of skin hypermelanoses. J. Cosmet. Dermatol., 2006, 5(4), 303-308.
[http://dx.doi.org/10.1111/j.1473-2165.2006.00276.x] [PMID: 17716250]
[42]
Celia, C.; Cilurzo, F.; Trapasso, E.; Cosco, D.; Fresta, M.; Paolino, D. Ethosomes® and transfersomes® containing linoleic acid: Physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders. Biomed. Microdevices, 2012, 14(1), 119-130.
[http://dx.doi.org/10.1007/s10544-011-9590-y] [PMID: 21960035]
[43]
Bangham, A.D. Surrogate cells or Trojan horses. The discovery of liposomes. BioEssays, 1995, 17(12), 1081-1088.
[http://dx.doi.org/10.1002/bies.950171213] [PMID: 8634070]
[44]
Karn, P.R.; Cho, W.; Hwang, S.J. Liposomal drug products and recent advances in the synthesis of supercritical fluid-mediated liposomes. Nanomedicine (Lond.), 2013, 8(9), 1529-1548.
[http://dx.doi.org/10.2217/nnm.13.131] [PMID: 23987112]
[45]
Kaur, I.P.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv., 2010, 7(11), 1303-1327.
[http://dx.doi.org/10.1517/17425247.2010.525230] [PMID: 20961206]
[46]
Goñi, F.M. The basic structure and dynamics of cell membranes: An update of the Singer-Nicolson model. Biochim. Biophys. Acta, 2014, 1838(6), 1467-1476.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.006] [PMID: 24440423]
[47]
McClements, D.J. Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv. Colloid Interface Sci., 2015, 219, 27-53.
[http://dx.doi.org/10.1016/j.cis.2015.02.002] [PMID: 25747522]
[48]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[49]
Rommasi, F.; Esfandiari, N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res. Lett., 2021, 16(1), 95.
[http://dx.doi.org/10.1186/s11671-021-03553-8] [PMID: 34032937]
[50]
Deniz, A.; Sade, A.; Severcan, F.; Keskin, D.; Tezcaner, A.; Banerjee, S. Celecoxib-loaded liposomes: Effect of cholesterol on encapsulation and in vitro release characteristics. Biosci. Rep., 2010, 30(5), 365-373.
[http://dx.doi.org/10.1042/BSR20090104] [PMID: 19900165]
[51]
Akhtar, N. Vesicles: A recently developed novel carrier for enhanced topical drug delivery. Curr. Drug Deliv., 2014, 11(1), 87-97.
[http://dx.doi.org/10.2174/15672018113106660064] [PMID: 24533724]
[52]
Kirjavainen, M.; Urtti, A.; Valjakka-Koskela, R.; Kiesvaara, J.; Mönkkönen, J. Liposome-skin interactions and their effects on the skin permeation of drugs. Eur. J. Pharm. Sci., 1999, 7(4), 279-286.
[http://dx.doi.org/10.1016/S0928-0987(98)00037-2] [PMID: 9971910]
[53]
Dhamecha, D.L.; Rathi, A.A.; Saifee, M. Drug vehicle based approaches of penetration enhancement. Int. J. Pharm. Pharm. Sci., 2009, 1(1), 24-46.
[54]
Verma, S.; Singh, S.; Syan, N. Nanoparticle vesicular systems: A versatile tool for drug delivery. J. Chem. Pharm. Res., 2010, 2(2), 496-509.
[55]
Prasanthi, D.; Lakshmi, P.J.A.J.P.C.R. Vesicles-mechanism of transdermal permeation: A review. Asian J. Pharm. Clin. Res., 2012, 5(1), 18-25.
[56]
Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9), 855.
[http://dx.doi.org/10.3390/pharmaceutics12090855] [PMID: 32916782]
[57]
Cevc, G.; Blume, G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers. Transfersomes. Biochim. Biophys. Acta, 2001, 1514(2), 191-205.
[http://dx.doi.org/10.1016/S0005-2736(01)00369-8] [PMID: 11557020]
[58]
Faisal, W.; Soliman, G.M.; Hamdan, A.M. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J. Liposome Res., 2018, 28(1), 14-21.
[http://dx.doi.org/10.1080/08982104.2016.1239636] [PMID: 27667097]
[59]
Albash, R.; Abdelbary, A.A.; Refai, H.; El-Nabarawi, M.A. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: In vitro, ex vivo, and in vivo evaluation. Int. J. Nanomedicine, 2019, 14, 1953-1968.
[http://dx.doi.org/10.2147/IJN.S196771] [PMID: 30936696]
[60]
Fernández-García, R.; Lalatsa, A.; Statts, L.; Bolás-Fernández, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm., 2020, 573, 118817.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118817] [PMID: 31678520]
[61]
Hussain, A.; Singh, S.; Sharma, D.; Webster, T.J.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomedicine, 2017, 12, 5087-5108.
[http://dx.doi.org/10.2147/IJN.S138267] [PMID: 28761343]
[62]
Lee, E.H.; Kim, A.; Oh, Y-K.; Kim, C.K. Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes. Biomaterials, 2005, 26(2), 205-210.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.020] [PMID: 15207467]
[63]
El Zaafarany, G.M.; Awad, G.A.S.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm., 2010, 397(1-2), 164-172.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.034] [PMID: 20599487]
[64]
Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J. Pharm. Sci., 2017, 106(2), 423-445.
[http://dx.doi.org/10.1016/j.xphs.2016.10.001] [PMID: 27865609]
[65]
Jain, S.; Jain, P.; Umamaheshwari, R.B.; Jain, N.K. Transfersomes--a novel vesicular carrier for enhanced transdermal delivery: Development, characterization, and performance evaluation. Drug Dev. Ind. Pharm., 2003, 29(9), 1013-1026.
[http://dx.doi.org/10.1081/DDC-120025458] [PMID: 14606665]
[66]
Romero, E.L.; Morilla, M.J. Highly deformable and highly fluid vesicles as potential drug delivery systems: Theoretical and practical considerations. Int. J. Nanomedicine, 2013, 8, 3171-3186.
[http://dx.doi.org/10.2147/IJN.S33048] [PMID: 23986634]
[67]
Benson, H.A.E. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 2006, 3(6), 727-737.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[68]
Benson, H.A. Elastic liposomes for topical and transdermal drug delivery. Curr. Drug Deliv., 2009, 6(3), 217-226.
[http://dx.doi.org/10.2174/156720109788680813] [PMID: 19604135]
[69]
Pandit, J.; Garg, M.; Jain, N.K. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J. Liposome Res., 2014, 24(2), 163-169.
[http://dx.doi.org/10.3109/08982104.2013.871025] [PMID: 24479833]
[70]
Aggarwal, N.; Goindi, S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis-dermatophytosis. Int. J. Pharm., 2012, 437(1-2), 277-287.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.015] [PMID: 22939964]
[71]
Silva-Neves, V.; Hugo, V.; Alves, P.; Amado, J.C.; Pais-Vieira, C.; Sousa, F.; Cerqueira, F.; Pinto, E.; Pais-Vieira, M. Quality of life and therapeutic regimen management in onychomycosis patients and in vitro study of antiseptic solutions. Sci. Rep., 2021, 11(1), 12789.
[http://dx.doi.org/10.1038/s41598-021-92111-4] [PMID: 34140577]
[72]
Katz, H.I. Drug interactions of the newer oral antifungal agents. Br. J. Dermatol., 1999, 141(Suppl. 56), 26-32.
[http://dx.doi.org/10.1046/j.1365-2133.1999.00011.x] [PMID: 10730911]
[73]
Sigurgeirsson, B.; Ghannoum, M. Therapeutic potential of TDT 067 (terbinafine in Transfersome): A carrier-based dosage form of terbinafine for onychomycosis. Expert Opin. Investig. Drugs, 2012, 21(10), 1549-1562.
[http://dx.doi.org/10.1517/13543784.2012.711315] [PMID: 22876754]
[74]
Perez, A.P.; Altube, M.J.; Schilrreff, P.; Apezteguia, G.; Celes, F.S.; Zacchino, S.; de Oliveira, C.I.; Romero, E.L.; Morilla, M.J. Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf. B Biointerfaces, 2016, 139, 190-198.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.003] [PMID: 26709977]
[75]
Javadzadeh, Y.; Shokri, J.; Hallaj-Nezhadi, S.; Hamishehkar, H.; Nokhodchi, A. Enhancement of percutaneous absorption of finasteride by cosolvents, cosurfactant and surfactants. Pharm. Dev. Technol., 2010, 15(6), 619-625.
[http://dx.doi.org/10.3109/10837450903397610] [PMID: 19929166]
[76]
Hussain, A.; Samad, A.; Ramzan, M.; Ahsan, M.N.; Ur Rehman, Z.; Ahmad, F.J. Elastic liposome-based gel for topical delivery of 5-fluorouracil: In vitro and in vivo investigation. Drug Deliv., 2016, 23(4), 1115-1129.
[http://dx.doi.org/10.3109/10717544.2014.976891] [PMID: 25379805]
[77]
Alvi, I.A.; Madan, J.; Kaushik, D.; Sardana, S.; Pandey, R.S.; Ali, A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: Preparation, characterization, in vitro release, and cytotoxicity analysis. Anticancer Drugs, 2011, 22(8), 774-782.
[http://dx.doi.org/10.1097/CAD.0b013e328346c7d6] [PMID: 21799471]
[78]
Li, S.; Qiu, Y.; Zhang, S.; Gao, Y. Enhanced transdermal delivery of 18β-glycyrrhetic acid via elastic vesicles: In vitro and in vivo evaluation. Drug Dev. Ind. Pharm., 2012, 38(7), 855-865.
[http://dx.doi.org/10.3109/03639045.2011.630395] [PMID: 22077323]
[79]
Ghanbarzadeh, S.; Arami, S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. BioMed Res. Int., 2013, 2013, 616810.
[http://dx.doi.org/10.1155/2013/616810] [PMID: 23936825]
[80]
Guillot, A.J.; Jornet-Mollá, E.; Landsberg, N.; Milián-Guimerá, C.; Montesinos, M.C.; Garrigues, T.M.; Melero, A. Cyanocobalamin ultraflexible lipid vesicles: Characterization and in vitro evaluation of drug-skin depth profiles. Pharmaceutics, 2021, 13(3), 418.
[http://dx.doi.org/10.3390/pharmaceutics13030418] [PMID: 33804652]
[81]
Parkash, V.; Maan, S.; Chaudhary, V. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat. J. Bioequivalence Bioavailab., 2018, 10(5)
[http://dx.doi.org/10.4172/0975-0851.1000385]
[82]
Bhatia, A.; Singh, B.; Wadhwa, S.; Raza, K.; Katare, O.P. Novel phospholipid-based topical formulations of tamoxifen: Evaluation for antipsoriatic activity using mouse-tail model. Pharm. Dev. Technol., 2014, 19(2), 160-163.
[http://dx.doi.org/10.3109/10837450.2013.763260] [PMID: 23369039]
[83]
Azimi, M.; Khodabandeh, M.; Deezagi, A.; Rahimi, F. Impact of the transfersome delivered human growth hormone on the dermal fibroblast cells. Curr. Pharm. Biotechnol., 2019, 20(14), 1194-1202.
[http://dx.doi.org/10.2174/1389201020666190809120333] [PMID: 31400264]
[84]
Surini, S.; Leonyza, A.; Suh, C.W. Formulation and in vitro penetration study of recombinant human epidermal growth factor-loaded transfersomal emulgel. Adv. Pharm. Bull., 2020, 10(4), 586-594.
[http://dx.doi.org/10.34172/apb.2020.070] [PMID: 33072536]
[85]
Avadhani, K.S.; Manikkath, J.; Tiwari, M.; Chandrasekhar, M.; Godavarthi, A.; Vidya, S.M.; Hariharapura, R.C.; Kalthur, G.; Udupa, N.; Mutalik, S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv., 2017, 24(1), 61-74.
[http://dx.doi.org/10.1080/10717544.2016.1228718] [PMID: 28155509]
[86]
Duangjit, S.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J. Drug Deliv., 2011, 2011, 418316.
[http://dx.doi.org/10.1155/2011/418316] [PMID: 21490750]
[87]
Allaw, M.; Pleguezuelos-Villa, M.; Manca, M.L.; Caddeo, C.; Aroffu, M.; Nacher, A.; Diez-Sales, O.; Saurí, A.R.; Ferrer, E.E.; Fadda, A.M.; Manconi, M. Innovative strategies to treat skin wounds with mangiferin: Fabrication of transfersomes modified with glycols and mucin. Nanomedicine (Lond.), 2020, 15(17), 1671-1685.
[http://dx.doi.org/10.2217/nnm-2020-0116] [PMID: 32677507]
[88]
Fadel, M.; Kassab, K.; Samy, N. Indocyanine green transferosomal hydrogel with enhanced stability and skin permeation for treatment of acne vulgaris (in vitro and clinical study). Eur J Biomed Pharm Sci., 2015, 2, 20-36.
[89]
Irfan, M.; Verma, S.; Ram, A. Preparation and characterization of ibuprofen loaded transferosome as a novel carrier for transdermal drug delivery system. Asian J. Pharm. Clin. Res., 2012, 5(3), 162-165.
[90]
El Sayyad, M.; Zaky, A.; Samy, A. Fabrication and characterization of sildenafil citrate loaded transfersomes as a carrier for transdermal drug delivery. Pharm. Pharmacol. Int. J., 2017, 5, 37-46.
[http://dx.doi.org/10.15406/ppij.2017.05.00113]
[91]
Akhtar, N.; Varma, A.; Pathak, K. Ethosomes as vesicles for effective transdermal delivery: From bench to clinical implementation. Curr. Clin. Pharmacol., 2016, 11(3), 168-190.
[http://dx.doi.org/10.2174/1574884711666160813231352] [PMID: 27526697]
[92]
Blume, A.; Jansen, M.; Ghyczy, M. Interaction of phospholipid liposomes with lipid model mixtures for stratum corneum lipids. Int. J. Pharm., 1993, 99(2), 219-228.
[http://dx.doi.org/10.1016/0378-5173(93)90364-L]
[93]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[94]
Touitou, E.; Godin, B.; Weiss, C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res., 2000, 50(3-4), 406-415.
[http://dx.doi.org/10.1002/1098-2299(200007/08)50:3/4<406::AIDDDR23>3.0.CO;2-M]
[95]
Ainbinder, D.; Paolino, D.; Fresta, M.; Touitou, E. Drug delivery applications with ethosomes. J. Biomed. Nanotechnol., 2010, 6(5), 558-568.
[http://dx.doi.org/10.1166/jbn.2010.1152] [PMID: 21329048]
[96]
Singh, D.; Pradhan, M.; Nag, M.; Singh, M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. Cells Nanomed. Biotechnol., 2015, 43(4), 282-290.
[http://dx.doi.org/10.3109/21691401.2014.883401] [PMID: 24564350]
[97]
Mbah, C.C.; Builders, P.F.; Attama, A.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus. Expert Opin. Drug Deliv., 2014, 11(1), 45-59.
[http://dx.doi.org/10.1517/17425247.2013.860130] [PMID: 24294974]
[98]
Satyam, G.; Shivani, S.; Garima, G. Ethosomes: A novel tool for drug delivery through the skin. J. Pharm. Res., 2010, 3(4), 688-691.
[99]
Dave, V.; Kumar, D.; Lewis, S. Ethosome for enhanced transdermal drug delivery of aceclofenac. Int. J. Drug Deliv., 2010, 2(1), 81-92.
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02016]
[100]
Mohanty, D.; Mounika, A.; Bakshi, V. Ethosomes: A novel approach for transdermal drug delivery. Int. J. Chemtech Res., 2018, 11, 219-226.
[http://dx.doi.org/10.20902/IJCTR.2018.110826]
[101]
Godin, B.; Touitou, E. Ethosomes: New prospects in transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(1), 63-102.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i1.20] [PMID: 12911264]
[102]
Li, G.; Fan, Y.; Fan, C.; Li, X.; Wang, X.; Li, M.; Liu, Y. Tacrolimus-loaded ethosomes: Physicochemical characterization and in vivo evaluation. Eur. J. Pharm. Biopharm., 2012, 82(1), 49-57.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.011] [PMID: 22705640]
[103]
Shen, L-N.; Zhang, Y-T.; Wang, Q.; Xu, L.; Feng, N.P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int. J. Pharm., 2014, 460(1-2), 280-288.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.017] [PMID: 24269286]
[104]
Song, C.K.; Balakrishnan, P.; Shim, C-K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2012, 92, 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[105]
Akhtar, N.; Pathak, K. Preclinical and clinical aspects of antimicrobial drugs delivered through ethosomal vesicles. Antiinfect. Agents, 2012, 10(1), 15-25.
[106]
Godin, B.; Touitou, E. Erythromycin ethosomal systems: Physicochemical characterization and enhanced antibacterial activity. Curr. Drug Deliv., 2005, 2(3), 269-275.
[http://dx.doi.org/10.2174/1567201054367931] [PMID: 16305429]
[107]
Godin, B.; Touitou, E.; Rubinstein, E.; Athamna, A.; Athamna, M. A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation: An in vivo study. J. Antimicrob. Chemother., 2005, 55(6), 989-994.
[http://dx.doi.org/10.1093/jac/dki125] [PMID: 15857943]
[108]
Touitou, E.; Godin, B.; Shumilov, M.; Bishouty, N.; Ainbinder, D.; Shouval, R.; Ingber, A.; Leibovici, V. Efficacy and tolerability of clindamycin phosphate and salicylic acid gel in the treatment of mild to moderate acne vulgaris. J. Eur. Acad. Dermatol. Venereol., 2008, 22(5), 629-631.
[http://dx.doi.org/10.1111/j.1468-3083.2007.02398.x] [PMID: 18410627]
[109]
Horwitz, E.; Pisanty, S.; Czerninski, R.; Helser, M.; Eliav, E.; Touitou, E. A clinical evaluation of a novel liposomal carrier for acyclovir in the topical treatment of recurrent herpes labialis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1999, 87(6), 700-705.
[http://dx.doi.org/10.1016/S1079-2104(99)70164-2] [PMID: 10397661]
[110]
Paolino, D.; Lucania, G.; Mardente, D.; Alhaique, F.; Fresta, M. Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J. Control. Release, 2005, 106(1-2), 99-110.
[http://dx.doi.org/10.1016/j.jconrel.2005.04.007] [PMID: 15935505]
[111]
Lodzki, M.; Godin, B.; Rakou, L.; Mechoulam, R.; Gallily, R.; Touitou, E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J. Control. Release, 2003, 93(3), 377-387.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.001] [PMID: 14644587]
[112]
The efficiency of topical treatment with ethosomal PGE1 formulation in erectile dysfunction patients. In: Proceedings Annual Meeting of Israeli Urological Association; Chertin, B.; Touitou, E.; Godin, B., Eds.; , 2006.
[113]
Bhalaria, M.K.; Naik, S.; Misra, A.N. Ethosomes: A novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J. Exp. Biol., 2009, 47(5), 368-375.
[PMID: 19579803]
[114]
Verma, P.; Pathak, K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine, 2012, 8(4), 489-496.
[http://dx.doi.org/10.1016/j.nano.2011.07.004] [PMID: 21839053]
[115]
Yücel, Ç.; Şeker Karatoprak, G.; Değim, İ.T. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J. Microencapsul., 2019, 36(2), 180-191.
[http://dx.doi.org/10.1080/02652048.2019.1617363] [PMID: 31070486]
[116]
Kaur, C.D.; Saraf, S. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin. J. Cosmet. Dermatol., 2011, 10(4), 260-265.
[http://dx.doi.org/10.1111/j.1473-2165.2011.00586.x] [PMID: 22151933]
[117]
Gollavilli, H.; Hegde, A.R.; Managuli, R.S.; Bhaskar, K.V.; Dengale, S.J.; Reddy, M.S.; Kalthur, G.; Mutalik, S. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surf. B Biointerfaces, 2020, 193, 111122.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111122] [PMID: 32498002]
[118]
Marto, J.; Vitor, C.; Guerreiro, A.; Severino, C.; Eleutério, C.; Ascenso, A.; Simões, S. Ethosomes for enhanced skin delivery of griseofulvin. Colloids Surf. B Biointerfaces, 2016, 146, 616-623.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.021] [PMID: 27429295]
[119]
Maheshwari, R.G.; Tekade, R.K.; Sharma, P.A.; Darwhekar, G.; Tyagi, A.; Patel, R.P.; Jain, D.K. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. Saudi Pharm. J., 2012, 20(2), 161-170.
[http://dx.doi.org/10.1016/j.jsps.2011.10.001] [PMID: 23960788]
[120]
Kaur, M.; Singh, K.; Jain, S.K. Luliconazole vesicular based gel formulations for its enhanced topical delivery. J. Liposome Res., 2020, 30(4), 388-406.
[http://dx.doi.org/10.1080/08982104.2019.1682602] [PMID: 31631734]
[121]
Kaur, C.; Maurya, P. Antifungal activity of amphotericin-b ethosomal gel against Candida albicans: A comparative study. Int. J. Pharm. Sci. Res., 11(1), 413-419.
[122]
Shetty, S.; Jose, J.; Kumar, L.; Charyulu, R.N. Novel ethosomal gel of clove oil for the treatment of cutaneous candidiasis. J. Cosmet. Dermatol., 2019, 18(3), 862-869.
[http://dx.doi.org/10.1111/jocd.12765] [PMID: 30171656]
[123]
Zhang, L.; Li, X.; Zhu, S. Dermal targeting delivery of terbinafine hydrochloride using novel multi-ethosomes: A new approach to fungal infection treatment. Coatings, 2020, 10(4), 304-318.
[http://dx.doi.org/10.3390/coatings10040304]
[124]
Sundar, V.D.; Divya, P.; Dhanaraju, M.D. Design development and characterisation of tramadol hydrochloride loaded transethosomal gel formulation for effective pain management. Indian J. Pharm. Educ. Res., 54(2), 88-97.
[http://dx.doi.org/10.5530/ijper.54.2s.65]
[125]
Gondkar, S.; Patil, N.R.; Saudagar, R. Formulation development and characterization of etodolac loaded transethosomes for transdermal delivery. Res. J. Pharm. Technol., 2017, 10(9), 3049-3057.
[http://dx.doi.org/10.5958/0974-360X.2017.00541.8]
[126]
Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.K.; Singh, B.; Beg, S. Systematic development of transethosomal gel system of piroxicam: Formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech, 2017, 18(1), 58-71.
[http://dx.doi.org/10.1208/s12249-016-0489-z] [PMID: 26868380]
[127]
Ma, M.; Wang, J.; Guo, F.; Lei, M.; Tan, F.; Li, N. Development of nanovesicular systems for dermal imiquimod delivery: Physicochemical characterization and in vitro/in vivo evaluation. J. Mater. Sci. Mater. Med., 2015, 26(6), 191.
[http://dx.doi.org/10.1007/s10856-015-5524-1] [PMID: 25989936]
[128]
Moolakkadath, T; Aqil, M; Ahad, A Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif Cells Nanomed Biotechnol., 2018, 46(sup2), 755-765.
[129]
Verma, S.; Utreja, P. Transethosomes of econazole nitrate for transdermal delivery: Development, in vitro characterization, and ex vivo assessment. Pharm. Nanotechnol., 2018, 6(3), 171-179.
[http://dx.doi.org/10.2174/2211738506666180813122102] [PMID: 30101725]
[130]
Nayak, D.; Tawale, R.M.; Aranjani, J.M.; Tippavajhala, V.K. Formulation, optimization and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug. AAPS PharmSciTech, 2020, 21(5), 140.
[http://dx.doi.org/10.1208/s12249-020-01681-5] [PMID: 32419032]
[131]
Sguizzato, M.; Ferrara, F.; Hallan, S.S.; Baldisserotto, A.; Drechsler, M.; Malatesta, M.; Costanzo, M.; Cortesi, R.; Puglia, C.; Valacchi, G.; Esposito, E. Ethosomes and transethosomes for mangiferin transdermal delivery. Antioxidants, 2021, 10(5), 768-786.
[http://dx.doi.org/10.3390/antiox10050768] [PMID: 34066018]
[132]
El-Kayal, M.; Nasr, M.; Elkheshen, S.; Mortada, N. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation. Eur. J. Pharm. Sci., 2019, 137, 104972.
[http://dx.doi.org/10.1016/j.ejps.2019.104972] [PMID: 31252049]
[133]
Rodríguez-Luna, A.; Talero, E.; Ávila-Román, J.; Romero, A.M.F.; Rabasco, A.M.; Motilva, V.; González-Rodríguez, M.L. Preparation and in vivo evaluation of rosmarinic acid-loaded transethosomes after percutaneous application on a psoriasis animal model. AAPS PharmSciTech, 2021, 22(3), 103.
[http://dx.doi.org/10.1208/s12249-021-01966-3] [PMID: 33712964]
[134]
Rahangdale, M.; Pandey, P. Development and characterization of apremilast transethosomal gel for transdermal delivery. Int. J. Pharm. Sci. Nanotechnol., 2021, 14(3), 5508-5518.
[http://dx.doi.org/10.37285/ijpsn.2021.14.3.8]
[135]
Chen, Z.X.; Li, B.; Liu, T.; Wang, X.; Zhu, Y.; Wang, L.; Wang, X.H.; Niu, X.; Xiao, Y.; Sun, Q. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur. J. Pharm. Sci., 2017, 99, 240-245.
[http://dx.doi.org/10.1016/j.ejps.2016.12.026] [PMID: 28039091]
[136]
Hamishehkar, H.; Rahimpour, Y.; Kouhsoltani, M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin. Drug Deliv., 2013, 10(2), 261-272.
[http://dx.doi.org/10.1517/17425247.2013.746310] [PMID: 23252629]
[137]
Handjani-Vila, R.M.; Ribier, A.; Rondot, B.; Vanlerberghie, G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int. J. Cosmet. Sci., 1979, 1(5), 303-314.
[http://dx.doi.org/10.1111/j.1467-2494.1979.tb00224.x] [PMID: 19467076]
[138]
Thakkar, M.; Brijesh, S. Opportunities and challenges for niosomes as drug delivery systems. Curr. Drug Deliv., 2016, 13(8), 1275-1289.
[http://dx.doi.org/10.2174/1567201813666160328113522] [PMID: 27017826]
[139]
Abdelkader, H.; Alani, A.W.; Alany, R.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv., 2014, 21(2), 87-100.
[http://dx.doi.org/10.3109/10717544.2013.838077] [PMID: 24156390]
[140]
Azeem, A.; Anwer, M.K.; Talegaonkar, S. Niosomes in sustained and targeted drug delivery: Some recent advances. J. Drug Target., 2009, 17(9), 671-689.
[http://dx.doi.org/10.3109/10611860903079454] [PMID: 19845484]
[141]
Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci., 2014, 205, 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[142]
Durak, S.; Esmaeili Rad, M.; Alp Yetisgin, A.; Eda Sutova, H.; Kutlu, O.; Cetinel, S.; Zarrabi, A. Niosomal drug delivery systems for ocular disease—recent advances and future prospects. Nanomaterials (Basel), 2020, 10(6), 1191-1219.
[http://dx.doi.org/10.3390/nano10061191] [PMID: 32570885]
[143]
Al Qtaish, N.; Gallego, I.; Villate-Beitia, I.; Sainz-Ramos, M.; López-Méndez, T.B.; Grijalvo, S.; Eritja, R.; Soto-Sánchez, C.; Martínez-Navarrete, G.; Fernández, E.; Puras, G.; Pedraz, J.L. Niosome-based approach for in situ gene delivery to retina and brain cortex as immune-privileged tissues. Pharmaceutics, 2020, 12(3), 198-226.
[http://dx.doi.org/10.3390/pharmaceutics12030198] [PMID: 32106545]
[144]
Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm., 2019, 144, 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[145]
Sharma, A.; Pahwa, S.; Bhati, S. Spanlastics: A modern approach for nanovesicular drug delivery system. Int. J. Pharm. Sci. Res., 2020, 11, 1057-1065.
[146]
Farghaly, D.A.; Aboelwafa, A.A.; Hamza, M.Y.; Mohamed, M.I. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: Optimization using experimental design and in vivo evaluation. AAPS PharmSciTech, 2017, 18(8), 2898-2909.
[http://dx.doi.org/10.1208/s12249-017-0771-8] [PMID: 28429293]
[147]
Nematollahi, M.H.; Pardakhty, A.; Torkzadeh-Mahanai, M. Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention. RSC Advances, 2017, 7(78), 49463-49472.
[http://dx.doi.org/10.1039/C7RA07834J]
[148]
Kakkar, S.; Kaur, I.P. Spanlastics--a novel nanovesicular carrier system for ocular delivery. Int. J. Pharm., 2011, 413(1-2), 202-210.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.027] [PMID: 21540093]
[149]
ElMeshad, A.N.; Mohsen, A.M. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv., 2016, 23(7), 2115-2123.
[http://dx.doi.org/10.3109/10717544.2014.942811] [PMID: 25080226]
[150]
Kumar, G.P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm. Sin. B, 2011, 1(4), 208-219.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[151]
Cevc, G.; Mazgareanu, S.; Rother, M. Preclinical characterisation of NSAIDs in ultradeformable carriers or conventional topical gels. Int. J. Pharm., 2008, 360(1-2), 29-39.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.051] [PMID: 18337027]
[152]
Choi, M.J.; Maibach, H.I. Elastic vesicles as topical/transdermal drug delivery systems. Int. J. Cosmet. Sci., 2005, 27(4), 211-221.
[http://dx.doi.org/10.1111/j.1467-2494.2005.00264.x] [PMID: 18492190]
[153]
Alaaeldin, E.; Mostafa, M.; Mansour, H.F. Spanlastics as an efficient delivery system for the enhancement of thymoquinone anticancer efficacy: Fabrication and cytotoxic studies against breast cancer cell lines. J. Drug Deliv. Sci. Technol., 2021, 65, 102725.
[http://dx.doi.org/10.1016/j.jddst.2021.102725]
[154]
Elsherif, N.I.; Shamma, R.N.; Abdelbary, G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitrocharacterization and ex vivo evaluation. AAPS PharmSciTech, 2017, 18(2), 551-562.
[http://dx.doi.org/10.1208/s12249-016-0528-9] [PMID: 27138036]
[155]
Alaaeldin, E.; Abou-Taleb, H.A.; Mohamad, S.A.; Elrehany, M.; Gaber, S.S.; Mansour, H.F. Topical nano-vesicular spanlastics of celecoxib: Enhanced anti-inflammatory effect and down-regulation of TNF-α, NF-кB and COX-2 in complete Freund’s adjuvant-induced arthritis model in rats. Int. J. Nanomedicine, 2021, 16, 133-145.
[http://dx.doi.org/10.2147/IJN.S289828] [PMID: 33447032]
[156]
Shamma, R.N.; Sayed, S.; Sabry, N.A.; El-Samanoudy, S.I. Enhanced skin targeting of retinoic acid spanlastics: In vitro characterization and clinical evaluation in acne patients. J. Liposome Res., 2019, 29(3), 283-290.
[http://dx.doi.org/10.1080/08982104.2018.1552706] [PMID: 30501429]
[157]
Elhabak, M.; Ibrahim, S.; Abouelatta, S.M. Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin. Drug Deliv., 2021, 28(1), 445-453.
[http://dx.doi.org/10.1080/10717544.2021.1886377] [PMID: 33620008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy